1
|
Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw FE, Debette S, Frayne R, Jouvent E, Rost NS, Ter Telgte A, Al-Shahi Salman R, Backes WH, Bae HJ, Brown R, Chabriat H, De Luca A, deCarli C, Dewenter A, Doubal FN, Ewers M, Field TS, Ganesh A, Greenberg S, Helmer KG, Hilal S, Jochems ACC, Jokinen H, Kuijf H, Lam BYK, Lebenberg J, MacIntosh BJ, Maillard P, Mok VCT, Pantoni L, Rudilosso S, Satizabal CL, Schirmer MD, Schmidt R, Smith C, Staals J, Thrippleton MJ, van Veluw SJ, Vemuri P, Wang Y, Werring D, Zedde M, Akinyemi RO, Del Brutto OH, Markus HS, Zhu YC, Smith EE, Dichgans M, Wardlaw JM. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol 2023; 22:602-618. [PMID: 37236211 DOI: 10.1016/s1474-4422(23)00131-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI. Since then, new information on these established SVD markers and novel MRI sequences and imaging features have emerged. As the effect of combined SVD imaging features becomes clearer, a key role for quantitative imaging biomarkers to determine sub-visible tissue damage, subtle abnormalities visible at high-field strength MRI, and lesion-symptom patterns, is also apparent. Together with rapidly emerging machine learning methods, these metrics can more comprehensively capture the effect of SVD on the brain than the structural MRI features alone and serve as intermediary outcomes in clinical trials and future routine practice. Using a similar approach to that adopted in STRIVE-1, we updated the guidance on neuroimaging of vascular changes in studies of ageing and neurodegeneration to create STRIVE-2.
Collapse
Affiliation(s)
- Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Medical Image Analysis Center, University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher Chen
- Department of Pharmacology, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charlotte Cordonnier
- Université de Lille, INSERM, CHU Lille, U1172-Lille Neuroscience and Cognition (LilNCog), Lille, France
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neuroscience, Radboudumc, Nijmegen, Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, University of Bordeaux, INSERM, UMR 1219, Bordeaux, France; Department of Neurology, Institute for Neurodegenerative Diseases, CHU de Bordeaux, Bordeaux, France
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Eric Jouvent
- AP-HP, Lariboisière Hospital, Translational Neurovascular Centre, FHU NeuroVasc, Université Paris Cité, Paris, France; Université Paris Cité, INSERM UMR 1141, NeuroDiderot, Paris, France
| | - Natalia S Rost
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Walter H Backes
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands; School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea; Cerebrovascular Disease Center, Seoul National University Bundang Hospital, Seongn-si, South Korea
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- Centre Neurovasculaire Translationnel, CERVCO, INSERM U1141, FHU NeuroVasc, Université Paris Cité, Paris, France
| | - Alberto De Luca
- Image Sciences Institute, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Charles deCarli
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Thalia S Field
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Vancouver Stroke Program, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Aravind Ganesh
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Karl G Helmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hanna Jokinen
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hugo Kuijf
- Image Sciences Institute, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bonnie Y K Lam
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Margaret KL Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jessica Lebenberg
- AP-HP, Lariboisière Hospital, Translational Neurovascular Centre, FHU NeuroVasc, Université Paris Cité, Paris, France; Université Paris Cité, INSERM UMR 1141, NeuroDiderot, Paris, France
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Repair, Hurvitz Brain Sciences, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Computational Radiology and Artificial Intelligence Unit, Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Pauline Maillard
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Margaret KL Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University Medical Center, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Markus D Schirmer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Julie Staals
- School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging and Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Yilong Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - David Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Department of Neuromotor Physiology and Rehabilitation, Azienda Unità Sanitaria-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad de Especialidades Espiritu Santo, Ecuador
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Eric E Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Kromrey ML, Oswald S, Becher D, Bartel J, Schulze J, Paland H, Ittermann T, Hadlich S, Kühn JP, Mouchantat S. Intracerebral gadolinium deposition following blood-brain barrier disturbance in two different mouse models. Sci Rep 2023; 13:10164. [PMID: 37349374 PMCID: PMC10287697 DOI: 10.1038/s41598-023-36991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
To evaluate the influence of the blood-brain barrier on neuronal gadolinium deposition in a mouse model after multiple intravenous applications of the linear contrast agent gadodiamide. The prospective study held 54 mice divided into three groups: healthy mice (A), mice with iatrogenic induced disturbance of the blood-brain barrier by glioblastoma (B) or cerebral infarction (C). In each group 9 animals received 10 iv-injections of gadodiamide (1.2 mmol/kg) every 48 h followed by plain T1-weighted brain MRI. A final MRI was performed 5 days after the last contrast injection. Remaining mice underwent MRI in the same time intervals without contrast application (control group). Signal intensities of thalamus, pallidum, pons, dentate nucleus, and globus pallidus-to-thalamus and dentate nucleus-to-pons ratios, were determined. Gadodiamide complex and total gadolinium amount were quantified after the last MR examination via LC-MS/MS and ICP-MS. Dentate nucleus-to-pons and globus pallidus-to-thalamus SI ratios showed no significant increase over time within all mice groups receiving gadodiamide, as well as compared to the control groups at last MR examination. Comparing healthy mice with group B and C after repetitive contrast administration, a significant SI increase could only be detected for glioblastoma mice in globus pallidus-to-thalamus ratio (p = 0.033), infarction mice showed no significant SI alteration. Tissue analysis revealed significantly higher gadolinium levels in glioblastoma group compared to healthy (p = 0.013) and infarction mice (p = 0.029). Multiple application of the linear contrast agent gadodiamide leads to cerebral gadolinium deposition without imaging correlate in MRI.
Collapse
Affiliation(s)
- M L Kromrey
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - S Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - D Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - J Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - J Schulze
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - H Paland
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - T Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Hadlich
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - J P Kühn
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- Institute and Policlinic of Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - S Mouchantat
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| |
Collapse
|
3
|
Berrabeh S, Messaoudi N, Elmehraoui O, Assarrar I, Karabila I, Jamal A, Zeryouh N, Rouf S, Latrech H. Hypoparathyroidism and Fahr's Syndrome: A Case Series. Cureus 2023; 15:e40502. [PMID: 37461775 PMCID: PMC10350282 DOI: 10.7759/cureus.40502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Fahr's syndrome is defined by the presence of striato-pallido-dentate calcifications. It is a rare entity with clinical polymorphism, and it occurs in patients with dysparathyroidism, especially those with hypoparathyroidism. It must be distinguished from Fahr's disease (FD), which is defined by the presence of intracerebral calcifications without phosphocalcic metabolism abnormality. In this paper, we report the particulars of five patients diagnosed with Fahr's syndrome revealed by neurological and cognitive disorders, seizures, and abnormal movements associated with tetany crisis. In all cases, brain imaging and biological examinations led to the diagnosis of Fahr's syndrome related to hypoparathyroidism. The evolution was favorable after treatment. Fahr's syndrome is a rare and serious condition for which treatment is simple and effective. Our observations shed light on the necessity of evaluating phosphocalcic metabolism and exploring cerebral calcifications in patients with neurological disorders.
