1
|
Tomosynthesis in pediatrics: a retrospective of its application in the world practice and own data. КЛИНИЧЕСКАЯ ПРАКТИКА 2021. [DOI: 10.17816/clinpract77802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tomosynthesis is a modern effective and informative method of low-dose X-ray diagnostics, which allows obtaining a significant number of layered images with the subsequent volumetric image reconstruction. The use of tomosynthesis provides a one-time examination of a large anatomical area without loss of the image quality and diagnostics of difficult-to-visualize pathological changes that are not detected by digital radiography. The article presents an overview of the problem of improving low-dose imaging options in the radiation diagnostics, as well as the authors own data on the use of tomosynthesis for the diagnosis of community-acquired pneumonia in children.
Collapse
|
2
|
Mirzai M, Meltzer C, Vikgren J, Norrlund RR, Gottfridsson B, Johnsson Å, Båth M, Svalkvist A. The Effect of Dose Reduction on Overall Image Quality in Clinical Chest Tomosynthesis. Acad Radiol 2021; 28:e289-e296. [PMID: 32709583 DOI: 10.1016/j.acra.2020.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the effect of reduction in effective dose on the reproduction of anatomical structures in chest tomosynthesis (CTS). MATERIALS AND METHODS Twenty-four CTS examinations acquired at exposure settings resulting in an effective dose of 0.12 mSv for an average sized patient were included in the study. The examinations underwent simulated dose reduction to dose levels corresponding to 32%, 50%, and 70% of the original dose using a previously described and validated method. The image quality was evaluated by five thoracic radiologists who rated the fulfillment of specified image quality criteria in a visual grading study. The ratings for each image quality criterion in the dose-reduced images were compared to the corresponding ratings for the full-dose examinations using visual grading characteristics (VGC) analysis. The area under the resulting VGC curve (AUCVGC) provides a measure of the difference between the ratings, where an AUCVGC of 0.5 indicates no difference. RESULTS The dose reductions resulted in inferior reproduction of structures compared to the original dose level (AUCVGC <0.5). Structures in the central region of the lung obtained the lowest AUCVGC for each dose level whereas the reproduction of structures in the parenchyma was least affected by the dose reduction. CONCLUSION Although previous studies have shown that dose reduction in CTS is possible without affecting the performance of certain clinical tasks, the reproduction of normal anatomical structures is significantly degraded even at small reductions. It is therefore important to consider the clinical purpose of the CTS examinations before deciding on a permanent dose reduction.
Collapse
|
3
|
Baratella E, Bozzato AM, Marrocchio C, Natali C, Di Giusto A, Quaia E, Cova MA. Digital tomosynthesis and ground glass nodules: Optimization of acquisition protocol. A phantom study. Radiography (Lond) 2020; 27:574-580. [PMID: 33341379 DOI: 10.1016/j.radi.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Ground-glass nodules may be the expression of benign conditions, pre-invasive lesions or malignancies. The aim of our study was to evaluate the capability of chest digital tomosynthesis (DTS) in detecting pulmonary ground-glass opacities (GGOs). METHODS An anthropomorphic chest phantom and synthetic nodules were used to simulate pulmonary ground-glass nodules. The nodules were positioned in 3 different regions (apex, hilum and basal); then the phantom was scanned by multi-detector CT (MDCT) and DTS. For each set (nodule-free phantom, nodule in apical zone, nodule in hilar zone, nodule in basal zone) seven different scans (n = 28) were performed varying the following technical parameters: Cu-filter (0.1-0.3 mm), dose rateo (10-25) and X-ray tube voltage (105-125 kVp). Two radiologists in consensus evaluated the DTS images and provided in agreement a visual score: 1 for unidentifiable nodules, 2 for poorly identifiable nodules, 3 for nodules identifiable with fair certainty, 4 for nodules identifiable with absolute certainty. RESULTS Increasing the dose rateo from 10 to 15, GGOs located in the apex and in the basal zone were better identified (from a score = 2 to a score = 3). GGOs located in the hilar zone were not visible even with a higher dose rate. Intermediate density GGOs had a good visibility score (score = 3) and it did not improve by varying technical parameters. A progressive increase of voltage (from 105 kVp to 125 kVp) did not provide a better nodule visibility. CONCLUSION DTS with optimized technical parameters can identify GGOs, in particular those with a diameter greater than 10 mm. IMPLICATIONS FOR PRACTICE DTS could have a role in the follow-up of patients with known GGOs identified in lung apex or base region.
