1
|
Loh M, Führes T, Stuprich C, Benkert T, Bickelhaupt S, Uder M, Laun FB. Effect of simultaneous multislice imaging, slice properties, and repetition time on the measured magnetic resonance biexponential intravoxel incoherent motion in the liver. PLoS One 2024; 19:e0306996. [PMID: 39121035 PMCID: PMC11315316 DOI: 10.1371/journal.pone.0306996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 08/11/2024] Open
Abstract
OBJECTIVES This study aims to investigate the previously reported dependency of intravoxel incoherent motion (IVIM) parameters on simultaneous multislice (SMS) acquisition and repetition time (TR). This includes the influence of slice thickness, slice gaps, and slice order on measured IVIM parameters. MATERIALS AND METHODS Diffusion-weighted imaging (DWI) of the liver was performed on 10 healthy volunteers (aged 20-30 years) at 3T with a slice thickness of 5 mm, a slice gap of 5 mm, and a linear slice order. Diffusion-weighted images were acquired with 19 b-values (0-800 s/mm2) using both conventional slice excitation with an acceleration factor of one (AF1) and SMS excitation with an acceleration factor of three (AF3). Each of these measurements were carried out with two repetition times (TRs)- 1,300 ms (prefix s) and 4,500 ms (prefix l)-resulting in four different combinations: sAF1, sAF3, lAF1, and lAF3. Five volunteers underwent additional measurements using a 10 mm slice thickness and with AF1. Median signal values in the liver were used to determine the biexponential IVIM parameters. Statistical significances were assessed using the Kruskal-Wallis test, Wilcoxon signed-rank test, and Student's t-test. In-silico investigations were also used to interpret the data. RESULTS There were no significant differences between the biexponential IVIM parameters acquired from sAF1, sAF3, lAF1, and lAF3. Median values of the perfusion fraction f were as follows: 29.9% (sAF1), 26.9% (sAF3), 28.1% (lAF1), and 27.5% (lAF3). In the 10 mm-thick slices, f decreased from 31.3% (lAF1) to 27.4% (sAF1) (p = 0.141). CONCLUSION The slice excitation mode did not appear to have any significant influence on the biexponential IVIM parameters. However, our simulations, as well as values reported from previous publications, show that slice thickness, slice gaps, and slice order are relevant and should thus be reported in IVIM studies.
Collapse
Affiliation(s)
- Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Sebastian Bickelhaupt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Stuprich CM, Loh M, Nemerth JT, Nagel AM, Uder M, Laun FB. Velocity-compensated intravoxel incoherent motion of the human calf muscle. Magn Reson Med 2024; 92:543-555. [PMID: 38688865 DOI: 10.1002/mrm.30059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE To determine whether intravoxel incoherent motion (IVIM) describes the blood perfusion in muscles better, assuming pseudo diffusion (Bihan Model 1) or ballistic motion (Bihan Model 2). METHODS IVIM parameters were measured in 18 healthy subjects with three different diffusion gradient time profiles (bipolar with two diffusion times and one with velocity compensation) and 17 b-values (0-600 s/mm2) at rest and after muscle activation. The diffusion coefficient, perfusion fraction, and pseudo-diffusion coefficient were estimated with a segmented fit in the gastrocnemius medialis (GM) and tibialis anterior (TA) muscles. RESULTS Velocity-compensated gradients resulted in a decreased perfusion fraction (6.9% ± 1.4% vs. 4.4% ± 1.3% in the GM after activation) and pseudo-diffusion coefficient (0.069 ± 0.046 mm2/s vs. 0.014 ± 0.006 in the GM after activation) compared to the bipolar gradients with the longer diffusion encoding time. Increased diffusion coefficients, perfusion fractions, and pseudo-diffusion coefficients were observed in the GM after activation for all gradient profiles. However, the increase was significantly smaller for the velocity-compensated gradients. A diffusion time dependence was found for the pseudo-diffusion coefficient in the activated muscle. CONCLUSION Velocity-compensated diffusion gradients significantly suppress the IVIM effect in the calf muscle, indicating that the ballistic limit is mostly reached, which is supported by the time dependence of the pseudo-diffusion coefficient.
