1
|
Mamone L, Tomás R, Di Venosa G, Gándara L, Durantini E, Buzzola F, Casas A. Laser NIR Irradiation Enhances Antimicrobial Photodynamic Inactivation of Biofilms of Staphylococcus aureus. Lasers Surg Med 2024; 56:783-795. [PMID: 39360552 DOI: 10.1002/lsm.23847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Photodynamic inactivation (PDI) is a powerful technique for eradicating microorganisms, and our group previously demonstrated its effectiveness against planktonic cultures of Staphylococcus aureus bacteria using 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and visible light irradiation. However, biofilms exhibit a lower sensitivity to PDI, mainly due to limited penetration of the photosensitizer (PS). In the context of emerging antibacterial strategies, near-infrared treatments (NIRTs) have shown promise, especially for combating resistant strains. NIRT can act either through photon absorption by water, causing a thermal effect on bacteria, or by specific chromophores without a significant temperature increase. Our objective was to enhance biofilm sensitivity to TAPP-PDI by pretreatment with NIRT. This combined approach aims to disrupt biofilms and increase the efficacy of TAPP-PDI against bacterial biofilms. MATERIALS AND METHODS In vitro biofilm models of S. aureus RN6390 were utilized. NIRTs involved a 980 nm laser (continuous mode, 7.5 W/cm2, 30 s, totaling 225 J/cm2) post-TAPP exposure to enhance photosensitizer accumulation. Subsequent visible light irradiation at 180 J/cm2 was employed to perform PDI. Colony-forming unit counts evaluated the synergistic effect on bacterial viability. Scanning electron microscopy visualized the architectural changes in the biofilm structure. TAPP was extracted from bacteria to estimate the impact of NIRT on biofilm penetration. RESULTS Using in vitro biofilm models, NIRT application following biofilm exposure to TAPP increased PS accumulation per bacteria. Under these conditions, NIRT induced a transient increase in the temperature of PBS to 46.0 ± 2.6°C (ΔT = 21.5°C). Following exposure to visible light, a synergistic effect emerged, yielding a substantial 4.4 ± 0.1-log CFU reduction. In contrast, the PDI and NIRT treatments individually caused a decrease in viability of 0.9 ± 0.1 and 0.8 ± 0.2-log respectively. Interestingly, preheating TAPP-PBS to 46°C had no significant impact on TAPP-PDI efficacy, suggesting the involvement of thermal and nonthermal effects of NIR action. In addition to the enhanced TAPP penetration, NIRT dispersed the biofilms and induced clefts in the biofilm matrix. CONCLUSION Our findings suggest that NIR irradiation serves as a complementary treatment to PDI. This combined strategy reduces bacterial numbers at lower PS concentrations than standalone PDI treatment, highlighting its potential as an effective and resource-efficient antibacterial approach.
Collapse
Affiliation(s)
- Leandro Mamone
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| | - Roberto Tomás
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| | - Lautaro Gándara
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edgardo Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Fernanda Buzzola
- Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Adriana Casas
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Cabaniss T, Bodlak R, Liu Y, Colby G, Lee H, Bohnstedt B, Garziera R, Holzapfel G, Lee CH. CFD investigations of a shape-memory polymer foam-based endovascular embolization device for the treatment of intracranial aneurysms. RESEARCH SQUARE 2024:rs.3.rs-5014601. [PMID: 39483886 PMCID: PMC11527223 DOI: 10.21203/rs.3.rs-5014601/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The hemodynamic and convective heat transfer effects of a patient-specific endovascular therapeutic agent based on shape memory polymer foam (SMPf) are evaluated using computational fluid dynamics studies for six patient-specific aneurysm geometries. The SMPf device is modeled as a continuous porous medium with full expansion for the flow studies and with various degrees of expansion for the heat transfer studies. The flow simulation parameters were qualitatively validated based on the existing literature. Further, a mesh independence study was conducted to verify an optimal cell size and reduce the computational costs. For convective heat transfer, a worst-case scenario is evaluated where the minimum volumetric flow rate is applied alongside the zero-flux boundary conditions. In the flow simulations, we found a reduction of the average intra-aneurysmal flow of > 85% and a reduction of the maximum intra-aneurysmal flow of > 45% for all presented geometries. These findings were compared with the literature on numerical simulations of hemodynamic and heat transfer of SMPf devices. The results obtained from this study can serve as a guide for optimizing the design and development of patient-specific SMPf devices aimed at personalized endovascular embolization of intracranial aneurysms.
Collapse
|
3
|
Bianchi L, Baroni S, Paroni G, Violatto MB, Moscatiello GY, Panini N, Russo L, Fiordaliso F, Colombo L, Diomede L, Saccomandi P, Bigini P. Thermal effects and biological response of breast and pancreatic cancer cells undergoing gold nanorod-assisted photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:112993. [PMID: 39128426 DOI: 10.1016/j.jphotobiol.2024.112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
To increase the therapeutic efficacy of nanoparticle (NP)-assisted photothermal therapy (PTT) and allow for a transition toward the clinical setting, it is pivotal to characterize the thermal effect induced in cancer cells and correlate it with the cell biological response, namely cell viability and cell death pathways. This study quantitatively evaluated the effects of gold nanorod (GNR)-assisted near-infrared (NIR) PTT on two different cancer cell lines, the 4T1 triple-negative breast cancer cells and the Pan02 pancreatic cancer cells. The interaction between nanomaterials and biological matrices was investigated in terms of GNR internalization and effect on cell viability at different GNR concentrations. GNR-mediated PTT was executed on both cell lines, at the same treatment settings to allow a straightforward comparison, and real-time monitored through thermographic imaging. A thermal analysis based on various parameters (i.e., maximum absolute temperature, maximum temperature change, temperature variation profile, area under the time-temperature change curve, effective thermal enhancement (ETE), and time constants) was performed to evaluate the treatment thermal outcome. While GNR treatment and NIR laser irradiation alone did not cause cell toxicity in the selected settings, their combination induced a significant reduction of cell viability in both cell lines. At the optimal experimental condition (i.e., 6 μg/mL of GNRs and 4.5 W/cm2 laser power density), GNR-assisted PTT reduced the cell viability of 4T1 and Pan02 cells by 94% and 87% and it was associated with maximum temperature changes of 25 °C and 29 °C (i.e., ∼1.8-fold increase compared to the laser-only condition), maximum absolute temperatures of 55 °C and 54 °C, and ETE values of 78% and 81%, for 4T1 and Pan02 cells, correspondingly. Also, the increase in the GNR concentration led to a decrease in the time constants, denoting faster heating kinetics upon irradiation. Furthermore, the thermal analysis parameters were correlated with the extent of cell death. Twelve hours after NIR exposure, GNR-assisted PTT was found to mainly trigger secondary apoptosis in both cell lines. The proposed study provides relevant insights into the relationship between temperature history and biological responses in the context of PTT. The findings contribute to the development of a universal methodology for evaluating thermal sensitivity upon NP-assisted PTT on different cell types and lay the groundwork for future translational studies.
Collapse
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Sara Baroni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Gabriela Paroni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Martina Bruna Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Yuri Moscatiello
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy.
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|
4
|
Goudarzi S, Jones RM, Lee YHW, Hynynen K. Transducer module apodization to reduce bone heating during focused ultrasound uterine fibroid ablation with phased arrays: A numerical study. Med Phys 2024. [PMID: 39341358 DOI: 10.1002/mp.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND During magnetic resonance-guided focused ultrasound (MRgFUS) surgery for uterine fibroids, ablation of fibrous tissues in proximity to the hips and spine is challenging due to heating within the bone that can cause patients to experience pain and potentially damage nerves. This far-field bone heating limits the volume of fibroid tissue that is treatable via MRgFUS. PURPOSE To investigate transducer module apodization for improving the ratio of focal-to-bone heating (Δ T ratio $\Delta T_{\mathrm{ratio}}$ ) when targeting fibroid tissue close to the hips and spine, to enable MRgFUS treatments closer to the bone. METHODS Acoustic and thermal simulations were performed using 3D magnetic resonance imaging (MRI)-derived anatomies of ten patients who underwent MRgFUS ablation for uterine fibroids using a low-frequency (0.5 MHz $0.5 \ \text{MHz}$ ) 6144-element flat fully-populated modular phased array system (Arrayus Technologies Inc., Burlington, Canada) at our institution as part of a larger clinical trial (NCT03323905). Transducer modules (64 elements $64 \ \text{elements}$ per module) whose beams intersected with no-pass zones delineated within the field were identified, their output power levels were reduced by varying blocking percentage levels, and the resulting temperature field distributions were evaluated across multiple sonications near the hip and spine bones in each patient. Acoustic and thermal simulations took approximately20 min $20 \ \text{min}$ (7 min $7 \ \text{min}$ ) and1 min $1 \ \text{min}$ (30 s $30 \ \text{s}$ ) to run for a single near-spine (near-hip) target, respectively. RESULTS For all simulated sonications, transducer module blocking improvedΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no blocking case. In just over half of sonications, full module blocking maximizedΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increase of 82% ± $\pm$ 38% in 50% of hip targets and 49% ± $\pm$ 30% in 62% of spine targets vs. no blocking; mean ± SD), at the cost of more diffuse focusing (focal heating volumes increased by 13% ± 13% for hip targets and 39% ± 27% for spine targets) and thus requiring elevated total (hip: 6% ± 17%, spine: 37% ± 17%) and peak module-wise (hip: 65% ± 36%, spine: 101% ± 56%) acoustic power levels to achieve equivalent focal heating as the no blocking control case. In the remaining sonications, partial module blocking provided further improvements in bothΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increased by 29% ± 25% in the hip and 15% ± 12% in the spine) and focal heating volume (decrease of 20% ± 10% in the hip and 34% ± 17% in the spine) relative to the full blocking case. The optimal blocking percentage value was dependent on the specific patient geometry and target location of interest. Although not all individual target locations saw the benefit, element-wise phase aberration corrections improved the averageΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no correction case (increase of 52% ± 47% in the hip, 35% ± 24% in the spine) and impacted the optimal blocking percentage value. Transducer module blocking enabled ablative treatments to be carried out closer to both hip and spine without overheating or damaging the bone (no blocking:42 ± 1 mm $42\pm 1 \ \text{mm}$ /17 ± 2 mm $17 \pm 2 \ \text{mm}$ , full blocking:38 ± 1 mm $38\pm 1 \ \text{mm}$ /8 ± 1 mm $8\pm 1 \ \text{mm}$ , optimal partial blocking:36 ± 1 mm $36\pm 1 \ \text{mm}$ /7 ± 1 mm $7\pm 1 \ \text{mm}$ for hip/spine). CONCLUSION The proposed transducer apodization scheme shows promise for improving MRgFUS treatments of uterine fibroids, and may ultimately increase the effective treatment envelope of MRgFUS surgery in the body by enabling tissue ablation closer to bony structures.