Collapse
Affiliation(s)
- Soumiya Berrabeh
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Najoua Messaoudi
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Ouafae Elmehraoui
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Imane Assarrar
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Ikram Karabila
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Anouar Jamal
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Nabila Zeryouh
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Siham Rouf
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition/Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| | - Hanane Latrech
- Department of Endocrinology-Diabetology and Nutrition, Mohammed VI University Hospital Center, Oujda, MAR
- Department of Endocrinology-Diabetology and Nutrition/Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, Mohamed First University, Oujda, MAR
| |
Collapse
|
4
|
Harada T, Kudo K, Fujima N, Yoshikawa M, Ikebe Y, Sato R, Shirai T, Bito Y, Uwano I, Miyata M. Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics 2022; 42:1161-1176. [PMID: 35522577 DOI: 10.1148/rg.210054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantitative susceptibility mapping (QSM), one of the advanced MRI techniques for evaluating magnetic susceptibility, offers precise quantitative measurements of spatial distributions of magnetic susceptibility. Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and is a substance-specific value. Recently, QSM has been widely used to estimate various levels of substances in the brain, including iron, hemosiderin, and deoxyhemoglobin (paramagnetism), as well as calcification (diamagnetism). By visualizing iron distribution in the brain, it is possible to identify anatomic structures that are not evident on conventional images and to evaluate various neurodegenerative diseases. It has been challenging to apply QSM in areas outside the brain because of motion artifacts from respiration and heartbeats, as well as the presence of fat, which has a different frequency to the proton. In this review, the authors provide a brief overview of the theoretical background and analyze methods of converting MRI phase images to QSM. Moreover, we provide an overview of the current clinical applications of QSM. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Taisuke Harada
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Kohsuke Kudo
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Noriyuki Fujima
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Masato Yoshikawa
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yohei Ikebe
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ryota Sato
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Toru Shirai
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yoshitaka Bito
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ikuko Uwano
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Mari Miyata
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| |
Collapse
|
5
|
Jing XZ, Yuan XZ, Li GY, Chen JL, Wu R, Yang LL, Zhang SY, Wang XP, Li JQ. Increased Magnetic Susceptibility in the Deep Gray Matter Nuclei of Wilson's Disease: Have We Been Ignoring Atrophy? Front Neurosci 2022; 16:794375. [PMID: 35720701 PMCID: PMC9198485 DOI: 10.3389/fnins.2022.794375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Histopathological studies in Wilson's disease (WD) have revealed increased copper and iron concentrations in the deep gray matter nuclei. However, the commonly used mean bulk susceptibility only reflects the regional metal concentration rather than the total metal content, and regional atrophy may affect the assessment of mean bulk susceptibility. Our study aimed to quantitatively assess the changes of metal concentration and total metal content in deep gray matter nuclei by quantitative susceptibility mapping to distinguish patients with neurological and hepatic WD from healthy controls. Methods Quantitative susceptibility maps were obtained from 20 patients with neurological WD, 10 patients with hepatic WD, and 25 healthy controls on a 3T magnetic resonance imaging system. Mean bulk susceptibility, volumes, and total susceptibility of deep gray matter nuclei in different groups were compared using a linear regression model. The area under the curve (AUC) was calculated by receiver characteristic curve to analyze the diagnostic capability of mean bulk susceptibility and total susceptibility. Results Mean bulk susceptibility and total susceptibility of multiple deep gray matter nuclei in patients with WD were higher than those in healthy controls. Compared with patients with hepatic WD, patients with neurological WD had higher mean bulk susceptibility but similar total susceptibility in the head of the caudate nuclei, globus pallidus, and putamen. Mean bulk susceptibility of putamen demonstrated the best diagnostic capability for patients with neurological WD, the AUC was 1, and the sensitivity and specificity were all equal to 1. Total susceptibility of pontine tegmentum was most significant for the diagnosis of patients with hepatic WD, the AUC was 0.848, and the sensitivity and specificity were 0.7 and 0.96, respectively. Conclusion Brain atrophy may affect the assessment of mean bulk susceptibility in the deep gray matter nuclei of patients with WD, and total susceptibility should be an additional metric for total metal content assessment. Mean bulk susceptibility and total susceptibility of deep gray matter nuclei may be helpful for the early diagnosis of WD.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Rong Wu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Li Yang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Scarano S, Rota V, Tesio L, Perucca L, Robecchi Majnardi A, Caronni A. Balance Impairment in Fahr’s Disease: Mixed Signs of Parkinsonism and Cerebellar Disorder. A Case Study. Front Hum Neurosci 2022; 16:832170. [PMID: 35355583 PMCID: PMC8959384 DOI: 10.3389/fnhum.2022.832170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 01/05/2023] Open
Abstract
Fahr’s disease is a rare idiopathic degenerative disease characterized by calcifications in the brain, and has also been associated with balance impairment. However, a detailed analysis of balance in these patients has not been performed. A 69-year-old woman with Fahr’s disease presented with a long-lasting subjective imbalance. Balance was analyzed using both clinical (EquiScale, Timed Up and Go test, and Dizziness Handicap Inventory-short form) and instrumented tests (the sway of the body center of mass during quiet, perturbed, and self-perturbed stance, and the peak curvature of the center of mass during single stance while walking on a force-treadmill). The patient’s balance was normal during clinical tests and walking. However, during standing, a striking impairment in vestibular control of balance emerged. The balance behavior displayed mixed parkinsonian (e.g., slowness and reduced amplitude of movement) and cerebellar (e.g., increased sway during standing in all conditions and decomposition of movement) features, with a discrepancy between the high severity of the static and the low severity of the dynamic balance impairment. The balance impairment characteristics outlined in this study could help neurologists and physiatrists detect, stage, and treat this rare condition.
Collapse
Affiliation(s)
- Stefano Scarano
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
- Department of Neurorehabilitation Sciences, Ospedale San Luca, Istituto Auxologico Italiano IRCCS, Milan, Italy
- *Correspondence: Stefano Scarano,
| | - Viviana Rota
- Department of Neurorehabilitation Sciences, Ospedale San Luca, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luigi Tesio
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
- Department of Neurorehabilitation Sciences, Ospedale San Luca, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Laura Perucca
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
- Department of Neurorehabilitation Sciences, Ospedale San Luca, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Antonio Robecchi Majnardi
- Department of Neurorehabilitation Sciences, Ospedale San Luca, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Antonio Caronni
- Department of Neurorehabilitation Sciences, Ospedale San Luca, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
7
|
The Effect of Gadolinium-Based Contrast Agents on Longitudinal Changes of Magnetic Resonance Imaging Signal Intensities and Relaxation Times in the Aging Rat Brain. Invest Radiol 2022; 57:453-462. [PMID: 35125411 PMCID: PMC9172901 DOI: 10.1097/rli.0000000000000857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the study was to investigate the possible influence of changes in the brain caused by age on relaxometric and relaxation time–weighted magnetic resonance imaging (MRI) parameters in the deep cerebellar nuclei (DCN) and the globus pallidus (GP) of Gd-exposed and control rats over the course of 1 year.
Collapse
|
8
|
Basal ganglia calcification: a Fahr's disease case report. Radiol Case Rep 2021; 16:3055-3059. [PMID: 34429801 PMCID: PMC8365450 DOI: 10.1016/j.radcr.2021.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/18/2021] [Indexed: 11/23/2022] Open
Abstract
Idiopathic basal ganglia calcification (IBGC), known as Fahr's disease, is a rare neurological disorder characterized by metabolic, biochemical, neuroradiological and neuropsychiatric alterations caused by symmetrical and bilateral intracranial calcifications. The disease has, in most cases, an autosomal dominant pattern of inheritance and genetic heterogeneity. Overlap of neuropsychiatric symptoms is common with movement disorders accounted for 55% of the manifestation. Here we present the case of a 58-year-old woman, presenting to the emergency department because of an accidental fall. Her past medical history was unremarkable and she denied any neurological symptoms a part from insomnia and anxiety. Patient was sent to the emergency department to perform a Brain Computed Tomography (CT) exam that showed bilateral symmetrical calcifications in cerebellar white matter, the corpus striatum, the posterior thalami, and the centrum semiovale of both cerebral hemispheres. Beeing a case of IBGC without relevant symptoms, diagnosis was mainly obtained thanks to the characteristics features of CT examination.
Collapse
|
9
|
MR Imaging Safety Considerations of Gadolinium-Based Contrast Agents: Gadolinium Retention and Nephrogenic Systemic Fibrosis. Magn Reson Imaging Clin N Am 2021; 28:497-507. [PMID: 33040991 DOI: 10.1016/j.mric.2020.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gadolinium (Gd)-based contrast agents (GBCAs) have revolutionized of MR imaging, enabling physicians to obtain life-saving medical information that often cannot be obtained with unenhanced MR imaging or other imaging modalities. Since regulatory approval in 1988, more than 450 million intravenous GBCA doses have been administered worldwide, with an extremely favorable pharmacologic safety profile. Recent evidence has demonstrated, however, that a small fraction of Gd is retained in human tissues. No direct correlation between Gd retention and clinical effects has been confirmed; however, a subset of patients have attributed various symptoms to GBCA exposure. This review details current knowledge regarding GBCA safety.
Collapse
|
10
|
Cortical laminar necrosis in a patient with an embolic stroke of undetermined source: the metabolism patterns on PET/CT. Neurol Sci 2021; 42:4785-4788. [PMID: 34322763 DOI: 10.1007/s10072-021-05492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
|
11
|
Ozturk K, Nascene D. Susceptibility-Weighted Imaging of the Pediatric Brain after Repeat Doses of Gadolinium-Based Contrast Agent. AJNR Am J Neuroradiol 2021; 42:1136-1143. [PMID: 33888459 DOI: 10.3174/ajnr.a7143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Gadolinium complexes have paramagnetic properties; thus, we aimed to determine the susceptibility changes in the globus pallidus and dentate nucleus following administration of linear or macrocyclic gadolinium-based contrast agents in children. MATERIALS AND METHODS Thirty-three patients with linear gadolinium-based contrast agent gadopentetate dimeglumine administration, 33 age- and sex-matched patients with macrocyclic gadolinium-based contrast agent gadobutrol administration, and 33 age- and sex-matched control subjects without gadolinium exposure were enrolled in this retrospective study. The signal intensity on SWI and T1WI was determined in the dentate nucleus, middle cerebellar peduncle, globus pallidus, and pulvinar of the thalamus in an ROI-based analysis to calculate dentate nucleus-to-middle cerebellar peduncle and globus pallidus-to-thalamus ratios. A repeated measures ANOVA was performed to compare SWIminimum, SWImean, and T1WI signal intensity ratios between gadolinium-based contrast agent groups and control subjects. Pearson correlation analysis was performed to determine any correlation between signal intensity ratios and variables. RESULTS Dentate nucleus-to-middle cerebellar peduncle and globus pallidus-to-thalamus ratios for both SWImean and SWIminimum were lower for the linear gadolinium-based contrast agent group compared with macrocyclic gadolinium-based contrast agent and control groups (P < .05). No significant difference of the SWImean and SWIminimum ratios were noted between the macrocyclic gadolinium-based contrast agent group and the control group (P > .05). Both dentate nucleus-to-middle cerebellar peduncle and globus pallidus-to-thalamus ratios on T1WI in the linear gadolinium-based contrast agent group were higher than in the control group and the macrocyclic gadolinium-based contrast agent group (P < .05). A negative correlation was identified between SWImean and SWIminimum ratios and the number of linear gadolinium-based contrast agent administrations (dentate nucleus-to-middle cerebellar peduncle ratio: SWImean, r = -0.43, P = .005; SWIminimum, r = -0.38, P = .011; globus pallidus-to-thalamus ratio: SWImean, r = -0.39, P = .009; SWIminimum, r = -0.33, P = .017). CONCLUSIONS SWI analysis of the pediatric brain demonstrated a statistically significant decrease in SWIminimum and SWImean values for the dentate nucleus and globus pallidus after administration of linear gadolinium-based contrast agents but not macrocyclic gadolinium-based contrast agents.