Collapse
Affiliation(s)
- E Baratella
- Department of Radiology, University of Trieste, Trieste, Italy.
| | - A M Bozzato
- Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - C Marrocchio
- Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - C Natali
- Department of Radiology, Radiology of Gorizia and Monfalcone, Italy
| | - A Di Giusto
- Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - E Quaia
- Department of Medicine - DIMED, Radiology Institute, University of Padua, Padua, Italy
| | - M A Cova
- Department of Radiology, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Mirzai M, Svalkvist A, Månsson LG, Båth M. Detection of Pulmonary Nodule Growth with Chest Tomosynthesis: A Human Observer Study Using Simulated Nodules. Acad Radiol 2019; 26:508-518. [PMID: 29903641 DOI: 10.1016/j.acra.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES Chest tomosynthesis has been suggested as a suitable alternative to CT for follow-up of pulmonary nodules. The aim of the present study was to investigate the possibility of detecting pulmonary nodule growth using chest tomosynthesis. MATERIALS AND METHODS Simulated nodules with volumes of approximately 100 mm3 and 300 mm3 as well as additional versions with increasing volumes were created. The nodules were inserted into images from pairs of chest tomosynthesis examinations, simulating cases where the nodule had either remained stable in size or increased in size between the two imaging occasions. Nodule volume growths ranging from 11% to 252% were included. A simulated dose reduction was applied to a subset of the cases. Cases differing in terms of nodule size, dose level, and nodule position relative to the plane of image reconstruction were included. Observers rated their confidence that the nodules were stable in size or not. The rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size using ROC analysis. RESULTS Area under the curve values ranging from 0.65 to 1 were found. The lowest area under the curve values were found when there was a mismatch in nodule position relative to the reconstructed image plane between the two examinations. Nodule size and dose level affected the results. CONCLUSION The study indicates that chest tomosynthesis can be used to detect pulmonary nodule growth. Nodule size, dose level, and mismatch in position relative to the image reconstruction plane in the baseline and follow-up examination may affect the precision.
Collapse
|
5
|
Blum A, Noël A, Regent D, Villani N, Gillet R, Gondim Teixeira P. Tomosynthesis in musculoskeletal pathology. Diagn Interv Imaging 2018; 99:423-441. [DOI: 10.1016/j.diii.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
|
6
|
Meltzer C, Vikgren J, Bergman B, Molnar D, Norrlund RR, Hassoun A, Gottfridsson B, Båth M, Johnsson ÅA. Detection and Characterization of Solid Pulmonary Nodules at Digital Chest Tomosynthesis: Data from a Cohort of the Pilot Swedish Cardiopulmonary Bioimage Study. Radiology 2018; 287:1018-1027. [PMID: 29613826 DOI: 10.1148/radiol.2018171481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To investigate the performance of digital tomosynthesis (DTS) for detection and characterization of incidental solid lung nodules. Materials and Methods This prospective study was based on a population study with 1111 randomly selected participants (age range, 50-64 years) who underwent a medical evaluation that included chest computed tomography (CT). Among these, 125 participants with incidental nodules 5 mm or larger were included in this study, which added DTS in conjunction with the follow-up CT and was performed between March 2012 and October 2014. DTS images were assessed by four thoracic radiologists blinded to the true number of nodules in two separate sessions according to the 5-mm (125 participants) and 6-mm (55 participants) cut-off for follow-up of incidental nodules. Pulmonary nodules were directly marked on the images by the readers and graded regarding confidence of presence and recommendation for follow-up. Statistical analyses included jackknife free-response receiver operating characteristic, receiver operating characteristic, and Cohen κ coefficient. Results Overall detection rate ranges of CT-proven nodules 5 mm or larger and 6 mm or larger were, respectively, 49%-58% and 48%-62%. Jackknife free-response receiver operating characteristics figure of merit for detection of CT-proven nodules 5 mm or larger and 6 mm or larger was 0.47 and 0.51, respectively, and area under the receiver operating characteristic curve regarding recommendation for follow-up was 0.62 and 0.65, respectively. Conclusion Routine use of DTS would result in lower detection rates and reduced number of small nodules recommended for follow-up. © RSNA, 2018.