Collapse
Affiliation(s)
- Sobhan Goudarzi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ryan Matthew Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yin Hau Wallace Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yang J, Li Z, Lai C, Xu K. An In Vivo Assessment of a Novel Temperature Control Flexible Ureteroscope System for Monitoring and Controlling Intrarenal Temperature During Flexible Ureteroscopy. Urology 2024; 191:38-44. [PMID: 39002847 DOI: 10.1016/j.urology.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE To evaluate the efficacy of a novel temperature control flexible ureteroscope system in the precise monitoring and control of intrarenal temperature (IRT) during ureteroscopy. METHODS We developed a novel temperature control flexible ureteroscope system (PT-Scope), including a temperature-monitoring ureteroscope and a irrigation-suction platform for temperature regulation. A porcine thermometry model was established to observe temperature changes under varying holmium laser powers (10, 20, 30 W) and irrigation rates (0, 20, 50 mL/min), utilizing percutaneous nephrostomy thermometry and PT-Scope measurements, with subsequent evaluation of temperature variations at different distances from the laser fiber tip. A porcine kidney stone model was established while porcine was randomly assigned to two groups: In the temperature control group, PT-Scope was connected to the irrigation-suction platform with temperature regulation, while in the nontemperature control group without temperature regulation. Comparative analysis was performed to evaluate differences in IRT between the two groups. RESULTS Across various laser powers and irrigation rates, the temperature measurement capability of the PT-Scope was precise, demonstrating consistency with percutaneous nephrostomy temperature measurements. The temperature obtained from the PT-Scope reflect the temperature approximately 0.05 cm away from the fiber tip, whereas temperatures close to fiber tip were significantly higher. The peak temperature of the temperature control group vs nontemperature control group were 31.70 ± 2.609°C and 44.37 ± 3.318 °C, respectively (P < 0.01). The mean temperature of the temperature control group vs nontemperature control group was 27.40 ± 2.107 °C vs 35.9 ± 1.921 °C (P < 0.01). CONCLUSION PT-Scope has demonstrated the capability to precisely monitor and control IRT within a safe threshold.
Collapse
Affiliation(s)
- Jianghua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, China; Sun Yat-sen University School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Stigliano RV, Danelyan I, Gabriadze G, Shoshiashvili L, Baker I, Hoopes PJ, Jobava R, Shubitidze F. Alternating magnetic field guiding system for MNP hyperthermia treatment of deep-seated cancers. Int J Hyperthermia 2024; 41:2391008. [PMID: 39205623 DOI: 10.1080/02656736.2024.2391008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Demonstrate the potential application of a novel, endoscope-like device to guide and focus an alternating magnetic field (AMF) for treating deep-seated cancers via magnetic nanoparticle hyperthermia (MNPH). METHODS AMF delivery, MNP activation, and eddy current distribution characteristics are investigated through experimental studies in phantoms and computational simulations using a full 3-dimensional human model. The 3D simulations compare the novel device to traditional AMF designs, including a MagForce-like, two-coil system (used clinically) and a single surface-coil system. RESULTS The results demonstrate that this approach can deliver the same magnetic field strength at the prostate's centroid as traditional AMF designs, while reducing eddy current heating by 2 to 6 times. At the same level of normal tissue heating, this method provides 5.0 times, 1.5 times, and 0.92 times the magnetic field strength to the nearest, centroid, and farthest regions of the prostate, respectively. CONCLUSIONS These results demonstrate proof-of-concept for an endoscopic magnetic field guiding and focusing system capable of delivering clinically relevant AMF from a distance. This innovative approach offers a promising alternative to conventional field delivery methods by directing AMF through the body, concentrating it in the tumor region, reducing eddy currents in surrounding healthy tissue, and avoiding exposure of nearby metallic implants.
Collapse
Affiliation(s)
| | | | | | - Levan Shoshiashvili
- Department of Electrical and Electronics Engineering, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Ian Baker
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | | | | |
Collapse
|
7
|
Ramot Y, Karakuz V, Willenz EP, Alon T, Barzilai DZ, Beer O, Nyska A. Comprehensive Evaluation of the BeShape One Device: Assessing Thermal Safety in Noninvasive Body Contouring Using Advanced Techniques. Lasers Surg Med 2024; 56:581-591. [PMID: 38888133 DOI: 10.1002/lsm.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES This study aims to assess the thermal safety profile of the BeShape One Device, a noninvasive, high-intensity, non-focused ultrasound device designed for reducing waist circumference. This device possesses several features that distinguish it from other commercial ultrasound-based fat reduction devices. The study focuses on evaluating temperature-related physiological changes through thermal safety analysis and histopathology in a swine model. MATERIALS AND METHODS The study utilized three types of applicators-active, demo, and modified-to comprehensively assess the device's impact on various skin layers. Five female Large White X Landrace swine were involved in the study, and the BeShape One Device was applied to designated treatment sites using a specific treatment protocol. The assessment included clinical observations, skin reaction evaluations, gross pathology, histopathological analyses, and advanced temperature measurement techniques, including needle thermocouples, thermal cameras, COMSOL modeling, and CEM43 analysis. RESULTS Clinical observations indicated the animals' overall well-being throughout the study. Skin reactions, including erythema, edema, bruising, and crust formation, were temporary and resolved over time. Gross pathology revealed no treatment-related pathologies, except for a discoloration related to a tattoo procedure. Histopathological analyses at 30 and 90 days posttreatment demonstrated an absence of heat-related lesions in skin layers. Needle thermocouples and thermal camera measurements supported the device's ability to maintain consistent thermal homogeneity. COMSOL modeling and CEM43 analysis predicted no thermal damage to the skin, confirming the safety of the BeShape One Device. CONCLUSIONS Under the experimental conditions, the BeShape One Device demonstrated a favorable safety profile. Clinically and histopathologically, no adverse effects were observed. The device's ability to achieve thermal homogeneity in skin layers was validated through advanced temperature measurement techniques. COMSOL modeling and CEM43 analysis further supported the conclusion that the device is safe, making it a promising option for noninvasive body contouring procedures.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
- The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Ehud P Willenz
- Pre-Clinical R&D Department, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Tal Alon
- Pre-Clinical R&D Department, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | | | - Oren Beer
- Pre-Clinical R&D Department, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Ventimiglia E, Robesti D, Keller EX, Corsini C, Folcia A, Fantin M, Candela L, Pozzi E, Sierra A, Pietropaolo A, Somani BK, Panthier F, Pauchard F, Goumas IK, Villa L, Montorsi F, Traxer O, Salonia A, Saccomandi P. Temperature profile during endourological laser activation: introducing the thermal safety distance concept. World J Urol 2024; 42:453. [PMID: 39073430 DOI: 10.1007/s00345-024-05162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024] Open
Abstract
PURPOSE To examine temporal-spatial distribution of heat generated upon laser activation in a bench model of renal calyx. To establish reference values for a safety distance between the laser fiber and healthy tissue during laser lithotripsy. METHODS We developed an in-vitro experimental setup employing a glass pipette and laser activation under various intra-operative parameters, such as power and presence of irrigation. A thermal camera was used to monitor both temporal and spatial temperature changes during uninterrupted 60-second laser activation. We computed the thermal dose according to Sapareto and Dewey's formula at different distances from the laser fiber tip, in order to determine a safety distance. RESULTS A positive correlation was observed between average power and the highest recorded temperature (Spearman's coefficient 0.94, p < 0.001). Irrigation was found to reduce the highest recorded temperature, with a maximum average reduction of 9.4 °C at 40 W (p = 0.002). A positive correlation existed between average power and safety distance values (Spearman's coefficient 0.86, p = 0.001). A thermal dose indicative of tissue damage was observed at 20 W without irrigation (safety distance 0.93±0.11 mm). While at 40 W, irrigation led to slight reduction in mean safety distance (4.47±0.85 vs. 5.22±0.09 mm, p = 0.08). CONCLUSIONS Laser settings with an average power greater than 10 W deliver a thermal dose indicative of tissue damage, which increases with higher average power values. According to safety distance values from this study, a maximum of 10 W should be used in the ureter, and a maximum of 20 W should be used in kidney in presence of irrigation.
Collapse
Affiliation(s)
- Eugenio Ventimiglia
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy.
- Young Academic Urologists (YAU), Urolithiasis and Endourology Working Party, Arnhem, The Netherlands.
- Progressive Endourological Association for Research and Leading Solutions (PEARLS), Paris, France.
| | - Daniele Robesti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Etienne Xavier Keller
- Young Academic Urologists (YAU), Urolithiasis and Endourology Working Party, Arnhem, The Netherlands
- Progressive Endourological Association for Research and Leading Solutions (PEARLS), Paris, France
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Corsini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Andrea Folcia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Margherita Fantin
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Luigi Candela
- Sorbonne Universite, GRC#20 Lithiase Urinaire, Hôpital Tenon, Paris, Île-de- France, 27063, France
| | - Edoardo Pozzi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Alba Sierra
- Young Academic Urologists (YAU), Urolithiasis and Endourology Working Party, Arnhem, The Netherlands
- Progressive Endourological Association for Research and Leading Solutions (PEARLS), Paris, France
- Sorbonne Universite, GRC#20 Lithiase Urinaire, Hôpital Tenon, Paris, Île-de- France, 27063, France
| | - Amelia Pietropaolo
- Young Academic Urologists (YAU), Urolithiasis and Endourology Working Party, Arnhem, The Netherlands
- Department of Urology, University Hospital Southampton, Southampton, UK
| | - Bhaskar K Somani
- Department of Urology, University Hospital Southampton, Southampton, UK
| | - Frederic Panthier
- Progressive Endourological Association for Research and Leading Solutions (PEARLS), Paris, France
- Sorbonne Universite, GRC#20 Lithiase Urinaire, Hôpital Tenon, Paris, Île-de- France, 27063, France
| | - Felipe Pauchard
- Progressive Endourological Association for Research and Leading Solutions (PEARLS), Paris, France
- Urology Department, Hospital Naval Almirante Nef, Viña del Mar 2520000, Av. Alessandri, Viña del Mar, Valparaíso, Chile
| | | | - Luca Villa
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Francesco Montorsi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Olivier Traxer
- Progressive Endourological Association for Research and Leading Solutions (PEARLS), Paris, France
- Sorbonne Universite, GRC#20 Lithiase Urinaire, Hôpital Tenon, Paris, Île-de- France, 27063, France
| | - Andrea Salonia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, 20156, Italy
| |
Collapse
|
9
|
Kose E, Bostanci Y, Gulsen M, Sahin F, Kalayci O, Ozden E, Yakupoglu YK, Sarikaya S. Monitoring Intrarenal temperature changes during Ho: YAG laser lithotripsy in patients undergoing retrograde intrarenal surgery: a novel pilot study. Urolithiasis 2024; 52:86. [PMID: 38869637 DOI: 10.1007/s00240-024-01592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Ho: YAG laser lithotripsy is widely used for urinary stone treatment, but concerns persist regarding its thermal effects on renal tissues. This study aimed to monitor intrarenal temperature changes during kidney stone treatment using retrograde intrarenal surgery with Ho: YAG laser. Fifteen patients were enrolled. Various laser power settings (0.8 J/10 Hz, 1.2 J/12 Hz) and irrigation modes (10 cc/min, 15 cc/min, 20 cc/min, gravity irrigation, and manual pump irrigation) were used. A sterile thermal probe was attached to a flexible ureterorenoscope and delivered into the calyceal system via the ureteral access sheath. Temperature changes were recorded with a T-type thermal probe with ± 0.1 °C accuracy. Laser power significantly influenced mean temperature, with a 4.981 °C difference between 14 W and 8 W laser power (p < 0.001). The mean temperature was 2.075 °C higher with gravity irrigation and 2.828 °C lower with manual pump irrigation (p = 0.038 and p = 0.005, respectively). Body mass index, laser power, irrigation model, and operator duty cycle explained 49.5% of mean temperature variability (Adj. R2 = 0.495). Laser power and operator duty cycle positively impacted mean temperature, while body mass index and specific irrigation models affected it negatively. Laser power and irrigation rate are critical for intrarenal temperature during Ho: YAG laser lithotripsy. Optimal settings and irrigation strategies are vital for minimizing thermal injury risk. This study underscores the need for ongoing research to understand and mitigate thermal effects during laser lithotripsy.