Collapse
Affiliation(s)
- K Ozturk
- From the Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - D Nascene
- From the Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Zahniser E, Bird TD, Chen DH, Hu SC, Raskind WH, Trittschuh EH. Familial Idiopathic Basal Ganglia Calcification: A Father-Son Dyad Demonstrate Heterogeneity of Presentation and Disease Progression. Arch Clin Neuropsychol 2021; 37:217-225. [PMID: 33893476 DOI: 10.1093/arclin/acab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Familial idiopathic basal ganglia calcification (FIBGC) is a rare, heritable disease characterized by calcium deposition in the basal ganglia and other brain regions. Clinical presentations are diverse, featuring an array of neurologic, psychiatric, and/or cognitive symptoms. This dyad report presents neurogenetic, neuroimaging, neurological, and serial neuropsychological data from a father (S1) and son (S2) with FIBGC. METHOD/RESULTS The SLC20A2 genetic mutation c.1828-1831delTCCC was identified for each patient, both of whom evidenced similar patterns of brain calcification mainly in the basal ganglia and cerebellum on neuroimaging. S1's onset was in his late 60s with primary motor abnormalities followed by cognitive decline; S2's younger onset (late 30s) was characterized by predominant psychiatric symptoms and mild cognitive changes. Our unique, detailed longitudinal study revealed that both subjects demonstrated largely stable performance across most neuropsychological domains assessed. CONCLUSIONS The subjects' differences in presentation demonstrate the variable expressivity in FIBGC even with the same pathogenic variant within a single family. Distinct phenotypes may be associated with age of onset even in persons with the same mutation, consistent with past research. Disease progression may feature an initial period of notable change from baseline followed by relative stability, as seen both on imaging and neuropsychological evaluation.
Collapse
Affiliation(s)
- Evan Zahniser
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington 98144, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Department of Medicine (Medical Genetics), University of Washington School of Medicine, Seattle, Washington 98195, USA.,Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Dong-Hui Chen
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Shu-Ching Hu
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington 98144, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Wendy H Raskind
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington 98144, USA.,Department of Medicine (Medical Genetics), University of Washington School of Medicine, Seattle, Washington 98195, USA.,Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Emily H Trittschuh
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington 98144, USA.,Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Valdés Hernández MDC, Ballerini L, Glatz A, Muñoz Maniega S, Gow AJ, Bastin ME, Starr JM, Deary IJ, Wardlaw JM. Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging Behav 2021; 14:1865-1875. [PMID: 31250262 PMCID: PMC7572330 DOI: 10.1007/s11682-019-00128-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brain iron deposits (IDs) are indicative of microvessel dysfunction which may predispose to small vessel disease (SVD) brain damage and worsen cognition later in life. Visible perivascular spaces in the centrum semiovale (CSO-PVS) are SVD features linked with microvessel dysfunction. We examined possible associations of CSO-PVS volume and count with brain IDs and cognitive abilities in 700 community-dwelling individuals from the Lothian Birth Cohort 1936 who underwent detailed cognitive testing and multimodal brain MRI at mean age 72.7 years. Brain IDs were assessed automatically followed by manual editing. PVS were automatically assessed in the centrum semiovale and deep corona radiata supraventricular. General factors of overall cognitive function (g), processing speed (g-speed) and memory (g-memory) were used in the analyses. Median (IQR) volumes of IDs and CSO-PVS expressed as a percentage of intracranial volume were 0.0021 (0.011) and 0.22 (0.13)% respectively. Median count of CSO-PVS was 410 (IQR = 201). Total volumes of CSO-PVS and ID, adjusted for head size, were correlated (Spearman ρ = 0.13, p < 0.001). CSO-PVS volume, despite being correlated with all three cognitive measures, was only associated with g-memory (B = -114.5, SE = 48.35, p = 0.018) in general linear models, adjusting for age, sex, vascular risk factors, childhood intelligence and white matter hyperintensity volume. The interaction of CSO-PVS count with diabetes (B = -0.0019, SE = 0.00093, p = 0.041) and volume with age (B = 1.57, SE = 0.67, p = 0.019) were also associated with g-memory. Linear regression models did not replicate these associations. Therefore, it does not seem that CSO-PVS burden is directly associated with general cognitive ability in older age.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK. .,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK. .,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK. .,Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh Campus, David Brewster Building (Room 2.63A), Edinburgh, EH14 4AS, UK.
| | - Lucia Ballerini
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Andreas Glatz
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Alan J Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh Campus, David Brewster Building (Room 2.63A), Edinburgh, EH14 4AS, UK
| | - Mark E Bastin
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Alzheimer Scotland Dementia Research Centre, Department of Psychology (Room G24), University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Row Fogo Centre for Ageing and the Brain, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| |
Collapse
|
14
|
Malaquias MJ, Costa D, Pinto E, Videira G, Oliveira J, Freixo JP, Vilarinho L, Magalhães M. Parkinsonism and iron deposition in two adult patients with L-2-hydroxiglutaric aciduria. Parkinsonism Relat Disord 2021; 86:45-47. [PMID: 33839641 DOI: 10.1016/j.parkreldis.2021.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Accepted: 03/20/2021] [Indexed: 11/18/2022]
Abstract
L-2-hydroxiglutaric aciduria (L2HGA) is a rare, childhood-onset, organic aciduria, with characteristic clinical (cerebellar ataxia) and neuroimaging (subcortical leukodystrophy) features. Movement disorders in this condition are usually of hyperkinetic type. Herein is reported the case of two adult siblings with recent L2HGA diagnosis, presenting with dopa-responsive parkinsonism and MRI iron deposition.
Collapse
Affiliation(s)
- Maria João Malaquias
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal.
| | - Diogo Costa
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Eduarda Pinto
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Gonçalo Videira
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Jorge Oliveira
- Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - João Parente Freixo
- Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Laura Vilarinho
- Newborn Screening, Metabolism and Genetics Unit, National Institute of Health, Porto, Portugal
| | - Marina Magalhães
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
15
|
Zeng Y, DiGiacomo PS, Madsen SJ, Zeineh MM, Sinclair R. Exploring valence states of abnormal mineral deposits in biological tissues using correlative microscopy and spectroscopy techniques: A case study on ferritin and iron deposits from Alzheimer's disease patients. Ultramicroscopy 2021; 231:113254. [PMID: 33781589 DOI: 10.1016/j.ultramic.2021.113254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
Abnormal accumulation of inorganic trace elements in a human brain, such as iron, zinc and aluminum, oftentimes manifested as deposits and accompanied by a chemical valence change, is pathologically relevant to various neurodegenerative diseases. In particular, Fe2+ has been hypothesized to produce free radicals that induce oxidative damage and eventually cause Alzheimer's disease (AD). However, traditional biomedical techniques, e.g. histology staining, are limited in studying the chemical composition and valence states of these inorganic deposits. We apply commonly used physical (phys-) science methods such as X-ray energy dispersive spectroscopy (EDS), focused-ion beam (FIB) and electron energy loss spectroscopy (EELS) in transmission electron microscopy in conjunction with magnetic resonance imaging (MRI), histology and optical microscopy (OM) to study the valence states of iron deposits in AD patients. Ferrous ions are found in all deposits in brain tissues from three AD patients, constituting 0.22-0.50 of the whole iron content in each specimen. Such phys-techniques are rarely used in medical science and have great potential to provide unique insight into biomedical problems.
Collapse
Affiliation(s)
- Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.
| | - Philip S DiGiacomo
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - Steven J Madsen
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - Michael M Zeineh
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Chung SJ. Subcortical and brainstem hemiatrophy accompanied by iron deposition in a patient with hemiparkinsonism-hemiatrophy syndrome: a case report. BMC Neurol 2021; 21:51. [PMID: 33535984 PMCID: PMC7856800 DOI: 10.1186/s12883-021-02080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background There is no established pathogenesis of hemiparkinsonism-hemiatrophy syndrome (HPHA), and the varied clinical presentations have been reported in several case studies. To the best of our knowledge, the present report describes the first case of HPHA with unusual brain imaging findings. Case presentation A 20-year-old man presented with a 6-month history of weakness and clumsiness in his right limbs. He showed right-sided parkinsonism with dystonic hand posture; however, body asymmetry was not noted. Brain imaging revealed hemiatrophy of the left hemisphere subcortical structures and brainstem, and iron deposition in the left globus pallidus and substantia nigra. In addition, dopamine transporter imaging demonstrated normal presynaptic dopaminergic function. The patient was treated with levodopa, which had little to no effect. Conclusions This case demonstrates the unique imaging characteristics of HPHA associated with widespread brain hemiatrophy and iron deposition. Further studies are needed to elucidate the diagnostic criteria for this heterogeneous syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02080-4.