Collapse
Affiliation(s)
- Carin Meltzer
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Jenny Vikgren
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Bengt Bergman
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - David Molnar
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Rauni Rossi Norrlund
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Asmaa Hassoun
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Bengt Gottfridsson
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Magnus Båth
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Åse A Johnsson
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| |
Collapse
|
7
|
Grosso M, Priotto R, Ghirardo D, Talenti A, Roberto E, Bertolaccini L, Terzi A, Chauvie S. Comparison of digital tomosynthesis and computed tomography for lung nodule detection in SOS screening program. Radiol Med 2017; 122:568-574. [DOI: 10.1007/s11547-017-0765-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
|
8
|
Abstract
OBJECTIVE The purpose of this study was to quantitatively and qualitatively determine the impact of radiation dose reduction on the image noise and quality of tomosynthesis studies of the wrist. MATERIALS AND METHODS Imaging of six cadaver wrists was performed with tomosynthesis in anteroposterior position at a tube voltage of 60 kV and tube current of 80 mA and subsequently at 60 or 50 kV with different tube currents of 80, 40, or 32 mA. Dose-area products (DAP) were obtained from the electronically logged protocol. Image noise was measured with an ROI. Two independent and blinded readers evaluated all images. Interreader agreement was measured with a Cohen kappa. Readers assessed overall quality and delineation of soft tissue, cortical bone, and trabecular bone on a 4-point Likert scale. RESULTS The highest DAP (3.892 ± 0.432 Gy · cm2) was recorded for images obtained with 60 kV and 80 mA; the lowest (0.857 ± 0.178 Gy · cm2) was recorded for images obtained with 50 kV and 32 mA. Noise was highest when a combination of 50 kV and 32 mA (389 ± 26.6) was used and lowest when a combination of 60 kV and 80 mA (218 ± 12.3) was used. The amount of noise on images acquired using 60 kV and 80 mA was statistically significantly different from the amount measured on all other images (p < 0.0001). Interreader agreement was excellent (κ = 0.93). Delineation of anatomy and overall quality were scored best on images obtained with 60 kV and 80 mA and worst on images obtained with 50 kV and 32 mA. The difference in delineation and quality on images obtained using 50 kV and 40 mA was not statistically significantly different compared with images obtained using 60 kV and 80 mA. CONCLUSION Significant dose reduction for tomosynthesis of the wrist is possible while image quality and delineation of anatomic structures remain preserved.
Collapse
|
9
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Svalkvist A, Månsson LG, Båth M. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES. RADIATION PROTECTION DOSIMETRY 2016; 169:188-198. [PMID: 26994093 PMCID: PMC4911967 DOI: 10.1093/rpd/ncw041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis.
Collapse
Affiliation(s)
- Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Rauni Rossi Norrlund
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - David Molnar
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Lars Gunnar Månsson
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
10
|
Ceder E, Danielson B, Kovàč P, Fogel H, Svalkvist A, Vikgren J, Båth M. THORACIC SPINE IMAGING: A COMPARISON BETWEEN RADIOGRAPHY AND TOMOSYNTHESIS USING VISUAL GRADING CHARACTERISTICS. RADIATION PROTECTION DOSIMETRY 2016; 169:204-210. [PMID: 26868012 DOI: 10.1093/rpd/ncv559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to evaluate digital tomosynthesis (DTS) in thoracic spine imaging, comparing the reproduction of anatomical structures with that achieved using digital radiography (DR). In a prospective visual grading study, 23 patients referred in 2014 for elective radiographic examination of the thoracic spine were examined using lateral DR and DTS. The DR image and the DTS section images were read in random order by four radiologists, evaluating the ability of the modalities to present a clear reproduction of nine specific relevant structures of the thoracic vertebrae 3, 6 and 9 (T3, T6 and T9). The data were analysed using visual grading characteristics (VGC) analysis. The VGC analysis revealed a statistically significant difference in favour of DTS for all evaluated structures, except for the anterior vertebral edges and lower end plate surfaces of T6 and T9 and the cancellous bone of T9. The difference was most striking in T3 and for posterior structures. For no structure in any vertebra was the reproduction rated significantly better for DR. In conclusion, DTS of the thoracic spine appears to be a promising alternative to DR, especially in areas where the problem of overlaying anatomy is accentuated, such as posterior and upper thoracic structures.
Collapse
Affiliation(s)
- Erik Ceder
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Barbro Danielson
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Kovàč
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Hanna Fogel
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
11
|
Meltzer C, Båth M, Kheddache S, Ásgeirsdóttir H, Gilljam M, Johnsson ÅA. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE. RADIATION PROTECTION DOSIMETRY 2016; 169:177-87. [PMID: 26842827 PMCID: PMC4911964 DOI: 10.1093/rpd/ncv556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted.