Collapse
Affiliation(s)
- Ertugrul Kose
- Department of Urology, Gazi State Hospital, Ilkadım, Samsun, Turkey.
| | - Yakup Bostanci
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Gulsen
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Fevzi Sahin
- Department of Mechanical Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Onur Kalayci
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ender Ozden
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Saban Sarikaya
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
10
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
11
|
Parker JE, Butterworth JW, Rodriguez RA, Kowalczewski CJ, Christy RJ, Voorhees WB, Payne JA, Whitmore JN. Thermal damage to the skin from 8.2 and 95 GHz microwave exposures in swine. Biomed Phys Eng Express 2024; 10:045024. [PMID: 38718784 DOI: 10.1088/2057-1976/ad488e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
A study of burn thresholds from superficially penetrating radio-frequency (RF) energy at 8.2 and 95 GHz for swine skin was conducted. The study determined the thresholds for superficial, partial-thickness, and full-thickness burn severities after 5 seconds of exposure at power densities of 4-30 W/cm2and 2-15 W/cm2at 8.2 and 95 GHz, respectively. There were significant differences in he burn thresholds at the different severities between the two frequencies due to the large difference in energy penetration depths. Biopsies were collected from each burn site at 1, 24, 72, and 168 hr post exposure. Each sample was assessed by a burn pathologist against 20 histological factors to characterize the damage resulting from these RF overexposures. A one-dimensional, layered digital phantom that utilized realistic values for dielectric and thermal properties was used to explain some observed thresholds. The results of the heating and cooling response of the animal model and histology scores of each exposure are provided to enhance future efforts at simulation of RF overexposures and to establish damage thresholds.
Collapse
Affiliation(s)
- J E Parker
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, United States of America
| | - J W Butterworth
- Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, United States of America
| | - R A Rodriguez
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, United States of America
| | - C J Kowalczewski
- US Army Institute for Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, United States of America
| | - R J Christy
- US Army Institute for Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, United States of America
| | - W B Voorhees
- Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, United States of America
| | - J A Payne
- Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, United States of America
| | - J N Whitmore
- Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, United States of America
| |
Collapse
|
12
|
Chu Kwan W, Partanen A, Narayanan U, Waspe AC, Drake JM. Biomechanical testing of ex vivo porcine tendons following high intensity focused ultrasound thermal ablation. PLoS One 2024; 19:e0302778. [PMID: 38713687 DOI: 10.1371/journal.pone.0302778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.
Collapse
Affiliation(s)
| | | | - Unni Narayanan
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Canning AJ, Vo-Dinh T. Caged gold nanostars: a novel plasmonic nanoplatform with potential theranostic applications. NANOSCALE 2024. [PMID: 38572521 DOI: 10.1039/d3nr04130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Here, we first introduce caged gold nanostars (C-GNS), a novel hybrid nanoplatform combining the exceptional plasmonic properties of nanostars with the loading capability of hollow-shell structures. We present two synthetic routes used to produce C-GNS particles and highlight the benefits of the galvanic replacement-free approach. FEM simulations explore the enhanced plasmonic properties of this novel nanoparticle morphology. Finally, in a proof-of-concept study, we successfully demonstrate in vivo hyperspectral imaging and photothermal treatment of tumors in a mouse model with the C-GNS nanoplatform.
Collapse
Affiliation(s)
- Aidan J Canning
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
14
|
Bezchlibnyk YB, Quiles R, Barber J, Osa B, Clifford K, Murtaugh R. Safety of intracranial electrodes in an MRI environment: a technical report. J Med Radiat Sci 2024. [PMID: 38468438 DOI: 10.1002/jmrs.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION Intracranial electroencephalography (iEEG) involves placing intracranial electrodes to localise seizures in patients with medically refractory epilepsy. While magnetic resonance imaging (MRI) enables visualisation of electrodes within patient-specific anatomy, the safety of these electrodes must be confirmed prior to routine clinical utilisation. Therefore, the purpose of this study was to evaluate the safety of iEEG electrodes from a particular manufacturer in a 3.0-Tesla (3.0T) MRI environment. METHODS Measurements of magnetically induced displacement force and torque were determined for each of the 10 test articles using standardised techniques. Test articles were subsequently evaluated for radiofrequency-induced heating using a Perspex phantom in both open and 'fault' conditions. Additionally, we assessed radiofrequency (RF)-induced heating with all test articles placed into the phantom simultaneously to simulate an implantation, again in both open and 'fault' conditions. Finally, each test article was evaluated for MRI artefacts. RESULTS The magnetically induced displacement force was found to be less than the force on the article due to gravity for all test articles. Similarly, the maximum magnetically induced torque was less than the worst-case torque due to gravity for all test articles apart from the 8-contact strip - for which it was 11% greater - and the depthalon cap. The maximum temperature change for any portion of any test article assessed individually was 1.7°C, or 1.2°C for any device component meant to be implanted intracranially. In the implantation configuration, the maximum recorded temperature change was 0.7°C. CONCLUSIONS MRI may be safely performed for localising iEEG electrodes at 3.0T under certain conditions.
Collapse
Affiliation(s)
- Yarema B Bezchlibnyk
- Department of Neurosurgery and Brain Repair, Morsani School of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rolando Quiles
- Department of Radiology, Morsani School of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Radiology, Tampa General Hospital, Tampa, Florida, USA
| | | | | | - Keven Clifford
- Department of Radiology, Morsani School of Medicine, University of South Florida, Tampa, Florida, USA
- Tower Radiology, Tampa, USA
| | - Ryan Murtaugh
- Department of Radiology, Morsani School of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Yaras YS, Bradley LW, Yildirim DK, Lederman RJ, Kocaturk O, Oshinski J, Degertekin FL. Acousto-optic-based time domain electric field sensor for magnetic resonance imaging applications. OPTICAL ENGINEERING (REDONDO BEACH, CALIF.) 2024; 63:031008. [PMID: 39091280 PMCID: PMC11293619 DOI: 10.1117/1.oe.63.3.031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
An acousto-optic (AO)-based electric field sensor is presented for time domain measurement under magnetic resonance imaging (MRI). A fully MR-compatible sensor is designed and fabricated using a phase-shifted fiber Bragg grating mechanically coupled to a piezoelectric transducer. Mechanical resonance of the piezoelectric transducer is matched to the operating frequencies of commonly used MRI systems to increase the sensitivity of the sensor. Sensitivity of the sensor is measured as 1.27 mV/V/m, with a minimum detectable electric field of 4.4 mV/m/√/Hz. Directivity of the sensor is measured with a 18 dB orthogonal component rejection. The dynamic range of the sensor is calculated as 117 dB/Hz, which allows the measurement of electric fields up to 3.2 kV/m. In MRI studies, the AO sensor was able detect local hot spots around a reference implant accurately with high signal-to-noise ratio. AO sensor exhibited similar or better performance when compared with commercially available MRI compatible electric field sensors. Furthermore, the small size of the sensor with the flexible fiber optic link could allow in situ measurements of electric fields during critical interventional procedures such as pacemaker lead or deep brain stimulator placement as an MRI dosimeter during diagnostic scans.
Collapse
Affiliation(s)
- Yusuf S. Yaras
- Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| | - Lee W. Bradley
- Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| | - D. Korel Yildirim
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States
| | - Robert J. Lederman
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States
| | - Ozgur Kocaturk
- Bogazici University, Institute of Biomedical Engineering, Istanbul, Turkey
| | - John Oshinski
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Radiology and Imaging Sciences, Atlanta, Georgia, United States
| | - F. Levent Degertekin
- Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
16
|
Rahmati E, Khoshtaghaza MH, Banakar A, Ebadi MT, Hamidi-Esfahani Z. Continuous decontamination of cumin seed by non-contact induction heating technology: Assessment of microbial load and quality changes. Heliyon 2024; 10:e25504. [PMID: 38384505 PMCID: PMC10878883 DOI: 10.1016/j.heliyon.2024.e25504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Over the past few decades, the demand for high-quality food has increased steadily. Therefore, it is essential to develop innovative technologies that effectively reduce microbial load while minimizing any negative effect on the quality of spices. The objective of this study was to determine the efficacy of a self-designed non-contact induction heating system using contaminated cumin seeds. The non-contact induction heating decontamination process was performed at different temperatures of 115, 135 and 155°C and durations (45, 60 and 75 s) through continuous process (screw conveyor) in Pyrex cylinder chamber. Various parameters including microbial load, color characteristics, essential oil content, surface morphology, sample temperature, and energy consumption were analyzed as dependent variables in the study. The results showed that the treatment combination (155°C - 60 s) reduced the aerobic plate count from 6.21 to 2.97 CFU/g. Mold, yeast and coliforms in the treatment combination (155°C-45 s) were also reduced by 3.26 and 3.6 CFU/g, respectively. The total color difference of the samples increased due to the degradation and alteration of pigments at high temperatures. However, no statistically significant disparity in essential oil content was observed between the treatment groups and the control group. The quantities of essential oil components in the cumin seeds were determined to align with the ISO standard, with the primary constituents identified as follows: Terpinen-7-al γ (38.98%), Cumin aldehyde (20.75%), γ-Terpinene (18.81%), β-Pinene (13.66%), and p-Cymene (6.2%). In summary, non-contact induction heating system shows promise as an effective technology for surface decontamination of spices. The acquired findings contribute to a deeper understanding of the impact of the induction heating process on both the microbial contamination levels and the quality attributes of cumin seeds. This scientific knowledge serves as a foundational framework for the prospective adoption and integration of this technology on a larger industrial scale.
Collapse
Affiliation(s)
- Edris Rahmati
- Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Ahmad Banakar
- Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
17
|
Zhu Y, Deng K, Zhou J, Lai C, Ma Z, Zhang H, Pan J, Shen L, Bucknor MD, Ozhinsky E, Kim S, Chen G, Ye SH, Zhang Y, Liu D, Gao C, Xu Y, Wang H, Wagner WR. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat Commun 2024; 15:1123. [PMID: 38321028 PMCID: PMC10847440 DOI: 10.1038/s41467-024-45437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Binjiang Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zuwei Ma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Matthew D Bucknor
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangjie Chen
- Department of Urology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghua Xu
- Department of Imaging and Interventional Radiology, Zhongshan-Xuhui Hospital of Fudan University/Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
He Z, Xun Y, Wang S. Evaluation of a novel circulation system for ureteroscopic laser lithotripsy in vitro. World J Urol 2024; 42:62. [PMID: 38285266 DOI: 10.1007/s00345-023-04705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
PURPOSE To evaluate the cooling effect and other advantages of a novel circulation system for ureteroscopic holmium laser lithotripsy (URSL) in a standardized in vitro model. MATERIALS AND METHODS The novel circulation system was assembled by connecting a 4Fr ureteral catheter and a filter. Trails were divided into a new URSL group and a conventional URSL group. First, different power settings (18-30 W) of the holmium laser and irrigation flow rates (20-50 mL/min) were used to evaluate the thermal effect on the lithotripsy site of all groups. Then, renal pelvic temperature and pressure were assessed during URSL at a power of 1.5 J/20 Hz and irrigation flow rates of (20-50 mL/min). Finally, the whole process of lithotripsy was performed at 1.5 J/20 Hz (operator duty cycle ODC: 50%) with an irrigation flow rate of 30 mL/min. The time required for lithotripsy, visual field clarity, and stone migration were observed. RESULTS Temperature of the lithotripsy point was significantly lower in the new URSL group than in the conventional group (P < 0.05) with irrigation rates (20, 30 mL/min). The renal pelvic pressure of the new group was significantly lower than that of the conventional group in which intrarenal hypertension developed at an irrigation rate of 50 ml/min. The new group had better visual clarity and lesser stone upward migration when lithotripsy was performed at 1.5 J/20 Hz and 30 ml/min. CONCLUSION The novel circulation system is more effective in reducing the thermal effects of URSL, pelvic pressure, stone upward migration, and improving the visual clarity of the operative field.