Collapse
Affiliation(s)
- Su Jin Chung
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, 55, Hwasu-ro 14beon-gil, Deogyang-gu, Goyang, 10475, South Korea.
| |
Collapse
|
17
|
Fahr's syndrome due to hypoparathyroidism revisited: A case of parkinsonism and a review of all published cases. Clin Neurol Neurosurg 2021; 202:106514. [PMID: 33529967 DOI: 10.1016/j.clineuro.2021.106514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Fahr's syndrome due to hypoparathyroidism refers to bilateral basal ganglia (BG) calcifications and manifests with movement disorders, seizures, cognitive and behavioral symptoms. CASE PRESENTATION We report a case of a 74-year-old woman, who presented with parkinsonism due to post-surgical hypoparathyroidism and normal DaT scan, despite extensive calcifications of the BG, periventricular white matter, and cerebellum. METHODS A comprehensive literature review of all reported cases of Fahr's syndrome due to hypoparathyroidism was conducted in the electronic databases PubMed and Web of science. Moreover, demographic and clinical characteristics of the patients overall were calculated and associated with radiological findings. RESULTS We reviewed a total of 223 cases with Fahr's syndrome due to hypoparathyroidism (124 female, 99 male). Mean age on presentation was 44.6 ± 17.7 years. Thirty nine percent of patients had idiopathic hypoparathyroidism, 35.4 % acquired and 25.6 % pseudohypoparathyroidism. Almost half of the patients had tetany, seizures or a movement disorder and approximately 40 % neuropsychiatric symptoms. The patients with a movement disorder had a 2.23 likelihood of having neuropsychiatric symptoms as well (OR 2.23, 95 % CI 1.29-3.87). Moreover, there was a statistically significant association between the phenotype severity (i.e. the presence of more than one symptom) and the extent of brain calcifications (χ2 = 32.383, p = 0.009). CONCLUSION Fahr's syndrome is a rare disorder, which nonetheless manifests with several neurological symptoms. A head CT should be considered for patients with hypoparathyroidism and neurological symptoms. More studies using DaT scan are needed to elucidate the effects of calcifications on the dopaminergic function of the BG.
Collapse
|
18
|
Yuan XZ, Li GY, Chen JL, Li JQ, Wang XP. Paramagnetic Metal Accumulation in the Deep Gray Matter Nuclei Is Associated With Neurodegeneration in Wilson's Disease. Front Neurosci 2020; 14:573633. [PMID: 33041766 PMCID: PMC7525019 DOI: 10.3389/fnins.2020.573633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Background Neuropathological studies have revealed copper and iron accumulation in the deep gray matter (DGM) nuclei of patients with Wilson’s disease (WD). However, the association between metal accumulation and neurodegeneration in WD has not been well studied in vivo. The study was aimed to investigate whether metal accumulation in the DGM was associated with the structural and functional changes of DGM in neurological WD patients. Methods Seventeen neurological WD patients and 20 healthy controls were recruited for the study. Mean bulk susceptibility values and volumes of DGM were obtained from quantitative susceptibility mapping (QSM). Regions of interest including the head of the caudate nucleus, globus pallidus, putamen, thalamus, substantia nigra, red nucleus, and dentate nucleus were manually segmented. The susceptibility values and volumes of DGM in different groups were compared using a linear regression model. Correlations between susceptibility values and volumes of DGM and Unified Wilson’s Disease Rating Scale (UWDRS) neurological subscores were investigated. Results The susceptibility values of all examined DGM in WD patients were higher than those in healthy controls (P < 0.05). Volume reductions were observed in the head of the caudate nucleus, globus pallidus, putamen, thalamus, and substantia nigra of WD patients (P < 0.001). Susceptibility values were negatively correlated with the volumes of the head of the caudate nucleus (rp = −0.657, P = 0.037), putamen (rp = −0.667, P = 0.037), and thalamus (rp = −0.613, P = 0.046) in WD patients. UWDRS neurological subscores were positively correlated with the susceptibility values of all examined DGM. The susceptibility values of putamen, head of the caudate nucleus, and dentate nucleus could well predict UWDRS neurological subscores. Conclusion Our study provided in vivo evidence that paramagnetic metal accumulation in the DGM was associated with DGM atrophy and neurological impairment. The susceptibility of DGM could be used as a biomarker to assess the severity of neurodegeneration in WD.
Collapse
Affiliation(s)
- Xiang-Zhen Yuan
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Acute administration of diazepam or midazolam minimally alters long-term neuropathological effects in the rat brain following acute intoxication with diisopropylfluorophosphate. Eur J Pharmacol 2020; 886:173538. [PMID: 32898549 DOI: 10.1016/j.ejphar.2020.173538] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Acute intoxication with organophosphorus cholinesterase inhibitors (OPs) can trigger seizures that rapidly progress to life-threatening status epilepticus. Diazepam, long considered the standard of care for treating OP-induced seizures, is being replaced by midazolam. Whether midazolam is more effective than diazepam in mitigating the persistent effects of acute OP intoxication has not been rigorously evaluated. We compared the efficacy of diazepam vs. midazolam in preventing persistent neuropathology in adult male Sprague-Dawley rats acutely intoxicated with the OP diisopropylfluorophosphate (DFP). Subjects were administered pyridostigmine bromide (0.1 mg/kg, i.p.) 30 min prior to injection with DFP (4 mg/kg, s.c.) or vehicle (saline) followed 1 min later by atropine sulfate (2 mg/kg, i.m.) and pralidoxime (25 mg/kg, i.m.), and 40 min later by diazepam (5 mg/kg, i.p.), midazolam (0.73 mg/kg, i.m.), or vehicle. At 3 and 6 months post-exposure, neurodegeneration, reactive astrogliosis, microglial activation, and oxidative stress were assessed in multiple brain regions using quantitative immunohistochemistry. Brain mineralization was evaluated by in vivo micro-computed tomography (micro-CT). Acute DFP intoxication caused persistent neurodegeneration, neuroinflammation, and brain mineralization. Midazolam transiently mitigated neurodegeneration, and both benzodiazepines partially protected against reactive astrogliosis in a brain region-specific manner. Neither benzodiazepine attenuated microglial activation or brain mineralization. These findings indicate that neither benzodiazepine effectively protects against persistent neuropathological changes, and suggest that midazolam is not significantly better than diazepam. Overall, this study highlights the need for improved neuroprotective strategies for treating humans in the event of a chemical emergency involving OPs.
Collapse
|
20
|
Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2020; 78:12-20. [DOI: 10.1016/j.parkreldis.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
21
|
Santhakumar S, Lukas J, Unnikrishnan G, Thomas B, Kesavadas C. Treatable Hereditary Manganese Transport Disorder: Novel SLC30A10 Mutation and its Characteristic Neuroimaging Appearance in Two Siblings. J Pediatr Genet 2020; 10:305-310. [PMID: 34849276 DOI: 10.1055/s-0040-1713853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Hypermanganesemia with dystonia and polycythemia along with liver cirrhosis is a rare syndromic complex that is associated with a characteristic genetic mutation and a typical appearance in the T1-weighted noncontrast image. In this article, we reported the neuroimaging findings of two siblings affected by this syndrome. There are few reported cases in literature with similar findings. Diagnosing this problem will help in improving the outcomes as the condition is treatable. We reviewed the clinical and imaging findings of this condition and the differential diagnosis related to it.
Collapse
Affiliation(s)
- Senthilvelan Santhakumar
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Jospaul Lukas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Bejoy Thomas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Chandrasekharan Kesavadas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
22
|
Lersy F, Diepenbroek AL, Lamy J, Willaume T, Bierry G, Cotton F, Kremer S. Signal changes in enhanced T1-weighted images related to gadolinium retention: A three-time-point imaging study. J Neuroradiol 2020; 48:82-87. [PMID: 32615207 DOI: 10.1016/j.neurad.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Concern has grown about the finding of gadolinium deposits in the brain after administering gadolinium-based contrast agents (GBCAs). The mechanism is unclear, and related questions remain unanswered, including the stability over time. Therefore, we conducted a three-time-point study to explore T1-weighted (W) signal changes in the dentate nucleus (DN) and globus pallidus (GP), after the first, fifth, and tenth injections of either a macrocyclic agent (gadoterate meglumine) or a linear agent (gadobenate dimeglumine). MATERIALS AND METHODS For this retrospective, multicenter, longitudinal study, two groups of 18 (gadoterate meglumine) and 19 (gadobenate dimeglumine) patients were identified. The evolution of the signal over time was analyzed using DN/pons (DN/P) and GP/thalamus (GP/T) ratios. RESULTS DN/P and GP/T ratios tended to increase after the fifth administration of gadobenate dimeglumine, following by a downward trend. A trend in a decrease in DN/P and GP/T ratios were found after the fifth and tenth administrations of gadoterate meglumine. CONCLUSION After exposure to gadobenate dimeglumine, the signal intensity (SI) tended to increase after the fifth injection owing to gadolinium accumulation, however, a SI increase was not found after the tenth administration supporting the hypothesis of a slow elimination of the previously retained gadolinium (wash-out effect) from the brain or of a change in form (by dechelation), causing the signal to fade. No increasing SI was found in the DN and GP after exclusive exposure to gadoterate meglumine, thus confirming its stability. We found, instead, a trend for a significative gadolinium elimination over time.