Collapse
Affiliation(s)
- Carin Meltzer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Susanne Kheddache
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Helga Ásgeirsdóttir
- Gothenburg CF-Center, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marita Gilljam
- Gothenburg CF-Center, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
12
|
Båth M, Söderman C, Svalkvist A. RETROSPECTIVE ESTIMATION OF PATIENT DOSE-AREA PRODUCT IN THORACIC SPINE TOMOSYNTHESIS PERFORMED USING VOLUMERAD. RADIATION PROTECTION DOSIMETRY 2016; 169:281-285. [PMID: 26590395 DOI: 10.1093/rpd/ncv475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the use of a recently developed method of retrospectively estimating the patient dose-area product (DAP) of a chest tomosynthesis examination, performed using VolumeRAD, in thoracic spine tomosynthesis and to determine the necessary field-size correction factor. Digital imaging and communications in medicine (DICOM) data for the projection radiographs acquired during a thoracic spine tomosynthesis examination were retrieved directly from the modality for 17 patients. Using the previously developed method, an estimated DAP for the tomosynthesis examination was determined from DICOM data in the scout image. By comparing the estimated DAP with the actual DAP registered for the projection radiographs, a field-size correction factor was determined. The field-size correction factor for thoracic spine tomosynthesis was determined to 0.92. Applying this factor to the DAP estimated retrospectively, the maximum difference between the estimated DAP and the actual DAP was <3 %. In conclusion, the previously developed method of retrospectively estimating the DAP in chest tomosynthesis can be applied to thoracic spine tomosynthesis.
Collapse
Affiliation(s)
- Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
13
|
Arvidsson J, Söderman C, Allansdotter Johnsson Å, Bernhardt P, Starck G, Kahl F, Båth M. IMAGE FUSION OF RECONSTRUCTED DIGITAL TOMOSYNTHESIS VOLUMES FROM A FRONTAL AND A LATERAL ACQUISITION. RADIATION PROTECTION DOSIMETRY 2016; 169:410-415. [PMID: 26683464 DOI: 10.1093/rpd/ncv507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Digital tomosynthesis (DTS) has been used in chest imaging as a low radiation dose alternative to computed tomography (CT). Traditional DTS shows limitations in the spatial resolution in the out-of-plane dimension. As a first indication of whether a dual-plane dual-view (DPDV) DTS data acquisition can yield a fair resolution in all three spatial dimensions, a manual registration between a frontal and a lateral image volume was performed. An anthropomorphic chest phantom was scanned frontally and laterally using a linear DTS acquisition, at 120 kVp. The reconstructed image volumes were resampled and manually co-registered. Expert radiologist delineations of the mediastinal soft tissues enabled calculation of similarity metrics in regard to delineations in a reference CT volume. The fused volume produced the highest total overlap, implying that the fused volume was a more isotropic 3D representation of the examined object than the traditional chest DTS volumes.
Collapse
Affiliation(s)
- Jonathan Arvidsson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Bernhardt
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Göran Starck
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Fredrik Kahl
- Department of Signals and Systems, Digital Image Systems and Image Analysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
14
|
Jadidi M, Sundin A, Aspelin P, Båth M, Nyrén S. Evaluation of a new system for chest tomosynthesis: aspects of image quality of different protocols determined using an anthropomorphic phantom. Br J Radiol 2015; 88:20150057. [PMID: 26118300 DOI: 10.1259/bjr.20150057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To compare the image quality obtained with the different protocols in a new chest digital tomosynthesis (DTS) system. METHODS A chest phantom was imaged with chest X-ray equipment with DTS. 10 protocols were used, and for each protocol, nine acquisitions were performed. Four observers visually rated the quality of the reconstructed section images according to pre-defined quality criteria in four different classes. The data were analysed with visual grading characteristics (VGC) analysis, using the vendor-recommended protocol [12-s acquisition time, source-to-image distance (SID) 180 cm] as reference, and the area under the VGC curve (AUCVGC) was determined for each protocol and class of criteria. RESULTS Protocols with a smaller swing angle resulted in a lower image quality for the classes of criteria "disturbance" and "homogeneity in nodule" but a higher image quality for the class "structure". The class "demarcation" showed little dependency on the swing angle. All protocols but one (6.3 s, SID 130 cm) obtained an AUCVGC significantly <0.5 (indicating lower quality than reference) for at least one class of criteria. CONCLUSION The study indicates that the DTS protocol with 6.3 s yields image quality similar to that obtained with the vendor-recommended protocol (12 s) but with the clinically important advantage for patients with respiratory impairment of a shorter acquisition time. ADVANCES IN KNOWLEDGE The study demonstrates that the image quality may be strongly affected by the choice of protocol and that the vendor-recommended protocol may not be optimal.