Collapse
Affiliation(s)
- Zonghai He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People's Republic of China
- Department of Urology, Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People's Republic of China.
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Pagonis K, Katsakiori P, Peteinaris A, Tatanis V, Tsaturyan A, Faria Costa G, Faitatziadis S, Vagionis A, Natsos A, Gkeka K, Obaidat M, Spinos T, Vrettos T, Liatsikos E, Kallidonis P. High-power Holmium:Yag lithotripsy in bladder urolithiasis: Is it safe and effective? A combined clinical and experimental study. Arab J Urol 2024; 22:145-151. [PMID: 38818258 PMCID: PMC11136465 DOI: 10.1080/20905998.2024.2304516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/06/2024] [Indexed: 06/01/2024] Open
Abstract
Objective To evaluate the efficacy and safety of Holmium: Yttrium-Aluminum-Garnet (Ho:YAG) laser in bladder lithotripsy using high-power settings > 100 W. Materials and Methods A combined experimental and clinical study was conducted. The Quanta Cyber: Ho 150 with a 550 μm Quanta optical fiber was utilized in all set-ups. Ablation rates for soft and hard artificial stones were tested in vitro using 100 W and 20 W power settings. In the experiment, a porcine bladder was used. The optical fiber was inserted through a rigid cystoscope, whilst a K-type thermocouple was inserted in the bladder dome. The tested high-power settings were 152 W, 120 W and 105 W. In every trial, the lasing time was over 60 s. In the clinical study, 35 patients underwent transurethral high-power bladder lithotripsy. Laser settings were set between 100 W and 150 W. Results Stone mass (stone weight) was significantly lower after stone ablation independently of the stone type or the laser settings. Significantly higher mass decrease and ablation rate were detected in high-power compared to low-power settings. In the experiment, the highest temperature recorded was 32°C at 152 W. At 120 W and 105 W, the peak temperatures didn't reach 30°C. In the clinical study, a stone-free rate of 100% and a mean operative time of 43 ± 18 min were reported. All patients stayed in the hospital for one day except for one who presented minor hematuria. Additional complications did not occur. Conclusion Ho:YAG laser lithotripsy > 100 W is an effective, fast and safe modality for the treatment of bladder calculi.
Collapse
Affiliation(s)
| | | | | | | | - Arman Tsaturyan
- Department of Urology, Erebouni Medical Center, Yerevan, Armenia
| | - Gabriel Faria Costa
- Department of Urology, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | - Theofanis Vrettos
- Department of Anesthesiology and ICU, University of Patras, Patras, Greece
| | - Evangelos Liatsikos
- Department of Urology, University of Patras, Patras, Greece
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
20
|
Johnson S, Zimmerman B, Odeen H, Shea J, Winkler N, Factor R, Joshi S, Payne A. A Non-Contrast Multi-Parametric MRI Biomarker for Assessment of MR-Guided Focused Ultrasound Thermal Therapies. IEEE Trans Biomed Eng 2024; 71:355-366. [PMID: 37556341 PMCID: PMC10768718 DOI: 10.1109/tbme.2023.3303445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE We present the development of a non-contrast multi-parametric magnetic resonance (MPMR) imaging biomarker to assess treatment outcomes for magnetic resonance-guided focused ultrasound (MRgFUS) ablations of localized tumors. Images obtained immediately following MRgFUS ablation were inputs for voxel-wise supervised learning classifiers, trained using registered histology as a label for thermal necrosis. METHODS VX2 tumors in New Zealand white rabbits quadriceps were thermally ablated using an MRgFUS system under 3 T MRI guidance. Animals were re-imaged three days post-ablation and euthanized. Histological necrosis labels were created by 3D registration between MR images and digitized H&E segmentations of thermal necrosis to enable voxel-wise classification of necrosis. Supervised MPMR classifier inputs included maximum temperature rise, cumulative thermal dose (CTD), post-FUS differences in T2-weighted images, and apparent diffusion coefficient, or ADC, maps. A logistic regression, support vector machine, and random forest classifier were trained in red a leave-one-out strategy in test data from four subjects. RESULTS In the validation dataset, the MPMR classifiers achieved higher recall and Dice than a clinically adopted 240 cumulative equivalent minutes at 43 °C (CEM 43) threshold (0.43) in all subjects. The average Dice scores of overlap with the registered histological label for the logistic regression (0.63) and support vector machine (0.63) MPMR classifiers were within 6% of the acute contrast-enhanced non-perfused volume (0.67). CONCLUSIONS Voxel-wise registration of MPMR data to histological outcomes facilitated supervised learning of an accurate non-contrast MR biomarker for MRgFUS ablations in a rabbit VX2 tumor model.
Collapse
|
21
|
Mattay RR, Kim K, Shah L, Shah B, Sugrue L, Safoora F, Ozhinsky E, Narsinh KH. MR Thermometry during Transcranial MR Imaging-Guided Focused Ultrasound Procedures: A Review. AJNR Am J Neuroradiol 2023; 45:1-8. [PMID: 38123912 PMCID: PMC10756580 DOI: 10.3174/ajnr.a8038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 12/23/2023]
Abstract
Interest in transcranial MR imaging-guided focused ultrasound procedures has recently grown. These incisionless procedures enable precise focal ablation of brain tissue using real-time monitoring by MR thermometry. This article will provide an updated review on clinically applicable technical underpinnings and considerations of proton resonance frequency MR thermometry, the most common clinically used MR thermometry sequence.
Collapse
Affiliation(s)
- Raghav R Mattay
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kisoo Kim
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Lubdha Shah
- Department of Radiology and Neurosurgery (L. Shah), University of Utah, Salt Lake City, Utah
| | - Bhavya Shah
- Department of Radiology (B.S.), University of Texas Southwestern, Dallas, Texas
| | - Leo Sugrue
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Psychiatry (L. Sugrue), University of California San Francisco, California
| | - Fatima Safoora
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Eugene Ozhinsky
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kazim H Narsinh
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Neurological Surgery (K.H.N.), University of California San Francisco, California
| |
Collapse
|
22
|
Bai W, Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y. Skin-inspired, sensory robots for electronic implants. RESEARCH SQUARE 2023:rs.3.rs-3665801. [PMID: 38196588 PMCID: PMC10775366 DOI: 10.21203/rs.3.rs-3665801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Wubin Bai
- University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | | | | | | | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shaikh S, Lapin NA, Prasad B, Sturge CR, Pybus C, Pifer R, Wang Q, Evers BM, Chopra R, Greenberg DE. Intermittent alternating magnetic fields diminish metal-associated biofilm in vivo. Sci Rep 2023; 13:22456. [PMID: 38105253 PMCID: PMC10725887 DOI: 10.1038/s41598-023-49660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Prosthetic joint infection (PJI) is a complication of arthroplasty that results in significant morbidity. The presence of biofilm makes treatment difficult, and removal of the prosthesis is frequently required. We have developed a non-invasive approach for biofilm eradication from metal implants using intermittent alternating magnetic fields (iAMF) to generate targeted heating at the implant surface. The goal of this study was to determine whether iAMF demonstrated efficacy in an in vivo implant biofilm infection model. iAMF combined with antibiotics led to enhanced reduction of biofilm on metallic implants in vivo compared to antibiotics or untreated control. iAMF-antibiotic combinations resulted in a > 1 - log further reduction in biofilm burden compared to antibiotics or iAMF alone. This combination effect was seen in both S. aureus and P. aeruginosa and seen with multiple antibiotics used to treat infections with these pathogens. In addition, efficacy was temperature dependent with increasing temperatures resulting in a greater reduction of biofilm. Tissue damage was limited (< 1 mm from implant-tissue interface). This non-invasive approach to eradicating biofilm could serve as a new paradigm in treating PJI.
Collapse
Affiliation(s)
| | - Norman A Lapin
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | - Carolyn R Sturge
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Christine Pybus
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Reed Pifer
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Qi Wang
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical School, Dallas, TX, USA
- Solenic Medical, Addison, TX, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
24
|
Kinoshita K, Kodera S, Hatsusaka N, Egawa R, Takizawa H, Kubo E, Sasaki H, Hirata A. Association of nuclear cataract prevalence with UV radiation and heat load in lens of older people -five city study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123832-123842. [PMID: 37991619 DOI: 10.1007/s11356-023-31079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Epidemiological studies have reported that the frequency of nuclear cataracts (NUCs) is high among the elderly and in tropical countries. Ultraviolet (UV) irradiation and lens temperature are considered as key physical contributors, although their precise quantification is difficult. The aim of this study is to investigate the association of NUC prevalence with UV irradiation and heat load. First, we assessed the lens temperature using thermodynamic modeling considering the thermophysiological response. We then conducted a multivariate linear regression analysis for the epidemiological analysis of NUC prevalence across five cities. A strong correlation was observed between NUC prevalence and the combined effects of UV irradiation and cumulative equivalent minutes at 43 °C (CEM43°C) derived from the computed lens temperature (adjusted R2 = 0.933, p < 0.0001). Heat load significantly contributed to the prevalence at 52%, surpassing the contributions of UV irradiation (31%) and the decline in DNA repair capacity in the lens (17%). These results suggested that both UV radiation and heat load are associated with NUC, with heat load contributing more. Our findings provided important implications for future interventions, particularly in the context of global warming.
Collapse
Affiliation(s)
- Kotaro Kinoshita
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-Cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-Cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Ryusuke Egawa
- School of Engineering, Tokyo Denki University, Tokyo, Japan
| | | | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-Cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan.
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
25
|
Nain S, Kumar N, Avti PK. Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia. Med Eng Phys 2023; 121:104065. [PMID: 37985024 DOI: 10.1016/j.medengphy.2023.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The goal of the current investigation is to determine the breast tumor size-dependent MNP (Magnetic nano-particle) dose (mg/cm3) that can induce the required therapeutic effects during magnetic nanoparticle hyperthermia (MNH). The investigation is done through the MNH simulations on the tumor models generated from DCE_MRI DICOM images of breast cancer from TCIA ('The Cancer Imaging Archive'). Five tumor models are created from MRI data using 3D slicer software having size range of 3 cm3 to 15 cm3. The FEM-based solver (COMSOL multi-physics) is used to simulate bioheat transfer physics in all five extracted models. Single and multi-point injection strategies have been adopted to induce MNP in tumor tissues. The required MNP dose that may induce necessary therapeutic effects is evaluated by comparing the therapeutic effects produced by constant dose (CD) (5 mg/cm3) and variable reduced dose (RD) (5.5-2.8 mg/cm3) methodologies. Results show that for the requisite therapeutic effects, injected MNP doses (mg/cm3) should not remain constant as the size of the tumor increases. In fact, MNP dose (mg/cm3) should be reduced as the size of the tumor increases. Results also show that RD works better with a multi-injection strategy than a single injection of MNP. It has been found that the effective MNP dose (mg/cm3) is reduced by 50 % for the biggest tumor size (15 cm3) using multi-injection MNP delivery with respect to the smallest tumor (3 cm3) selected in this study.