Collapse
Affiliation(s)
- François Lersy
- Service de Radiologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg Cedex, France.
| | - Anne-Lise Diepenbroek
- Faculté de médecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France.
| | - Julien Lamy
- ICube, Université de Strasbourg-CNRS, ICube - Institut de physique biologique, 4, rue Kirschleger, 67000 Strasbourg, France.
| | - Thibault Willaume
- Service de Radiologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg Cedex, France.
| | - Guillaume Bierry
- Service de Radiologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg Cedex, France.
| | - François Cotton
- Service de Radiologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France.
| | - Stéphane Kremer
- Service de Radiologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg Cedex, France.
| |
Collapse
|
23
|
González EA, Rindy AC, Guignet MA, Calsbeek JJ, Bruun DA, Dhir A, Andrew P, Saito N, Rowland DJ, Harvey DJ, Rogawski MA, Lein PJ. The chemical convulsant diisopropylfluorophosphate (DFP) causes persistent neuropathology in adult male rats independent of seizure activity. Arch Toxicol 2020; 94:2149-2162. [PMID: 32303805 PMCID: PMC7305973 DOI: 10.1007/s00204-020-02747-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
Organophosphate (OP) threat agents can trigger seizures that progress to status epilepticus, resulting in persistent neuropathology and cognitive deficits in humans and preclinical models. However, it remains unclear whether patients who do not show overt seizure behavior develop neurological consequences. Therefore, this study compared two subpopulations of rats with a low versus high seizure response to diisopropylfluorophosphate (DFP) to evaluate whether acute OP intoxication causes persistent neuropathology in non-seizing individuals. Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im), and pralidoxime (25 mg/kg, im) were monitored for seizure activity for 4 h post-exposure. Animals were separated into groups with low versus high seizure response based on behavioral criteria and electroencephalogram (EEG) recordings. Cholinesterase activity was evaluated by Ellman assay, and neuropathology was evaluated at 1, 2, 4, and 60 days post-exposure by Fluoro-Jade C (FJC) staining and micro-CT imaging. DFP significantly inhibited cholinesterase activity in the cortex, hippocampus, and amygdala to the same extent in low and high responders. FJC staining revealed significant neurodegeneration in DFP low responders albeit this response was delayed, less persistent, and decreased in magnitude compared to DFP high responders. Micro-CT scans at 60 days revealed extensive mineralization that was not significantly different between low versus high DFP responders. These findings highlight the importance of considering non-seizing patients for medical care in the event of acute OP intoxication. They also suggest that OP intoxication may induce neurological damage via seizure-independent mechanisms, which if identified, might provide insight into novel therapeutic targets.
Collapse
Affiliation(s)
- Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Alexa C Rindy
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Ashish Dhir
- Department of Neurology, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Naomi Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Donzuso G, Mostile G, Nicoletti A, Zappia M. Basal ganglia calcifications (Fahr's syndrome): related conditions and clinical features. Neurol Sci 2019; 40:2251-2263. [PMID: 31267306 PMCID: PMC6817747 DOI: 10.1007/s10072-019-03998-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Basal ganglia calcifications could be incidental findings up to 20% of asymptomatic patients undergoing CT or MRI scan. The presence of neuropsychiatric symptoms associated with bilateral basal ganglia calcifications (which could occur in other peculiar brain structures, such as dentate nuclei) identifies a clinical picture defined as Fahr's Disease. This denomination mainly refers to idiopathic forms in which no metabolic or other underlying causes are identified. Recently, mutations in four different genes (SLC20A2, PDGFRB, PDGFB, and XPR1) were identified, together with novel mutations in the Myogenic Regulating Glycosylase gene, causing the occurrence of movement disorders, cognitive decline, and psychiatric symptoms. On the other hand, secondary forms, also identified as Fahr's syndrome, have been associated with different conditions: endocrine abnormalities of PTH, such as hypoparathyroidism, other genetically determined conditions, brain infections, or toxic exposure. The underlying pathophysiology seems to be related to an abnormal calcium/phosphorus homeostasis and transportation and alteration of the blood-brain barrier.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giovanni Mostile
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Mario Zappia
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
25
|
Choi JW, Moon WJ. Gadolinium Deposition in the Brain: Current Updates. Korean J Radiol 2018; 20:134-147. [PMID: 30627029 PMCID: PMC6315073 DOI: 10.3348/kjr.2018.0356] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are commonly used for enhancement in MR imaging and have long been considered safe when administered at recommended doses. However, since the report that nephrogenic systemic fibrosis is linked to the use of GBCAs in subjects with severe renal diseases, accumulating evidence has suggested that GBCAs are not cleared entirely from our bodies; some GBCAs are deposited in our tissues, including the brain. GBCA deposition in the brain is mostly linked to the specific chelate structure of the GBCA: linear GBCAs were responsible for brain deposition in almost all reported studies. This review aimed to summarize the current knowledge about GBCA brain deposition and discuss its clinical implications.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Saracoglu S, Gumus K, Doganay S, Koc G, Kacar Bayram A, Arslan D, Gumus H. Brain susceptibility changes in neurologically asymptomatic pediatric patients with Wilson's disease: evaluation with quantitative susceptibility mapping. Acta Radiol 2018; 59:1380-1385. [PMID: 29482344 DOI: 10.1177/0284185118759821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Wilson's disease (WD) is a copper metabolism disorder that causes hepatolenticular degeneration. It is important to diagnose WD before central nervous system involvement. Purpose To demonstrate the early susceptibility changes associated with the copper accumulation in the brain of neurologically asymptomatic pediatric patients with WD using quantitative susceptibility mapping (QSM). Material and Methods Twelve patients with neurologically asymptomatic WD (mean age = 13.7 ± 3.3 years) and 14 age-matched controls were prospectively examined using a 1.5-T clinical scanner. Routine magnetic resonance (MR) sequences and a three-dimensional multi-echo spoiled gradient echo (GRE) sequence were used and QSM maps were reproduced. The quantitative susceptibility of corpus striatum, thalamus, substantia nigra, and pons were analyzed with the region of interest analysis on QSM maps. The susceptibility values of two groups were statistically compared using a two-sample t-test. Results Conventional MR images of the patients and control group were similar. However increased magnetic susceptibility in the thalamus, pons and left posterior putamen were observed in the patients compared to the control group ( p < 0.05). Conclusion We observed statistically increased susceptibility values in the brains of neurologically asymptomatic patients with WD although the conventional MR images were normal. This might be compatible with early brain impairment, before neurological symptoms occur.
Collapse
Affiliation(s)
- Sibel Saracoglu
- Department of Pediatric Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kazim Gumus
- Biomedical Imaging Research Center, Erciyes University, Kayseri, Turkey
| | - Selim Doganay
- Department of Pediatric Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gonca Koc
- Department of Pediatric Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Kacar Bayram
- Department of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duran Arslan
- Department of Pediatric Gastroenterology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Department of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
27
|
Jetty SN, Badar Z, Drumsla D, Mangla R. Clinical Significance of T2*gradient-recalled Echo/susceptibility-weighted Imaging Sequences in Evaluating Superficial Siderosis in the Setting of Intracerebral Tumors: Pilocytic Astrocytoma. J Clin Imaging Sci 2018; 8:36. [PMID: 30197827 PMCID: PMC6118113 DOI: 10.4103/jcis.jcis_60_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Superficial siderosis is the slow accumulation of hemosiderin on the pial surfaces of the brain and spinal cord. The most common cause of intracranial superficial siderosis is secondary to subarachnoid hemorrhage. Rarely, superficial siderosis can also be caused by tumors. Superficial siderosis presents clinically as hearing loss and gait instability that progressively worsen. The diagnosis is primarily made by magnetic resonance imaging; however, susceptibility-weighted imaging (SWI) and T2* gradient echo (GRE) sequences demonstrate the highest sensitivity in detecting this condition. To the best of our knowledge, there has been only one previous case of superficial siderosis secondary to a pilocytic astrocytoma of the spine. However, we present a case of intracerebral pilocytic astrocytoma resulting in superficial siderosis, with emphasis on acquisition and use of T2*GRE/SWI sequences.
Collapse
Affiliation(s)
- Sankarsh N Jetty
- Department of Radiology, SUNY Upstate Medical University, NY, USA
| | - Zain Badar
- Department of Radiology, SUNY Upstate Medical University, NY, USA
| | - Douglas Drumsla
- Department of Radiology, SUNY Upstate Medical University, NY, USA
| | - Rajiv Mangla
- Department of Radiology, SUNY Upstate Medical University, NY, USA
| |
Collapse
|
28
|
Effect of Age on High T1 Signal Intensity of the Dentate Nucleus and Globus Pallidus in a Large Population Exposed to Gadodiamide. Invest Radiol 2018; 53:214-222. [DOI: 10.1097/rli.0000000000000431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abstract
MRI contrast is often enhanced using a contrast agent. Gd3+-complexes are the most widely used metallic MRI agents, and several types of Gd3+-based contrast agents (GBCAs) have been developed. Furthermore, recent advances in MRI technology have, in part, been driven by the development of new GBCAs. However, when designing new functional GBCAs in a small-molecular-weight or nanoparticle form for possible clinical applications, their functions are often compromised by poor pharmacokinetics and possible toxicity. Although great progress must be made in overcoming these limitations and many challenges remain, new functional GBCAs with either small-molecular-weight or nanoparticle forms offer an exciting opportunity for use in precision medicine.