Collapse
Affiliation(s)
- M Jadidi
- 1 Departments of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - A Sundin
- 2 Radiology Department, Uppsala University Hospital, Uppsala, Sweden.,3 Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - P Aspelin
- 4 Departments of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden.,5 Radiology Department, Karolinska University Hospital, Stockholm, Sweden
| | - M Båth
- 6 Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,7 Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Nyrén
- 8 Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,9 Radiology Department, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Svalkvist A, Månsson LG, Båth M. Evaluation of accuracy and precision of manual size measurements in chest tomosynthesis using simulated pulmonary nodules. Acad Radiol 2015; 22:496-504. [PMID: 25601303 DOI: 10.1016/j.acra.2014.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the accuracy and precision of pulmonary nodule size measurements on chest tomosynthesis images. MATERIALS AND METHODS Artificial ellipsoid-shaped nodules with known sizes were inserted in clinical chest tomosynthesis images. The volume of the nodules corresponded to that of a sphere with a diameter of 4.0, 8.0, or 12.0 mm. Four thoracic radiologists were given the task to determine the longest diameter of the nodules. All nodules were measured twice. Measurement accuracy in terms of the mean measurement error was determined. Intraobserver and interobserver variabilities, as well as variability because of differences between nodules and their locations, were used as measures of precision. RESULTS The mean measurement error ranged from -0.3 to 0.1 mm for the nodule size groups and observers. Of the smallest nodules, the observers found 7-17 of total 50 nodules nonmeasurable. The intraobserver and interobserver variabilities were of similar magnitude, indicating relatively small differences between the observers. The internodule variability was in general larger, indicating that the different characteristics of the nodules and their location are sources of variability. CONCLUSIONS The results suggest a high accuracy and precision for manual measurements of the nodules in chest tomosynthesis images. However, small nodules (<5.0 mm) may be difficult to measure at all because of poor visibility.
Collapse
|
16
|
Söderman C, Asplund S, Allansdotter Johnsson Å, Vikgren J, Rossi Norrlund R, Molnar D, Svalkvist A, Gunnar Månsson L, Båth M. Image quality dependency on system configuration and tube voltage in chest tomosynthesis-A visual grading study using an anthropomorphic chest phantom. Med Phys 2015; 42:1200-12. [DOI: 10.1118/1.4907963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Johnsson ÅA, Vikgren J, Båth M. A retrospective study of chest tomosynthesis as a tool for optimizing the use of computed tomography resources and reducing patient radiation exposure. Acad Radiol 2014; 21:1427-33. [PMID: 25097012 DOI: 10.1016/j.acra.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate potential benefits and drawbacks of the clinical use of chest tomosynthesis (CTS), to what extent CTS obviates the need for chest computed tomography (CT), and what reduction in radiation dose thereby can be achieved. MATERIALS AND METHODS The Regional Ethical Review Board approved the follow-up study of patients examined with CTS as part of clinical routine. For each case, two radiologists in consensus determined whether CT would have been performed, had CTS not been an option, and whether CTS was an adequate examination. Thereafter, it was determined whether the use of CTS instead of CT in retrospect was beneficial, neutral, or detrimental for the radiological work-up. The radiation dose to the patient population was determined both for the actual clinical situation and for the alternative scenario that would result, had CTS not been available. RESULTS During 1 month 3.5 years before the survey, 149 patients (74 women, age 18-91 years) had undergone CTS for clinical purposes. It was judged that CT would have been performed in 100 cases, had CTS not been available, and that CTS obviated the need for CT in 80 cases. CTS was judged as beneficial, neutral, and detrimental for the radiological work-up in 85, 13, and two cases, respectively. For the entire study population, the use of CTS decreased the average effective dose from 2.7 to 0.7 mSv. CONCLUSIONS The present study indicates that CTS may have benefits for the radiological work-up as it has the potential to both optimize the use of CT resources and reduce the effective dose to the patient population. A drawback is that CTS examinations may fail to reveal pathology visible with CT and in clinically doubtful cases further investigations including other imaging procedures should be considered.
Collapse
Affiliation(s)
- Åse A Johnsson
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Jenny Vikgren
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Båth M, Söderman C, Svalkvist A. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD. Med Phys 2014; 41:101905. [DOI: 10.1118/1.4895002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|