Collapse
Affiliation(s)
- Sandeep Nain
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India; TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Neeraj Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India; TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| | - Pramod Kumar Avti
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
26
|
Gross DC, Scandling BW, Leewood AR, Simonetti OP. Computational modeling of the thermal effects of flow on radio frequency-induced heating of peripheral vascular stents during MRI. Biomed Phys Eng Express 2023; 9:065025. [PMID: 37844574 DOI: 10.1088/2057-1976/ad0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Purpose. The goal of this study was to develop and validate a computational model that can accurately predict the influence of flow on the temperature rise near a peripheral vascular stent during magnetic resonance imaging (MRI).Methods. Computational modeling and simulation of radio frequency (RF) induced heating of a vascular stent during MRI at 3.0 T was developed and validated with flow phantom experiments. The maximum temperature rise of the stent was measured as a function of physiologically relevant flow rates.Results. A significant difference was not identified between the experiment and simulation (P > 0.05). The temperature rise of the stent during MRI was over 10 °C without flow, and was reduced by 5 °C with a flow rate of only 58 ml min-1, corresponding to a reduction of CEM43from 45 min to less than 1 min.Conclusion. The computer model developed in this study was validated with experimental measurements, and accurately predicted the influence of flow on the RF-induced temperature rise of a vascular stent during MRI. Furthermore, the results of this study demonstrate that relatively low flow rates significantly reduce the temperature rise of a stent and the surrounding medium during RF-induced heating under typical scanning power and physiologically relevant conditions.
Collapse
Affiliation(s)
- David C Gross
- MED Institute Inc., West Lafayette, IN, United States of America
| | | | - Alan R Leewood
- MED Institute Inc., West Lafayette, IN, United States of America
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Radiology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
27
|
Chu Kwan W, den Otter-Moore I, Partanen A, Piorkowska K, Waspe AC, Drake JM. Noninvasive magnetic resonance-guided focused ultrasound for tendon disruption: an in vivo Animal study. Int J Hyperthermia 2023; 40:2260129. [PMID: 37743063 DOI: 10.1080/02656736.2023.2260129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE Surgical resection of the tendon is an effective treatment for severe contracture. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a non-invasive ultrasonic therapy which produces a focal increase in temperature, subsequent tissue ablation and disruption. We evaluated MRgFUS as a clinically translatable treatment modality to non-invasively disrupt in vivo porcine tendons. MATERIAL AND METHODS In vivo Achilles tendons (n = 28) from 15-20kg Yorkshire pigs (n = 16) were randomly assigned to 4 treatment groups of 600, 900, 1200 and 1500 J. Pretreatment range of motion (ROM) of the ankle joint was measured with the animal under general anesthesia. Following MRgFUS treatment, success of tendon rupture, ROM increase, temperature, thermal dosage, skin burn, and histology analyses were performed. RESULTS Rupture success was found to be 29%, 86%, 100% and 100% for treatment energies of 600, 900, 1200 and 1500 J respectfully. ROM difference at 90° flexion showed a statistically significant change in ROM between 900 J and 1200 J from 16° to 27°. There was no statistical significance between other groups, but there was an increase in ROM as more energy was delivered in the treatment. For each of the respective treatment groups, the maximal temperatures were 58.4 °C, 63.3 °C, 67.6 °C, and 69.9 °C. The average areas of thermal dose measured were 24.3mm2, 53.2mm2, 77.8mm2 and 91.6mm2. The average areas of skin necrosis were 5.4mm2, 21.8mm2, 37.2mm2, and 91.4mm2. Histologic analysis confirmed tissue ablation and structural collagen fiber disruption. CONCLUSIONS This study demonstrated that MRgFUS is able to disrupt porcine tendons in vivo without skin incisions.
Collapse
Affiliation(s)
| | | | | | | | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Jiang F, Henry KR, Bhusal B, Sanpitak P, Webster G, Popescu A, Laternser C, Kim D, Golestanirad L. Age Matters: A Comparative Study of RF Heating of Epicardial and Endocardial Electronic Devices in Pediatric and Adult Phantoms during Cardiothoracic MRI. Diagnostics (Basel) 2023; 13:2847. [PMID: 37685385 PMCID: PMC10486594 DOI: 10.3390/diagnostics13172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
This study focused on the potential risks of radiofrequency-induced heating of cardiac implantable electronic devices (CIEDs) in children and adults with epicardial and endocardial leads of varying lengths during cardiothoracic MRI scans. Infants and young children are the primary recipients of epicardial CIEDs, though the devices have not been approved as MR conditional by the FDA due to limited data, leading to pediatric hospitals either refusing the MRI service to most pediatric CIED patients or adopting a scan-all strategy based on results from adult studies. The study argues that risk-benefit decisions should be made on an individual basis. We used 120 clinically relevant epicardial and endocardial device configurations in adult and pediatric anthropomorphic phantoms to determine the temperature rise during RF exposure at 1.5 T. The results showed that there was significantly higher RF heating of epicardial leads than endocardial leads in the pediatric phantom, but not in the adult phantom. Additionally, body size and lead length significantly affected RF heating, with RF heating up to 12 °C observed in models based on younger children with short epicardial leads. The study provides evidence-based knowledge on RF-induced heating of CIEDs and highlights the importance of making individual risk-benefit decisions when assessing the potential risks of MRI scans in pediatric CIED patients.
Collapse
Affiliation(s)
- Fuchang Jiang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kaylee R. Henry
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Bhumi Bhusal
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Pia Sanpitak
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Andrada Popescu
- Division of Medical Imaging, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Christina Laternser
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
29
|
Kwan JC, Flannagan RS, Vásquez Peña M, Heinrichs DE, Holdsworth DW, Gillies ER. Induction Heating Triggers Antibiotic Release and Synergistic Bacterial Killing on Polymer-Coated Titanium Surfaces. Adv Healthc Mater 2023; 12:e2202807. [PMID: 37053473 PMCID: PMC11469058 DOI: 10.1002/adhm.202202807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Infection is a major complication associated with orthopedic implants. It often involves the development of biofilms on metal substrates, which act as barriers to the host's immune system and systemic antibiotic treatment. The current standard of treatment is revision surgery, often involving the delivery of antibiotics through incorporation into bone cements. However, these materials exhibit sub-optimal antibiotic release kinetics and revision surgeries have drawbacks of high cost and recovery time. Herein, a new approach is presented using induction heating of a metal substrate, combined with an antibiotic-loaded poly(ester amide) coating undergoing a glass transition just above physiological temperature to enable thermally triggered antibiotic release. At normal physiological temperature, the coating provides a rifampicin depot for >100 days, while heating of the coating accelerates drug release, with >20% release over a 1-h induction heating cycle. Induction heating or antibiotic-loaded coating alone each reduce Staphylococcus aureus (S. aureus) viability and biofilm formation on Ti, but the combination causes synergistic killing of S. aureus as measured by crystal violet staining, determination of bacterial viability (>99.9% reduction), and fluorescence microscopy of bacteria on surfaces. Overall, these materials provide a promising platform enabling externally triggered antibiotic release to prevent and/or treat bacterial colonization of implants.
Collapse
Affiliation(s)
- Jan C. Kwan
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - Ronald S. Flannagan
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Mónica Vásquez Peña
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - David E. Heinrichs
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - David W. Holdsworth
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Imaging Research LaboratoriesRobarts Research InstituteThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 2B8Canada
- Department of Medical BiophysicsThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Elizabeth R. Gillies
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Department of ChemistryThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B7Canada
- Department of Chemical and Biochemical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
| |
Collapse
|
30
|
Anderson TA, Pacharinsak C, Vilches-Moure J, Kantarci H, Zuchero JB, Butts-Pauly K, Yeomans D. Focused ultrasound-induced inhibition of peripheral nerve fibers in an animal model of acute pain. Reg Anesth Pain Med 2023; 48:462-470. [PMID: 36822815 PMCID: PMC11233103 DOI: 10.1136/rapm-2022-104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Moderate-to-severe acute pain is prevalent in many healthcare settings and associated with adverse outcomes. Peripheral nerve blockade using traditional needle-based and local anesthetic-based techniques improves pain outcomes for some patient populations but has shortcomings limiting use. These limitations include its invasiveness, potential for local anesthetic systemic toxicity, risk of infection with an indwelling catheter, and relatively short duration of blockade compared with the period of pain after major injuries. Focused ultrasound is capable of inhibiting the peripheral nervous system and has potential as a pain management tool. However, investigations of its effect on peripheral nerve nociceptive fibers in animal models of acute pain are lacking. In an in vivo acute pain model, we investigated focused ultrasound's effects on behavior and peripheral nerve structure. METHODS Focused ultrasound was applied directly to the sciatic nerve of rats just prior to a hindpaw incision; three control groups (focused ultrasound sham only, hindpaw incision only, focused ultrasound sham+hindpaw incision) were also included. For all four groups (intervention and controls), behavioral testing (thermal and mechanical hyperalgesia, hindpaw extension and flexion) took place for 4 weeks. Structural changes to peripheral nerves of non-focused ultrasound controls and after focused ultrasound application were assessed on days 0 and 14 using light microscopy and transmission electron microscopy. RESULTS Compared with controls, after focused ultrasound application, animals had (1) increased mechanical nociceptive thresholds for 2 weeks; (2) sustained increase in thermal nociceptive thresholds for ≥4 weeks; (3) a decrease in hindpaw motor response for 0.5 weeks; and (4) a decrease in hindpaw plantar sensation for 2 weeks. At 14 days after focused ultrasound application, alterations to myelin sheaths and nerve fiber ultrastructure were observed both by light and electron microscopy. DISCUSSION Focused ultrasound, using a distinct parameter set, reversibly inhibits A-delta peripheral nerve nociceptive, motor, and non-nociceptive sensory fiber-mediated behaviors, has a prolonged effect on C nociceptive fiber-mediated behavior, and alters nerve structure. Focused ultrasound may have potential as a peripheral nerve blockade technique for acute pain management. However, further investigation is required to determine C fiber inhibition duration and the significance of nerve structural changes.
Collapse
Affiliation(s)
- Thomas Anthony Anderson
- Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Cholawat Pacharinsak
- Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jose Vilches-Moure
- Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Husniye Kantarci
- Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - J Bradley Zuchero
- Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kim Butts-Pauly
- Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - David Yeomans
- Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
Faria-Costa G, Tsaturyan A, Peteinaris A, Pagonis K, Faitatziadis S, Gkeka K, Natsos A, Anaplioti I, Obaidat M, Vrettos T, Liatsikos E, Kallidonis P. Location of ureteral access sheath in the ureter. Does it affect the fluid flow in different calyces? Cent European J Urol 2023; 76:233-238. [PMID: 38045785 PMCID: PMC10690379 DOI: 10.5173/ceju.2023.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 07/02/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction The aim of this study was to evaluate outflow variation in different locations of the pyelocaliceal system with the use of different ureteral access sheath (UAS) sizes and different UAS positioning. Material and methods The experimental setup included an anaesthetised porcine model, a 7.5-Fr ureteroscope with a 200-μm laser fibre inserted in the working channel, a hand-held pumping irrigating system, and UAS of different sizes, namely: 9.5/11.5 Fr, 12/14 Fr, and 14/16 Fr. Each UAS was placed just below the ureteropelvic junction (UPJ) or in the mid-ureter. The ureteroscope was placed in the renal pelvis, upper and lower calyces, and outflow measurements were obtained with 3-second interval pumping for one minute in every experimental setup. Results The UAS positioning in the mid-ureter was associated with significantly higher outflow rates in the lower calyx (p = 0.041). While the UAS was below the UPJ, we observed a trend of lower outflow rate in the lower calyx, which was completely inverted when the UAS was in the mid-ureter. Increasing the UAS size from 9.5/11.5 Fr to 12/14 Fr led to a significant increase in outflow in the renal pelvis and upper calyx (p = 0.007), but not in the lower calyx. A further increase to 14/16 Fr did not produce increased flow. Conclusions Different locations of the pyelocaliceal system have different fluid mechanics during fURS. In the renal pelvis and upper calyx increasing the diameter of the UAS improved the outflow, whereas in the lower calyx the position of the UAS seems to be the most relevant factor. These variables should be considered when performing fURS, especially with high-power laser lithotripsy.