Collapse
|
30
|
DeMeo NN, Burgess JD, Blackburn PR, Gass JM, Richter J, Atwal HK, van Gerpen JA, Atwal PS. Co-occurrence of a novel PDGFRB variant and likely pathogenic variant in CASR in an individual with extensive intracranial calcifications and hypocalcaemia. Clin Case Rep 2017; 6:8-13. [PMID: 29375828 PMCID: PMC5771904 DOI: 10.1002/ccr3.1265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 12/12/2022] Open
Abstract
This case report describes an individual with brain calcifications, cognitive decline, motor dysfunction, and hypocalcaemia. Exome sequencing revealed a previously reported variant in the CASR gene and a variant of uncertain significance in PDGFRB. The clinical phenotype is likely explained by the CASR variant, but we discuss how the PDGFRB variant could also participate in the phenotype.
Collapse
Affiliation(s)
| | | | - Patrick R Blackburn
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida.,Department of Health Sciences Research Mayo Clinic Jacksonville Florida
| | - Jennifer M Gass
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida
| | - John Richter
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida.,Department of Clinical Genomics Mayo Clinic Jacksonville Florida
| | | | | | - Paldeep S Atwal
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida.,Department of Clinical Genomics Mayo Clinic Jacksonville Florida
| |
Collapse
|
31
|
Doganay S, Gumus K, Koc G, Bayram AK, Dogan MS, Arslan D, Gumus H, Gorkem SB, Ciraci S, Serin HI, Coskun A. Magnetic Susceptibility Changes in the Basal Ganglia and Brain Stem of Patients with Wilson's Disease: Evaluation with Quantitative Susceptibility Mapping. Magn Reson Med Sci 2017; 17:73-79. [PMID: 28515413 PMCID: PMC5760236 DOI: 10.2463/mrms.mp.2016-0145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objectives: Wilson’s disease (WD) is characterized with the accumulation of copper in the liver and brain. The objective of this study is to quantitatively measure the susceptibility changes of basal ganglia and brain stem of pediatric patients with neurological WD using quantitative susceptibility mapping (QSM) in comparison to healthy controls. Methods: Eleven patients with neurological WD (mean age 15 ± 3.3 years, range 10–22 years) and 14 age-matched controls were prospectively recruited. Both groups were scanned on a 1.5 Tesla clinical scanner. In addition to T1- and T2-weighted MR images, a 3D multi-echo spoiled gradient echo (GRE) sequence was acquired and QSM images were derived offline. The quantitative measurement of susceptibility of corpus striatum, thalamus of each hemisphere, midbrain, and pons were assessed with the region of interest analysis on the QSM images. The susceptibility values for the patient and control groups were compared using two-sample t-test. Results: One patient with WD had T1 shortening in the bilateral globus pallidus. Another one had hyperintensity in the bilateral putamen, caudate nuclei, and substantia nigra on T2-weighted images. The rest of the patients with WD and all subjects of the control group had no signal abnormalities on conventional MR images. The susceptibility measures of right side of globus pallidus, putamen, thalamus, midbrain, and entire pons were significantly different in patients compared to controls (P < 0.05). Conclusion: QSM method exhibits increased susceptibility differences of basal ganglia and brain stem in patients with WD that have neurologic impairment even if no signal alteration is detected on T1- and T2-weighted MR images.
Collapse
Affiliation(s)
- Selim Doganay
- Pediatric Radiology, Faculty of Medicine, Erciyes University
| | - Kazim Gumus
- Biomedical Imaging Research Center, Erciyes University
| | - Gonca Koc
- Pediatric Radiology, Faculty of Medicine, Erciyes University
| | | | | | - Duran Arslan
- Pediatric Gastroenterology, Faculty of Medicine, Erciyes University
| | - Hakan Gumus
- Pediatric Neurology, Faculty of Medicine, Erciyes University
| | | | - Saliha Ciraci
- Pediatric Radiology, Faculty of Medicine, Erciyes University
| | | | | |
Collapse
|
32
|
Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium Retention and Toxicity-An Update. Adv Chronic Kidney Dis 2017; 24:138-146. [PMID: 28501075 DOI: 10.1053/j.ackd.2017.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Until 2006, the main considerations regarding safety for all gadolinium-based contrast agents (GBCAs) were related to short-term adverse reactions. However, the administration of certain "high-risk" GBCAs to patients with renal failure resulted in multiple reported cases of nephrogenic systemic fibrosis. Findings have been reported regarding gadolinium deposition within the body and various reports of patients who report suffering from acute and chronic symptoms secondary to GBCA's exposure. At the present state of knowledge, it has been proved that gadolinium deposits also occur in the brain, irrespective of renal function and GBCAs stability class. To date, no definitive clinical findings are associated with gadolinium deposition in brain tissue. Gadolinium deposition disease is a newly described and probably infrequent entity. Patients presenting with gadolinium deposition disease may show signs and symptoms that somewhat follows a pattern similar but not identical, and also less severe, to those observed in nephrogenic systemic fibrosis. In this review, we will address gadolinium toxicity focusing on these 2 recently described concerns.
Collapse
|
33
|
Zhang Y, Cao Y, Shih GL, Hecht EM, Prince MR. Extent of Signal Hyperintensity on Unenhanced T1-weighted Brain MR Images after More than 35 Administrations of Linear Gadolinium-based Contrast Agents. Radiology 2017; 282:516-525. [PMID: 27513848 DOI: 10.1148/radiol.2016152864] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yang Zhang
- From the Department of Radiology, Weill Cornell Medical College and Columbia College of Physicians and Surgeons, 416 E 55th St, New York, NY 10022 (Y.Z., Y.C., G.L.S., M.R.P.); and Department of Radiology, Columbia University Medical Center, New York, NY (E.M.H., M.R.P.)
| | - Yan Cao
- From the Department of Radiology, Weill Cornell Medical College and Columbia College of Physicians and Surgeons, 416 E 55th St, New York, NY 10022 (Y.Z., Y.C., G.L.S., M.R.P.); and Department of Radiology, Columbia University Medical Center, New York, NY (E.M.H., M.R.P.)
| | - George L Shih
- From the Department of Radiology, Weill Cornell Medical College and Columbia College of Physicians and Surgeons, 416 E 55th St, New York, NY 10022 (Y.Z., Y.C., G.L.S., M.R.P.); and Department of Radiology, Columbia University Medical Center, New York, NY (E.M.H., M.R.P.)
| | - Elizabeth M Hecht
- From the Department of Radiology, Weill Cornell Medical College and Columbia College of Physicians and Surgeons, 416 E 55th St, New York, NY 10022 (Y.Z., Y.C., G.L.S., M.R.P.); and Department of Radiology, Columbia University Medical Center, New York, NY (E.M.H., M.R.P.)
| | - Martin R Prince
- From the Department of Radiology, Weill Cornell Medical College and Columbia College of Physicians and Surgeons, 416 E 55th St, New York, NY 10022 (Y.Z., Y.C., G.L.S., M.R.P.); and Department of Radiology, Columbia University Medical Center, New York, NY (E.M.H., M.R.P.)
| |
Collapse
|
34
|
Kanda T, Nakai Y, Oba H, Toyoda K, Kitajima K, Furui S. Gadolinium deposition in the brain. Magn Reson Imaging 2016; 34:1346-1350. [DOI: 10.1016/j.mri.2016.08.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022]
|
35
|
Effect of Renal Function on Gadolinium-Related Signal Increases on Unenhanced T1-Weighted Brain Magnetic Resonance Imaging. Invest Radiol 2016; 51:677-682. [PMID: 27272543 DOI: 10.1097/rli.0000000000000294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Gore E, Appleby BS, Cohen ML, DeBrosse SD, Leverenz JB, Miller BL, Siedlak SL, Zhu X, Lerner AJ. Clinical and imaging characteristics of late onset mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurocase 2016; 22:476-483. [PMID: 27801611 PMCID: PMC5568540 DOI: 10.1080/13554794.2016.1247458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022]
Abstract
Young onset dementias present significant diagnostic challenges. We present the case of a 35-year-old Kuwaiti man with social withdrawal, drowsiness, irritability, anxiety, aphasia, memory loss, hypereflexia, and Parkinsonism. Brain MRI showed bilateral symmetric gradient echo hypointensities in the globi pallidi and substantiae nigrae. Left cortical hypometabolism was seen on brain fluorodeoxyglucose positron emission tomography. A cortical brain biopsy revealed a high Lewy body burden. Genetic testing revealed a homozygous p.T11M mutation in the C19orf12 gene consistent with mitochondrial membrane protein-associated neurodegeneration. This is the oldest onset age of MPAN reported.