Collapse
Affiliation(s)
- Gabriel Faria-Costa
- Department of Urology, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | - Theofanis Vrettos
- Department of Anaesthesiology and ICU, University of Patras, Patras, Greece
| | - Evangelos Liatsikos
- Department of Urology, University of Patras, Patras, Greece
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | | |
Collapse
|
32
|
Manwar R, Kratkiewicz K, Mahmoodkalayeh S, Hariri A, Papadelis C, Hansen A, Pillers DAM, Gelovani J, Avanaki K. Development and characterization of transfontanelle photoacoustic imaging system for detection of intracranial hemorrhages and measurement of brain oxygenation: Ex-vivo. PHOTOACOUSTICS 2023; 32:100538. [PMID: 37575972 PMCID: PMC10413353 DOI: 10.1016/j.pacs.2023.100538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
We have developed and optimized an imaging system to study and improve the detection of brain hemorrhage and to quantify oxygenation. Since this system is intended to be used for brain imaging in neonates through the skull opening, i.e., fontanelle, we called it, Transfontanelle Photoacoustic Imaging (TFPAI) system. The system is optimized in terms of optical and acoustic designs, thermal safety, and mechanical stability. The lower limit of quantification of TFPAI to detect the location of hemorrhage and its size is evaluated using in-vitro and ex-vivo experiments. The capability of TFPAI in measuring the tissue oxygenation and detection of vasogenic edema due to brain blood barrier disruption are demonstrated. The results obtained from our experimental evaluations strongly suggest the potential utility of TFPAI, as a portable imaging modality in the neonatal intensive care unit. Confirmation of these findings in-vivo could facilitate the translation of this promising technology to the clinic.
Collapse
Affiliation(s)
- Rayyan Manwar
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, United States
| | - Karl Kratkiewicz
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| | | | - Ali Hariri
- Department of Nanoengineering, University of California, San Diego, CA, United States
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, United States
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Anne Hansen
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - De-Ann M. Pillers
- Department of Pediatrics, UI Health Children’s Hospital of the University of Illinois at Chicago, Chicago, IL, United States
| | - Juri Gelovani
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, United States
- Dept. Radiology, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, United States
- Department of Pediatrics, UI Health Children’s Hospital of the University of Illinois at Chicago, Chicago, IL, United States
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Jiang F, Henry KR, Bhusal B, Webster G, Bonmassar G, Kim D, Golestanirad L. RF-induced heating of capped and uncapped abandoned epicardial leads during MRI at 1.5 T and 3 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082570 PMCID: PMC10838566 DOI: 10.1109/embc40787.2023.10340533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a paucity of data regarding the safety of magnetic resonance imaging (MRI) in patients with abandoned epicardial leads. Few studies have reported temperature rises up to 76 °C during MRI at 1.5 T in gel phantoms implanted with epicardial leads; however, lead trajectories used in these experiments were not clinically relevant. This work reports patient-specific RF heating of both capped and uncapped abandoned epicardial lead configurations during MRI at both 1.5 T and 3 T field strengths. We found that leads routed along realistic, patient-derived trajectories generated substantially lower RF heating than the previously reported worst-case phantom experiments. We also found that MRI at the head imaging landmark leads to substantially lower RF heating compared to MRI at the chest or abdomen landmarks at both 1.5 T and 3 T. Our results suggest that patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.Clinical Relevance- Patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.
Collapse
|
34
|
Nguyen M, Zhao N, Xu Y, Tavakkoli JJ. Decorrelated compounding of synthetic aperture ultrasound imaging to detect low contrast thermal lesions induced by focused ultrasound. ULTRASONICS 2023; 134:107098. [PMID: 37437400 DOI: 10.1016/j.ultras.2023.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Decorrelated Compounding (DC) for synthetic aperture ultrasound can reduce speckle variation in images, suggesting enhanced detectability of low-contrast targets in tissue including thermal lesions produced by focused ultrasound (FUS). The DC imaging method has primarily been investigated in simulation and in phantom studies. This work investigates the feasibility of the DC method in monitoring thermal therapy via image guidance and non-invasive thermometry based on the change in backscattered energy (CBE). METHODS Ex vivo porcine tissue was exposed to FUS exposures at acoustic powers of 5 W and 1 W, with peak pressure amplitudes of 0.64 MPa and 0.27 MPa respectively. During FUS exposure, RF echo data frames was acquired using a 7.8 MHz linear array probe and a Verasonics VantageTM ultrasound scanner (Verasonics Inc., Redmond, WA). RF echo data was taken to produce B-mode images, as reference images. Synthetic aperture RF echo data was also acquired and processed using delay-and-sum (DAS), a combination of spatial and frequency compounding referred to as Traditional Compounding (TC), and the proposed DC imaging methods. Image quality was assessed using the contrast-to-noise ratio (CNR) at the FUS beam focus, and the speckle SNR (sSNR) of the background region as preliminary metrics. A calibrated thermocouple was placed near the FUS beam focus for temperature measurements and calibrations using the CBE method. RESULTS The DC imaging method significantly improved image quality to detect low contrast thermal lesions in treated ex vivo porcine tissue in comparison to other imaging methods. In comparison to B-mode imaging, the lesion CNR measured using the DC imaging was shown to improve up to a factor of approximately 5.5. The corresponding sSNR improved by a factor of approximately 4.2 in comparison to B-mode imaging. CBE calculation using the DC imaging method yielded more precise measurements of the backscattered energy compared to other imaging methods studied. CONCLUSIONS The despeckling performance of the DC imaging method significantly improves the lesion CNR in comparison to B-mode imaging. This suggests that the proposed method can detect low-contrast thermal lesions induced by FUS therapy that are not detectable using standard B-mode imaging. Furthermore, the signal change at the focal point were more precisely measured by DC imaging, and the signal change in response to FUS exposure follows the temperature profile more closely than changes measured using B-mode, as well as synthetic aperture DAS and TC images. These suggest that DC imaging can potentially be used with the CBE method to improve non-invasive thermometry.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Na Zhao
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Yuan Xu
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Özsoy Ç, Lafci B, Reiss M, Deán-Ben XL, Razansky D. Real-time assessment of high-intensity focused ultrasound heating and cavitation with hybrid optoacoustic ultrasound imaging. PHOTOACOUSTICS 2023; 31:100508. [PMID: 37228577 PMCID: PMC10203775 DOI: 10.1016/j.pacs.2023.100508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
High-intensity focused ultrasound (HIFU) enables localized ablation of biological tissues by capitalizing on the synergistic effects of heating and cavitation. Monitoring of those effects is essential for improving the efficacy and safety of HIFU interventions. Herein, we suggest a hybrid optoacoustic-ultrasound (OPUS) approach for real-time assessment of heating and cavitation processes while providing an essential anatomical reference for accurate localization of the HIFU-induced lesion. Both effects could clearly be observed by exploiting the temperature dependence of optoacoustic (OA) signals and the strong contrast of gas bubbles in pulse-echo ultrasound (US) images. The differences in temperature increase and its rate, as recorded with a thermal camera for different HIFU pressures, evinced the onset of cavitation at the expected pressure threshold. The estimated temperatures based on OA signal variations were also within 10-20 % agreement with the camera readings for temperatures below the coagulation threshold (∼50 °C). Experiments performed in excised tissues as well as in a post-mortem mouse demonstrate that both heating and cavitation effects can be effectively visualized and tracked using the OPUS approach. The good sensitivity of the suggested method for HIFU monitoring purposes was manifested by a significant increase in contrast-to-noise ratio within the ablated region by > 10 dB and > 5 dB for the OA and US images, respectively. The hybrid OPUS-based monitoring approach offers the ease of handheld operation thus can readily be implemented in a bedside setting to benefit several types of HIFU treatments used in the clinics.
Collapse
Affiliation(s)
- Çağla Özsoy
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Berkan Lafci
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Michael Reiss
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
36
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
37
|
Park J, Kong C, Shin J, Park JY, Na YC, Han SH, Chang JW, Song SH, Chang WS. Combined Effects of Focused Ultrasound and Photodynamic Treatment for Malignant Brain Tumors Using C6 Glioma Rat Model. Yonsei Med J 2023; 64:233-242. [PMID: 36996894 PMCID: PMC10067799 DOI: 10.3349/ymj.2022.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is an intractable disease for which various treatments have been attempted, but with little effect. This study aimed to measure the effect of photodynamic therapy (PDT) and sonodynamic therapy (SDT), which are currently being used to treat brain tumors, as well as sono-photodynamic therapy (SPDT), which is the combination of these two. MATERIALS AND METHODS Four groups of Sprague-Dawley rats were injected with C6 glioma cells in a cortical region and treated with PDT, SDT, and SPDT. Gd-MRI was monitored weekly and 18F-FDG-PET the day before and 1 week after the treatment. The acoustic power used during sonication was 5.5 W/cm² using a 0.5-MHz single-element transducer. The 633-nm laser was illuminated at 100 J/cm². Oxidative stress and apoptosis markers were evaluated 3 days after treatment using immunohistochemistry (IHC): 4-HNE, 8-OhdG, and Caspase-3. RESULTS A decrease in tumor volume was observed in MRI imaging 12 days after the treatment in the PDT group (p<0.05), but the SDT group showed a slight increase compared to the 5-Ala group. The high expression rates of reactive oxygen species-related factors, such as 8-OhdG (p<0.001) and Caspase-3 (p<0.001), were observed in the SPDT group compared to other groups in IHC. CONCLUSION Our findings show that light with sensitizers can inhibit GBM growth, but not ultrasound. Although SPDT did not show the combined effect in MRI, high oxidative stress was observed in IHC. Further studies are needed to investigate the safety parameters to apply ultrasound in GBM.
Collapse
Affiliation(s)
- Junwon Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chanho Kong
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jaewoo Shin
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Korea
| | - Seung Hee Han
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyun Song
- Department of Electronics Engineering, Sookmyung Women's University, Seoul, Korea.
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
38
|
Song H, Song TK, Kang J. High-contrast spectroscopic photoacoustic characterization of thermal tissue ablation in the visible spectrum. Ultrasonography 2023; 42:249-258. [PMID: 36935599 PMCID: PMC10071053 DOI: 10.14366/usg.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE High-contrast tissue characterization of thermal ablation has been desired to evaluate therapeutic outcomes accurately. This paper presents a photoacoustic (PA) characterization of thermal tissue ablation in the visible spectrum, in which higher light absorbance can produce spectral contrast starker than in the near-infrared range. METHODS Ex vivo experiments were performed to measure visible PA spectra (480-700 nm) from fresh porcine liver tissues that received a thermal dose in a range of cumulative equivalent minutes at 43°C (CEM43). The local hemoglobin lobe area between 510-600 nm and wholespectral area under the curve were evaluated to represent the transition of hemoglobin into methemoglobin (MetHb) in the target tissue. RESULTS The thermal process below an estimated therapeutic CEM43 threshold (80-340 minutes) presented a progressive elevation of the PA spectrum and an eventual loss of local hemoglobin peaks in the visible spectrum, closer to the MetHb spectrum. Interestingly, an excessive CEM43 produced a substantial drop in the PA spectrum. In the spectral analysis, the visible spectrum yielded 13.9-34.1 times higher PA sensitivity and 1.42 times higher contrast change than at a near-infrared wavelength. CONCLUSION This novel method of PA tissue characterization in the visible spectrum could be a potential modality to evaluate various thermal therapeutic modalities at high-contrast resolution.
Collapse
Affiliation(s)
- Hyunjae Song
- Department of Electronic Engineering, Sogang University,
Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University,
Korea
| | - Jeeun Kang
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD,
USA
| |
Collapse
|
39
|
Singh G, Singh A, Kumar N, Avti P. Effects of injection rates and tissue diffusivity in magnetic nano-particle hyperthermia. Med Eng Phys 2023; 113:103965. [PMID: 36966004 DOI: 10.1016/j.medengphy.2023.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Effects of injection rate and tumor physiology on the diffusion of magnetic nano-particles (MNPs) and temperature profile during magnetic hyperthermia are investigated in this work. The study considers three injection rates (2.5 μL/min, 10 μL/min, and 40 μL/min), and two MNP diffusion coefficients (10-9 m2/s and 10-11 m2/s). The simulation of this physics has been done on 3D tumor surrounded by healthy tissue. Transient MNP distribution in tissue is evaluated using Darcy's flow model and the MNP transport (convection-diffusion) equation. The temperature profile in the tumor model is computed by solving Penne's bioheat transfer equation (PBHTE). Results show tumors with high collagen content (with low MNP diffusivity) are more restrictive towards MNP transport than tumors having low collagen content. Thus, tumors with low MNP diffusivity need a higher injection rate to increase the homogeneity of MNP concentration as well as temperature profile during thermo-therapy. Results also show that, MNP fluid injected with a higher injection rate produces a more uniform MNP concentration up to greater depth than the lower injection rate.
Collapse
Affiliation(s)
- Gurmeet Singh
- Department of Mechanical Engineering, Thapar Institute of Engineering & Technology, Patiala 147004, India; Virginia Tech-TIET- Center of Excellence in Emerging Materials, Thapar Institute of Engineering & Technology, Patiala 147001, India
| | - Amritpal Singh
- Department of Mechanical Engineering, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Neeraj Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering & Technology, Patiala 147004, India; Virginia Tech-TIET- Center of Excellence in Emerging Materials, Thapar Institute of Engineering & Technology, Patiala 147001, India.
| | - Pramod Avti
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), #520, Fifth Floor, Research 'B' Block, Sector 12, Chandigarh 160012, India
| |
Collapse
|
40
|
Multilayer In Vitro Human Skin Tissue Platforms for Quantitative Burn Injury Investigation. Bioengineering (Basel) 2023; 10:bioengineering10020265. [PMID: 36829759 PMCID: PMC9952576 DOI: 10.3390/bioengineering10020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
This study presents a multilayer in vitro human skin platform to quantitatively relate predicted spatial time-temperature history with measured tissue injury response. This information is needed to elucidate high-temperature, short-duration burn injury kinetics and enables determination of relevant input parameters for computational models to facilitate treatment planning. Multilayer in vitro skin platforms were constructed using human dermal keratinocytes and fibroblasts embedded in collagen I hydrogels. After three seconds of contact with a 50-100 °C burn tip, ablation, cell death, apoptosis, and HSP70 expression were spatially measured using immunofluorescence confocal microscopy. Finite element modeling was performed using the measured thermal characteristics of skin platforms to determine the temperature distribution within platforms over time. The process coefficients for the Arrhenius thermal injury model describing tissue ablation and cell death were determined such that the predictions calculated from the time-temperature histories fit the experimental burn results. The activation energy for thermal collagen ablation and cell death was found to be significantly lower for short-duration, high-temperature burns than those found for long-duration, low-temperature burns. Analysis of results suggests that different injury mechanisms dominate at higher temperatures, necessitating burn research in the temperature ranges of interest and demonstrating the practicality of the proposed skin platform for this purpose.
Collapse
|
41
|
Kikken MWI, Steensma BR, van den Berg CAT, Raaijmakers AJE. Multi-echo MR thermometry in the upper leg at 7 T using near-harmonic 2D reconstruction for initialization. Magn Reson Med 2023; 89:2347-2360. [PMID: 36688273 DOI: 10.1002/mrm.29591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines. METHODS The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims. RESULTS Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings. CONCLUSION The high precision shows promising potential for validation purposes and other RF safety applications.
Collapse
Affiliation(s)
- Mathijs W I Kikken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
42
|
Ivory AM, De Melo Baesso R, Durando G, Rajagopal S, Miloro P. Development and testing of a system for controlled ultrasound hyperthermia treatment with a phantom device. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; PP:266-275. [PMID: 37018591 DOI: 10.1109/tuffc.2023.3235453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hyperthermia is the process of raising tissue temperatures in the range 40 - 45 °C for a prolonged time (up to hours). Unlike in ablation therapy, raising the temperature to such levels does not cause necrosis of the tissue but has been postulated to sensitize the tissue for radiotherapy. The ability to maintain a certain temperature in a target region is key to a hyperthermia delivery system. The aim of this work was to design and characterize a heat delivery system for ultrasound hyperthermia able to generate a uniform power deposition pattern in the target region with a closed-loop control which would maintain the defined temperature over a defined period. The hyperthermia delivery system presented herein is a flexible design with the ability to strictly control the induced temperature rise with a feedback loop. The system can be reproduced elsewhere with relative ease and is adaptable for various tumor sizes/locations and for other temperature elevation applications, such as ablation therapy. The system was fully characterized and tested on a newly-designed custom-built phantom with controlled acoustic and thermal properties and containing embedded thermocouples. Additionally, a layer of thermochromic material was fixed above the thermocouples and the recorded temperature increase was compared to the RGB (red, green, and blue) color-change in the material. The transducer characterization allowed for input voltage to output power curves to be generated, thus allowing for comparison of power deposition to temperature increase in the phantom. Additionally, the transducer characterization generated a field map of the symmetric field. The system was capable of increasing the temperature of the target area by 6 °C above body temperature and maintain the temperature to within ±0.5 °C over a defined period. The increase in temperature correlated with the RGB image analysis of the thermochromic material. The results of this work have the potential to contribute towards increasing confidence in the delivery of hyperthermia treatment to superficial tumors. The developed system could potentially be used for phantom or small animal proof-of-principle studies. The developed phantom test device may be used for testing other hyperthermia systems.
Collapse
|
43
|
Almutairi L, Yu B, Dyne E, Ojaym A, Kim MH. Mild magnetic hyperthermia is synergistic with an antibiotic treatment against dual species biofilms consisting of S. aureus and P. aeruginosa by enhancing metabolic activity. Int J Hyperthermia 2023; 40:2226845. [PMID: 37369371 PMCID: PMC10406516 DOI: 10.1080/02656736.2023.2226845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE The wound biofilm infections that develop tolerance to standard-of-care antimicrobial treatment has been increasing. The objective of this study was to demonstrate a proof-of-concept of mild magnetic nanoparticle (MNP)/alternating magnetic field (AMF) hyperthermia as an anti-biofilm therapy against multispecies biofilm infections. METHODS Using both an in vitro cell culture and in vivo murine model of wound infection, we investigated whether MNP/AMF hyperthermia applied at a mild thermal dosage would be synergistically effective against dual species biofilm infection consisting of S. aureus and P. aeruginosa when combined with a broad-spectrum antibiotic, ciprofloxacin (CIP). RESULTS The combined treatment of MNP/AMF hyperthermia and CIP to the wounds of diabetic mice (db/db mice) significantly reduced the CFU number of S. aureus and P. aeruginosa by 2-log and 3-log, respectively, compared to the untreated control group, whereas either mild MNP/AMF hyperthermia or CIP treatment alone had little effect on the eradication of both bacteria. Our gene microarray data obtained from the culture of S. aureus biofilm suggest that mild MNP/AMF could shift the expression of genes for cellular respiration from anaerobic fermentation to an aerobic glycolytic/tricarboxylic acid cycle (TCA) pathway, implicating that the beneficial effect of mild MNP/AMF hyperthermia on the increased susceptibility of biofilm bacteria to an antibiotic treatment is associated with an increased metabolic activity. CONCLUSION Our results support the translational potential of mild MNP/AMF as an adjunctive therapy that can be combined with a broad-spectrum antibiotic treatment for the management of wound biofilm infections associated with multispecies bacteria.
Collapse
Affiliation(s)
- Layla Almutairi
- School of Biomedical Sciences, Kent State University, Kent, OH 44242 USA
- Department of Biology, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH 44242 USA
| | - Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, OH 44242 USA
| | - Alhussain Ojaym
- School of Biomedical Sciences, Kent State University, Kent, OH 44242 USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, OH 44242 USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242 USA
| |
Collapse
|
44
|
Löke DR, Kok HP, Helderman RFCPA, Bokan B, Franken NAP, Oei AL, Tuynman JB, Tanis PJ, Crezee J. Application of HIPEC simulations for optimizing treatment delivery strategies. Int J Hyperthermia 2023; 40:2218627. [PMID: 37455017 DOI: 10.1080/02656736.2023.2218627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions. METHODS For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated. RESULTS Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with CEM4310 values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage. CONCLUSION The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.
Collapse
Affiliation(s)
- Daan R Löke
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Roxan F C P A Helderman
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
| | - Bella Bokan
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
| | - Jurriaan B Tuynman
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter J Tanis
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Li J, Ye Y, Lin Z, Wang Z, Chen Y, Li G, Ouyang Z, Li J. Application of a new self-regulating temperature magnetic material Fe 83Zr 10B 7 in magnetic induction hyperthermia. Int J Hyperthermia 2023; 40:2211269. [PMID: 37474116 DOI: 10.1080/02656736.2023.2211269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION The temperature control of magnetic hyperthermia therapy mainly relies on circulating water cooling and regulating magnetic field intensity, which increases complexity in clinical applications. Using magnetic materials with appropriate Curie temperature has become an effective means to solve temperature monitoring and potentially achieve self-regulating temperature. METHODS A self-temperature-regulating Fe83Zr10B7 magnetic material was prepared. Based on this material, a simplified model of magnetic hyperthermia for arm tumors was established and verified using the finite- element method. The influence of magnetic field intensity and frequency on the heating power and temperature rise rate of different-sized and shaped magnetic media was studied. Additionally, factors such as the size, quantity, and spatial arrangement of the magnetic media were analyzed for their impact on the damage to tumors with different volumes and shapes. RESULTS Spherical shape is the most suitable for magnetic hyperthermia media, and the radius of the spherical magnetic media can be chosen according to the size of the tumor. For tumors with a radius below 10 mm, using magnetic media with a particle size of 3.5 mm is recommended. The optimal magnetic field conditions are H0 (10-12 kA/m) and f (110-120 kHz). CONCLUSION Based on the good magnetic properties and heating performance of the Fe83Zr10B7 magnetic material, it is feasible to use it as a magnetic medium for magnetic hyperthermia. The results of this study provide references for the selection of thermal seed size and magnetic field parameters in magnetic hyperthermia.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yanyong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zixin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zhe Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yuxun Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Gang Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zhi Ouyang
- School infirmary South China University of Technology, Guangzhou, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China
| |
Collapse
|
46
|
Faria-Costa G, Tsaturyan A, Peteinaris A, Faitatziadis S, Liatsikos E, Kallidonis P. Determinants of outflow rate through the ureteral access sheath during flexible ureteroscopy: an experimental in vivo study in an anesthetized porcine model. Urolithiasis 2022; 51:18. [PMID: 36534198 DOI: 10.1007/s00240-022-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
To evaluate the effect of different ureteroscope positions, saline pumping frequency, laser fiber diameter and ureteral access sheath (UAS) on outflow rate during flexible ureteroscopy (fURS). This study was performed in an anesthetized porcine model. The fURS setup included a manual pumping system, a 9.5 Fr single used-digital flexible ureteroscope and a ureteral access sheath (UAS). Outflow was collected and measured from the UAS during 1 min in all experimental settings. The evaluated variables were the position of the ureteroscope, the pumping frequency (2 s, 3 s or 5 s), the diameter of the used UAS (12/14 Fr or 14/16 Fr) and laser fiber (200 μm or a 272 μm). Ureteroscope position in the lower calyx was associated with significantly lower outflow rate (p < 0.05). The use of the 14/16 Fr UAS resulted in improved flow in the renal pelvis and upper calyx (p < 0.05) but not in the lower calyx. The use of a 200 μm laser fiber only improved flow in the upper calyx and when a 14/16 Fr UAS was being used. Pumping frequency did not show a significant correlation with outflow rate. The ureteroscope positioning and UAS size were important determinants of outflow rate through the UAS during fURS, while laser fiber diameter had a limited effect. In the lower calyx the outflow was minimal and was not improved by using a larger UAS.