Collapse
Affiliation(s)
- Ethan Gore
- Department of Neurology, University Hospitals Case Medical Center, Beachwood, OH, USA
| | - Brian S. Appleby
- Departments of Neurology and Psychiatry, University Hospitals Case Medical Center, 3619 Park East Drive, Beachwood, OH, USA
| | - Mark L. Cohen
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Suzanne D. DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - James B. Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | - Bruce L. Miller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Alan J. Lerner
- Department of Neurology, University Hospitals Case Medical Center, Beachwood, OH, USA
| |
Collapse
|
37
|
Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. Eur Radiol 2016; 27:772-777. [PMID: 27221561 DOI: 10.1007/s00330-016-4418-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate if application of macrocyclic gadolinium-based contrast agents in volunteers is associated with neuronal deposition detected by magnetic resonance imaging in a 5-year longitudinal survey. MATERIALS AND METHODS Three hundred eighty-seven volunteers who participated in a population-based study were enrolled. Subjects underwent plain T1-weighted brain MRI at baseline and 5 years later with identical sequence parameters. At baseline, 271 participants additionally received intravenous injection of the macrocyclic contrast agent gadobutrol (0.15 mmol/kg). A control group including 116 subjects received no contrast agent. Relative signal intensities of thalamus, pallidum, pons and dentate nucleus were compared at baseline and follow-up. RESULTS No difference in relative signal intensities was observed between contrast group (thalamus, p = 0.865; pallidum, p = 0.263; pons, p = 0.533; dentate nucleus, p = 0.396) and control group (thalamus, p = 0.683; pallidum; p = 0.970; pons, p = 0.773; dentate nucleus, p = 0.232) at both times. Comparison between both groups revealed no significant differences in relative signal intensities (thalamus, p = 0.413; pallidum, p = 0.653; pons, p = 0.460; dentate nucleus, p = 0.751). The study showed no significant change in globus pallidus-to-thalamus or dentate nucleus-to-pons ratios. CONCLUSIONS Five years after administration of a 1.5-fold dose gadobutrol to normal subjects, signal intensity of thalamus, pallidum, pons and dentate nucleus did not differ from participants who had not received gadobutrol. KEY POINTS • Gadobutrol does not lead to neuronal signal alterations after 5 years. • Neuronal deposition of macrocyclic contrast agent could not be confirmed. • Macrocyclic contrast agents in a proven dosage are safe.
Collapse
|
38
|
Valdés Hernández M, Allerhand M, Glatz A, Clayson L, Muñoz Maniega S, Gow A, Royle N, Bastin M, Starr J, Deary I, Wardlaw J. Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people? Eur J Neurol 2016; 23:1202-9. [PMID: 27094820 PMCID: PMC4950475 DOI: 10.1111/ene.13006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Several studies have reported associations between brain iron deposits (IDs), white matter hyperintensities (WMHs) and cognitive ability in older individuals. Whether the association between brain IDs and cognitive abilities in older people is mediated by or independent of total brain tissue damage represented by WMHs visible on structural magnetic resonance imaging (MRI) was examined. METHODS Data from 676 community-dwelling individuals from the Lothian Birth Cohort 1936, with Mini-Mental State Examination scores >24, who underwent detailed cognitive testing and multimodal brain MRI at mean age 72.7 years were analysed. Brain IDs were assessed automatically following manual editing. WMHs were assessed semi-automatically. Brain microbleeds were visually counted. Structural equation modelling was used to test for mediation. RESULTS Overall, 72.8% of the sample had IDs with a median total volume of 0.040 ml (i.e. 0.004% of the total brain volume). The total volume of IDs, significantly and negatively associated with general cognitive function (standardized β = -0.17, P < 0.01), was significantly and positively associated with WMH volume (std β = 0.13, P = 0.03). WMH volume had a significant negative association with general cognitive function, independent of IDs (std β = -0.13, P < 0.01). The association between cognition and IDs in the brain stem (and minimally the total brain iron load) was partially and significantly mediated by WMH volume (P = 0.03). CONCLUSIONS The negative association between brain IDs and cognitive ability in the elderly is partially mediated by WMHs, with this mediation mainly arising from the iron deposition load in the brain stem. IDs might be an indicator of small vessel disease that predisposes to white matter damage, affecting the neuronal networks underlying higher cognitive functioning.
Collapse
Affiliation(s)
- M Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - M Allerhand
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - A Glatz
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - L Clayson
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - S Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - A Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology, School of Life Sciences, Heriot-Watt University, Edinburgh, UK
| | - N Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - M Bastin
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - J Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - I Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - J Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
MRI pallidal signal in children exposed to manganese in drinking water. Neurotoxicology 2016; 53:124-131. [DOI: 10.1016/j.neuro.2016.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022]
|
40
|
Contribution of metals to brain MR signal intensity: review articles. Jpn J Radiol 2016; 34:258-66. [PMID: 26932404 DOI: 10.1007/s11604-016-0532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/14/2022]
Abstract
Various metals are essential nutrients in humans, and metal shortages lead to a variety of deficiency diseases. Metal concentration abnormalities may cause metal deposition in the brain, and magnetic resonance imaging (MRI) is the most potent and sensitive technique now available for detecting metal deposition given the difficulties associated with performing brain tissue biopsy. However, the brain contains many kinds of metals that affect the signal intensity of MRI, which has led to numerous misunderstandings in the history of metal analysis. We reviewed the history of brain metal analysis with histologic findings. Typically, manganese overload causes high signal intensity on T1-weighted images (T1WI) in the globus pallidus, iron overload causes low signal intensity in the globus pallidus on T2-weighted images, and gadolinium deposition causes high signal intensity in the dentate nucleus, globus pallidus, and pulvinar of thalamus on T1WI. However, because nonparamagnetic materials and other coexisting metals also affect the signal intensity of brain MRI, the quantitative analysis of metal concentrations is difficult. Thus, when analyzing metal deposition using MRI, caution should be exercised when interpreting the validity and reliability of the obtained data.
Collapse
|
41
|
Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 2016; 58:433-41. [PMID: 26873830 DOI: 10.1007/s00234-016-1658-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gadolinium-based contrast agents (GBCAs) have been used clinically since 1988 for contrast-enhanced magnetic resonance imaging (CE-MRI). Generally, GBCAs are considered to have an excellent safety profile. However, GBCA administration has been associated with increased occurrence of nephrogenic systemic fibrosis (NSF) in patients with severely compromised renal function, and several studies have shown evidence of gadolinium deposition in specific brain structures, the globus pallidus and dentate nucleus, in patients with normal renal function. METHODS Gadolinium deposition in the brain following repeated CE-MRI scans has been demonstrated in patients using T1-weighted unenhanced MRI and inductively coupled plasma mass spectroscopy. Additionally, rodent studies with controlled GBCA administration also resulted in neural gadolinium deposits. RESULTS Repeated GBCA use is associated with gadolinium deposition in the brain. This is especially true with the use of less-stable, linear GBCAs. In spite of increasing evidence of gadolinium deposits in the brains of patients after multiple GBCA administrations, the clinical significance of these deposits continues to be unclear. CONCLUSION Here, we discuss the current state of scientific evidence surrounding gadolinium deposition in the brain following GBCA use, and the potential clinical significance of gadolinium deposition. There is considerable need for further research, both to understand the mechanism by which gadolinium deposition in the brain occurs and how it affects the patients in which it occurs.
Collapse
Affiliation(s)
- Dragan Stojanov
- Faculty of Medicine, University of Nis, Bul. Dr. Zorana Djindjica 81, Nis, 18000, Serbia.
- Center for Radiology, Clinical Center Nis, Nis, Serbia.
| | | | | |
Collapse
|
42
|
Kanda T, Oba H, Toyoda K, Kitajima K, Furui S. Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn J Radiol 2015; 34:3-9. [PMID: 26608061 DOI: 10.1007/s11604-015-0503-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
|
43
|
Del C Valdés Hernández M, Ritchie S, Glatz A, Allerhand M, Muñoz Maniega S, Gow AJ, Royle NA, Bastin ME, Starr JM, Deary IJ, Wardlaw JM. Brain iron deposits and lifespan cognitive ability. AGE (DORDRECHT, NETHERLANDS) 2015; 37:100. [PMID: 26378028 PMCID: PMC5005839 DOI: 10.1007/s11357-015-9837-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Several studies have reported associations between brain iron deposits and cognitive status, and cardiovascular and neurodegenerative diseases in older individuals, but the mechanisms underlying these associations remain unclear. We explored the associations between regional brain iron deposits and different factors of cognitive ability (fluid intelligence, speed and memory) in a large sample (n = 662) of individuals with a mean age of 73 years. Brain iron deposits in the corpus striatum were extracted automatically. Iron deposits in other parts of the brain (i.e., white matter, thalamus, brainstem and cortex), brain tissue volume and white matter hyperintensities (WMH) were assessed separately and semi-automatically. Overall, 72.8 % of the sample had iron deposits. The total volume of iron deposits had a small but significant negative association with all three cognitive ability factors in later life (mean r = -0.165), but no relation to intelligence in childhood (r = 0.043, p = 0.282). Regression models showed that these iron deposit associations were still present after control for a variety of vascular health factors, and were separable from the association of WMH with cognitive ability. Iron deposits were also associated with cognition across the lifespan, indicating that they are relevant for cognitive ability only at older ages. Iron deposits might be an indicator of small vessel disease that affects the neuronal networks underlying higher cognitive functioning.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | - Stuart Ritchie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andreas Glatz
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Mike Allerhand
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Alan J Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, School of Life Sciences, Heriot-Watt University, Edinburgh, UK
| | - Natalie A Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Department of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - John M Starr
- Department of Geriatric Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 2015; 26:807-15. [PMID: 26105022 DOI: 10.1007/s00330-015-3879-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/23/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Dragan A Stojanov
- Faculty of Medicine, University of Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 82.
- Center for Radiology, Clinical Center Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 48.
| | | | - Slobodan Vojinovic
- Faculty of Medicine, University of Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 82.