Collapse
Affiliation(s)
- Gabriel Faria-Costa
- Department of Urology, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Arman Tsaturyan
- Department of Urology, University of Patras Medical School, Rio, 26500, Patras, Greece.
| | - Angelis Peteinaris
- Department of Urology, University of Patras Medical School, Rio, 26500, Patras, Greece
| | - Solon Faitatziadis
- Department of Urology, University of Patras Medical School, Rio, 26500, Patras, Greece
| | - Evangelos Liatsikos
- Department of Urology, University of Patras Medical School, Rio, 26500, Patras, Greece
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Panagiotis Kallidonis
- Department of Urology, University of Patras Medical School, Rio, 26500, Patras, Greece
| |
Collapse
|
47
|
Onyekanne CE, Salifu AA, Obayemi JD, Ani CJ, Ashouri Choshali H, Nwazojie CC, Onwudiwe KC, Oparah JC, Ezenwafor TC, Ezeala CC, Odusanya OS, Rahbar N, Soboyejo WO. Laser-induced heating of polydimethylsiloxane-magnetite nanocomposites for hyperthermic inhibition of triple-negative breast cancer cell proliferation. J Biomed Mater Res B Appl Biomater 2022; 110:2727-2743. [PMID: 35799416 DOI: 10.1002/jbm.b.35124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
This paper presents the results of an experimental and computational study of the effects of laser-induced heating provided by magnetite nanocomposite structures that are being developed for the localized hyperthermic treatment of triple-negative breast cancer. Magnetite nanoparticle-reinforced polydimethylsiloxane (PDMS) nanocomposites were fabricated with weight percentages of 1%, 5%, and 10% magnetite nanoparticles. The nanocomposites were exposed to incident Near Infrared (NIR) laser beams with well-controlled powers. The laser-induced heating is explored in: (i) heating liquid media (deionized water and cell growth media [Leibovitz L15+]) to characterize the photothermal properties of the nanocomposites, (ii) in vitro experiments that explore the effects of localized heating on triple-negative breast cancer cells, and (iii) experiments in which the laser beams penetrate through chicken tissue to heat up nanocomposite samples embedded at different depths beneath the chicken skin. The resulting plasmonic laser-induced heating is explained using composite theories and heat transport models. The results show that the laser/nanocomposite interactions decrease the viability of triple-negative breast cancer cells (MDA-MB-231) at temperatures in the hyperthermia domain between 41 and 44°C. Laser irradiation did not cause any observed physical damage to the chicken tissue. The potential in vivo performance of the PDMS nanocomposites was also investigated using computational finite element models of the effects of laser/magnetite nanocomposite interactions on the temperatures and thermal doses experienced by tissues that surround the nanocomposite devices. The implications of the results are then discussed for the development of implantable nanocomposite devices for localized treatment of triple-negative breast cancer tissue via hyperthermia.
Collapse
Affiliation(s)
- Chinyerem E Onyekanne
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Ali A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - John D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chukwuemeka J Ani
- Department of Physics, Nile University of Nigeria, Abuja, Federal Capital Territory, Nigeria
| | - Habibeh Ashouri Choshali
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chukwudalu C Nwazojie
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Killian C Onwudiwe
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Josephine C Oparah
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Theresa C Ezenwafor
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Chukwudi C Ezeala
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Olushola S Odusanya
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria.,Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex, Abuja, Federal Capital Territory, Nigeria
| | - Nima Rahbar
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Winston O Soboyejo
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria.,Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
48
|
Jeong H, Cho A, Ay I, Bonmassar G. Short-pulsed micro-magnetic stimulation of the vagus nerve. Front Physiol 2022; 13:938101. [PMID: 36277182 PMCID: PMC9585240 DOI: 10.3389/fphys.2022.938101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Vagus nerve stimulation (VNS) is commonly used to treat drug-resistant epilepsy and depression. The therapeutic effect of VNS depends on stimulating the afferent vagal fibers. However, the vagus is a mixed nerve containing afferent and efferent fibers, and the stimulation of cardiac efferent fibers during VNS may produce a rare but severe risk of bradyarrhythmia. This side effect is challenging to mitigate since VNS, via electrical stimulation technology used in clinical practice, requires unique electrode design and pulse optimization for selective stimulation of only the afferent fibers. Here we describe a method of VNS using micro-magnetic stimulation (µMS), which may be an alternative technique to induce a focal stimulation, enabling a selective fiber stimulation. Micro-coils were implanted into the cervical vagus nerve in adult male Wistar rats. For comparison, the physiological responses were recorded continuously before, during, and after stimulation with arterial blood pressure (ABP), respiration rate (RR), and heart rate (HR). The electrical VNS caused a decrease in ABP, RR, and HR, whereas µM-VNS only caused a transient reduction in RR. The absence of an HR modulation indicated that µM-VNS might provide an alternative technology to VNS with fewer heart-related side effects, such as bradyarrhythmia. Numerical electromagnetic simulations helped estimate the optimal coil orientation with respect to the nerve to provide information on the electric field’s spatial distribution and strength. Furthermore, a transmission emission microscope provided very high-resolution images of the cervical vagus nerve in rats, which identified two different populations of nerve fibers categorized as large and small myelinated fibers.
Collapse
Affiliation(s)
- Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Annabel Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Bioengineering, Harvard University, Cambridge, MA, United States
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- *Correspondence: Giorgio Bonmassar,
| |
Collapse
|
49
|
Peteinaris A, Tsaturyan A, Pantazis L, Farsari E, Martinez BB, Pagonis K, Adamou C, Vagionis A, Natsos A, Liatsikos E, Kallidonis P. Factors affecting the irrigation fluid temperature during laser lithotripsy: in vitro experimental study. Urology 2022; 170:53-59. [PMID: 36115430 DOI: 10.1016/j.urology.2022.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To investigate the effect of the diameter of laser fiber, pelvis volume, presence and type of the stone on irrigation fluid temperature rise. MATERIAL AND METHODS A 20ml syringe, 12/14 ureteral access sheath(UAS), a dual-lumen catheter and a thermocouple were used. The 12/14Fr UAS(Cook Ireland Ltd., Limerick, Ireland) and the Thermocouple(SE001, Pico Technologies, Cambridgeshire, UK) were inserted in the syringe. The syringe was closed allowing outflow from the UAS with rate at 10ml/min. The Quanta Ho 150W(Quanta System, Samarate, Italy) laser was used and fired with 10W(2Jx5Hz), 20W(2 × 10 Hz), 40W(2 × 20 Hz), 60W(2 × 30 Hz). These power settings were tested in different conditions: fibers(200µm, 365µm and 550µm), volumes(5ml, 10ml and 20ml) and artificial stones(soft, hard). The laser was activated for 30 seconds and reactivation was performed when the temperature reached below 26 0C. RESULTS For all trials 60W of energy resulted in higher temperature rise. No differences were observed when different fibers were used. The highest temperatures (up to 80 0C) for 60W were reported in 5ml syringe and the lowest (<45 0C) with 20ml. The maximal temperature of >59°C was recorded for the power of 60W(1Jx60Hz). The temperature exceeded 43 0C when power settings >40W were applied. CONCLUSION Increasing the overall power, increases the irrigation fluid temperature significantly. The smaller the volume of the pelvis, the greater the temperature elevation. The fiber size did not affect the temperature increase pattern. The presence of artificial stones was associated with the absorption of energy emitted by the laser.
Collapse
Affiliation(s)
| | | | | | - Ergina Farsari
- Plasma Technology Laboratory, Department of Chemical Engineering, University of Patras, Patras, Greece
| | | | | | | | | | | | - Evangelos Liatsikos
- Department of Urology, University of Patras, Patras, Greece; Department of Urology, Medical University of Vienna, Vienna, Austria; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | | |
Collapse
|
50
|
Æsøy MS, Juliebø-Jones P, Beisland C, Ulvik Ø. Temperature profiles during ureteroscopy with thulium fiber laser and holmium:YAG laser: Findings from a pre-clinical study. Scand J Urol 2022; 56:313-319. [PMID: 35924316 DOI: 10.1080/21681805.2022.2104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVE The aim of this study was to investigate temperature profiles in both the renal pelvis and parenchyma during Thulium Fiber Laser (TFL) and Holmium:yttrium-aluminium-garnet (Ho:YAG) laser activation in an ex-vivo porcine model. METHODS Three porcine kidneys with intact renal pelvis and proximal ureters were used in the study. A temperature sensor was inserted through a nephrostomy tube into the renal pelvis and a second sensor was inserted directly into the renal parenchyma. Temperatures were recorded during continuous laser activation for 180 s, and for an additional 60 s after deactivation. TFL (150 μm and 200 μm) and Ho:YAG (270 μm) laser delivered power at settings of 2.4 W, 8 W, 20 W and 30 W. RESULTS Intrapelvic temperatures correlated directly to power settings. Higher power produced higher temperatures. For example, using a 150 μm fiber at 2.4 W resulted in a 2.6 °C rise from baseline (p = 0.008), whereas using the same fiber at 20 W produced a rise in temperature of 19.9 °C (p = 0.02). Larger laser fibers caused significantly higher temperatures compared to smaller fibers using equivalent power settings, e.g. mean temperature at 20 W using 150 μm was 39.6 °C compared to 44.9 °C using 200 μm, p < 0.001. There was a significant increase in parenchymal temperatures when applying 20 W and 30 W of laser power with the two larger fibers. CONCLUSION In this ex-vivo study, renal temperatures correlated directly to power settings. Higher power produced higher temperatures. Furthermore, larger laser fibers caused higher temperatures. These findings could help guide selection of safe power settings for ureteroscopic lithotripsy, but future clinical studies are needed for confirmation.
Collapse
Affiliation(s)
- M S Æsøy
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - P Juliebø-Jones
- Department of Urology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - C Beisland
- Department of Urology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Ø Ulvik
- Department of Urology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| |
Collapse
|