- Clinic for Neurology, Clinical Center Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 48.
| | | | - Srdjan Ljubisavljevic
- Faculty of Medicine, University of Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 82.
- Clinic for Neurology, Clinical Center Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 48.
| |
Collapse
|
45
|
Zimny A, Neska-Matuszewska M, Bladowska J, Sąsiadek MJ. Intracranial Lesions with Low Signal Intensity on T2-weighted MR Images - Review of Pathologies. Pol J Radiol 2015; 80:40-50. [PMID: 25628772 PMCID: PMC4307690 DOI: 10.12659/pjr.892146] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
In this article we presented intracranial pathological substances and lesions with low signal intensity on T2-weighted images. Eight groups of substances were discussed i.e. 1. Gadolinium-based contrast materials, 2. hemoglobin degradation products 3. melanin, 4. mucous- or protein-containing lesions, 5. highly cellular lesions, 6. lesions containing mineral substances such as: calcium, copper and iron, 7. turbulent and rapid blood or CSF flow 8. air-containing spaces. Appropriate interpretation of signal intensity as well as analysis of lesion location and clinical symptoms enable a correct choice of a further diagnostic algorithm or, in many cases, final diagnosis based exclusively on an MRI examination.
Collapse
Affiliation(s)
- Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Neska-Matuszewska
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Bladowska
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| | - Marek J Sąsiadek
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
46
|
Hernández MDCV, Allan J, Glatz A, Kyle J, Corley J, Brett CE, Maniega SM, Royle NA, Bastin ME, Starr JM, Deary IJ, Wardlaw JM. Exploratory analysis of dietary intake and brain iron accumulation detected using magnetic resonance imaging in older individuals: the Lothian Birth Cohort 1936. J Nutr Health Aging 2015; 19:64-9. [PMID: 25560818 DOI: 10.1007/s12603-014-0523-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CONTEXT Brain Iron Deposits (IDs) are associated with neurodegenerative diseases and impaired cognitive function in later life, but their cause is unknown. Animal studies have found evidence of relationships between dietary iron, calorie and cholesterol intake and brain iron accumulation. OBJECTIVES To investigate the relationship between iron, calorie, and cholesterol intake, blood indicators of iron status, and brain IDs in humans. DESIGN, SETTING AND PARTICIPANTS Cohort of 1063 community-dwelling older individuals born in 1936 (mean age 72.7years, SD=0.7) with dietary information, results from blood sample analyses and brain imaging data contemporaneously in old age. MEASUREMENTS Magnetic Resonance Imaging was used to assess regional volumes of brain IDs in basal ganglia, brainstem, white matter, thalamus, and cortex/border with the corticomedullary junction, using a fully automatic assessment procedure followed by individual checking/correction where necessary. Haemoglobin, red cell count, haematocrit, mean cell volume, ferritin and transferrin were obtained from blood samples and typical daily intake of iron, calories, and cholesterol were calculated from a validated food-frequency questionnaire. RESULTS Overall, 72.8% of the sample that had valid MRI (n=676) had brain IDs. The median total volume of IDs was 40mm3, inter-quartile range (IQR)=196. Basal ganglia IDs (median=35, IQR=159.5 mm3), were found in 70.6% of the sample. IDs in the brainstem were found in 12.9% of the sample, in the cortex in 1.9%, in the white matter in 6.1% and in the thalamus in 1.0%. The median daily intake of calories was 1808.5kcal (IQR=738.5), of cholesterol was 258.5mg (IQR=126.2) and of total iron was 11.7mg (IQR=5). Iron, calorie or cholesterol intake were not directly associated with brain IDs. However, caloric intake was associated with ferritin, an iron storage protein (p=0.01). CONCLUSION Our results suggest that overall caloric, iron and cholesterol intake are not associated with IDs in brains of healthy older individuals but caloric intake could be associated with iron storage. Further work is required to corroborate our findings on other samples and investigate the underlying mechanisms of brain iron accumulation.
Collapse
Affiliation(s)
- M del C Valdés Hernández
- Dr. Maria C. Valdés Hernández, Brain Research Imaging Centre, Department of Neuroimaging Sciences, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK. Telephone: +44-131-537-3093, Fax: +44-131-332-5150, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Seven-tesla magnetic resonance imaging in Wilson disease using quantitative susceptibility mapping for measurement of copper accumulation. Invest Radiol 2014; 49:299-306. [PMID: 24220252 DOI: 10.1097/rli.0000000000000010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES In Wilson disease (WD), the copper content of cerebral tissue is increased, particularly in the basal ganglia. This study investigated whether a change in magnetic susceptibility can be detected using quantitative susceptibility mapping of the brain in patients with WD compared with healthy controls. MATERIALS AND METHODS Eleven patients with WD (6 with the neurological form, 5 with the hepatic form) and 10 age-matched healthy controls who gave informed consent were examined at 7 T in a whole-body scanner (MAGNETOM; Siemens Medical Solutions, Erlangen, Germany) using a 24-channel phased array coil (Nova Medical). For imaging, a 3-dimensional spoiled gradient multiecho sequence (repetition time, 40 milliseconds; echo time, 9.76/19.19/28.62 milliseconds; bandwidth, 150 hertz per pixel; voxel size, 0.6 × 0.6 × 0.8 mm) was used. The susceptibility of selected regions (substantia nigra, red nucleus, pallidum, putamen, caudate nucleus) was analyzed in susceptibility maps. RESULTS The patients with WD showed significantly increased susceptibility (P value, 0.001-0.05) in all analyzed regions compared with healthy controls. This was evident not only in patients with a neurological syndrome but also, with lower values, in patients with isolated hepatic manifestations. The distribution patterns of copper accumulation were different between the patients with neurological and non-neurological manifestations of the disease. CONCLUSIONS In neurologically symptomatic and asymptomatic patients with WD, we found increased magnetic susceptibility in the brain tissue using quantitative susceptibility mapping.
Collapse
|
48
|
Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities. Neuroimage 2014; 105:332-46. [PMID: 25451469 PMCID: PMC4275576 DOI: 10.1016/j.neuroimage.2014.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/08/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022] Open
Abstract
Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. A novel method segmented focal T2*-weighted MRI hypointensities automatically. The method was validated with MRI of a novel phantom and 98 elderly subjects. The subject masks from the method and an experienced rater overlapped substantially. The method is potentially useful for research into small vessel disease and ageing.
Collapse
|
49
|
Tang MY, Chen TW, Zhang XM, Huang XH. GRE T2∗-weighted MRI: principles and clinical applications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:312142. [PMID: 24987676 PMCID: PMC4009216 DOI: 10.1155/2014/312142] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/19/2014] [Indexed: 12/20/2022]
Abstract
The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI.
Collapse
Affiliation(s)
- Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiao Hua Huang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| |
Collapse
|
50
|
Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2013; 270:834-41. [PMID: 24475844 DOI: 10.1148/radiol.13131669] [Citation(s) in RCA: 980] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To explore any correlation between the number of previous gadolinium-based contrast material administrations and high signal intensity (SI) in the dentate nucleus and globus pallidus on unenhanced T1-weighted magnetic resonance (MR) images. MATERIALS AND METHODS The institutional review board approved this study, waiving the requirement to obtain written informed consent. A group of 381 consecutive patients who had undergone brain MR imaging was identified for cross-sectional analysis. For longitudinal analysis, 19 patients who had undergone at least six contrast-enhanced examinations were compared with 16 patients who had undergone at least six unenhanced examinations. The mean SIs of the dentate nucleus, pons, globus pallidus, and thalamus were measured on unenhanced T1-weighted images. The dentate nucleus-to-pons SI ratio was calculated by dividing the SI in the dentate nucleus by that in the pons, and the globus pallidus-to-thalamus SI ratio was calculated by dividing the SI in the globus pallidus by that in the thalamus. Stepwise regression analysis was undertaken in the consecutive patient group to detect any relationship between the dentate nucleus-to-pons or globus pallidus-to-thalamus SI ratio and previous gadolinium-based contrast material administration or other factors. A random coefficient model was used to evaluate for longitudinal analysis. RESULTS The dentate nucleus-to-pons SI ratio showed a significant correlation with the number of previous gadolinium-based contrast material administrations (P < .001; regression coefficient, 0.010; 95% confidence interval [CI]: 0.009, 0.011; standardized regression coefficient, 0.695). The globus pallidus-to-thalamus SI ratio showed a significant correlation with the number of previous gadolinium-based contrast material administrations (P < .001; regression coefficient, 0.004; 95% CI: 0.002, 0.006; standardized regression coefficient, 0.288), radiation therapy (P = .009; regression coefficient, -0.014; 95% CI: -0.025, -0.004; standardized regression coefficient, -0.151), and liver function (P = .031; regression coefficient, 0.023; 95% CI: 0.002, 0.044; standardized regression coefficient, 0.107). The dentate nucleus-to-pons and globus pallidus-to-thalamus SI ratios in patients who had undergone contrast-enhanced examinations were significantly greater than those of patients who had undergone unenhanced examinations (P < .001 for both). CONCLUSION High SI in the dentate nucleus and globus pallidus on unenhanced T1-weighted images may be a consequence of the number of previous gadolinium-based contrast material administrations.
Collapse
Affiliation(s)
- Tomonori Kanda
- From the Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.K., H.K., D.T.); Department of Radiology, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan (K.I.); and Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (K.K.)
| | | | | | | | | |
Collapse
|