Collapse
Affiliation(s)
- Christoph M Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes T Nemerth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
3
|
Lu CW, Wu CH, Huang MT, Lee CS, Chen HL, Lin MT, Chiu SN, Tseng WC, Chen CA, Wang JK, Wu MH. Liver fibrosis detected by diffusion-weighted magnetic resonance imaging and its functional correlates in Fontan patients. Eur J Cardiothorac Surg 2024; 66:ezae249. [PMID: 38913856 DOI: 10.1093/ejcts/ezae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 06/23/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVES The evaluation of Fontan-associated liver disease is often challenging. Diffusion-weighted magnetic resonance imaging can detect hepatic fibrosis from capillary perfusion and diffusion abnormalities from extracellular matrix accumulation. This study investigated its role in the evaluation of liver disease in Fontan patients and explored possible diagnostic methods for early detection of advanced liver fibrosis. METHODS Stable adult Fontan patients who could safely be examined with magnetic resonance imaging were enrolled, and blood biomarkers, transient elastography were also examined. RESULTS Forty-six patients received diffusion-weighted imaging; and 58.7% were diagnosed with advanced liver fibrosis (severe liver fibrosis, 37.0%, and cirrhosis 21.7%). Two parameters of hepatic dysfunction, platelet counts (Spearman's ρ: -0.456, P = 0.001) and cholesterol levels (Spearman's ρ: -0.383, P = 0.009), decreased with increasing severity of fibrosis. Using transient elastography, a cut-off value of 14.2 kPa predicted the presence of advanced liver fibrosis, but with a low positive predictive value. When we included platelet count, cholesterol, post-Fontan years and transient elastography values as a composite, the capability of predicting advanced liver fibrosis was the most satisfactory (C statistic 0.817 ± 0.071, P < 0.001). A cut-off value of 5.0 revealed a sensitivity of 78% and a specificity of 82%. CONCLUSIONS In Fontan patients, diffusion-weighted imaging was helpful in detecting liver fibrosis that was correlated with hepatic dysfunction. A simple score was proposed for long-term surveillance and early detection of advanced liver disease in adult Fontan patients. For adult Fontan patients with a calculated score > 5.0, we may consider timely diffusion-weight imaging and early management for liver complications.
Collapse
Affiliation(s)
- Chun-Wei Lu
- Adult Congenital Heart Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Horng Wu
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chee-Seng Lee
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Biomedical Park Branch, Hsin-Chu, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Tai Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuenn-Nan Chiu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chieh Tseng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-An Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jou-Kou Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hwan Wu
- Adult Congenital Heart Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Bäuchle TA, Stuprich CM, Loh M, Nagel AM, Uder M, Laun FB. Influence of Magnetic Field Strength on Intravoxel Incoherent Motion Parameters in Diffusion MRI of the Calf. Tomography 2024; 10:773-788. [PMID: 38787019 PMCID: PMC11126135 DOI: 10.3390/tomography10050059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Background: The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B0. Methods: Diffusion-weighted image data of eight healthy volunteers were acquired using five b-values (0-600 s/mm2) at rest and after muscle activation at 0.55 and 7 T. The musculus gastrocnemius mediale (GM, activated) was assessed. The perfusion fraction f and diffusion coefficient D were determined using segmented fits. The dependence on field strength was assessed using Student's t-test for paired samples and the Wilcoxon signed-rank test. A biophysical model built on the three non-exchanging compartments of muscle, venous blood, and arterial blood was used to interpret the data using literature relaxation times. Results: The measured perfusion fraction of the GM was significantly lower at 7 T, both for the baseline measurement and after muscle activation. For 0.55 and 7 T, the mean f values were 7.59% and 3.63% at rest, and 14.03% and 6.92% after activation, respectively. The biophysical model estimations for the mean proton-density-weighted perfusion fraction were 3.37% and 6.50% for the non-activated and activated states, respectively. Conclusions: B0 may have a significant effect on the measured IVIM parameters. The blood relaxation times suggest that 7 T IVIM may be arterial-weighted whereas 0.55 T IVIM may exhibit an approximately equal weighting of arterial and venous blood.
Collapse
Affiliation(s)
- Tamara Alice Bäuchle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christoph Martin Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Loh M, Führes T, Stuprich C, Uder M, Saake M, Laun FB. Influence of saturation effects on biexponential liver intravoxel incoherent motion. Magn Reson Med 2023; 90:270-279. [PMID: 36861449 DOI: 10.1002/mrm.29622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Studies on intravoxel incoherent motion (IVIM) imaging in the liver have been carried out with different acquisition protocols. The number of acquired slices and the distances between slices can influence IVIM measurements due to saturation effects, but these effects have often been disregarded. This study investigated differences in biexponential IVIM parameters between two slice settings. METHODS Fifteen healthy volunteers (21-30 years) were examined at a field strength of 3 T. Diffusion-weighted images of the abdomen were acquired with 16 b values (0-800 s/mm2 ), with four slices for the few slices setting and 24-27 slices for the many slices setting. Regions of interest were manually drawn in the liver. The data were fitted with a monoexponential signal curve and a biexponential IVIM curve, and biexponential IVIM parameters were determined. The dependence on the slice setting was assessed with Student's t test for paired samples (normally distributed IVIM parameters) and the Wilcoxon signed-rank test (non-normally distributed parameters). RESULTS None of the parameters were significantly different between the settings. For few slices and many slices, respectively, the mean values (SDs) for D $$ D $$ were 1.21 μm 2 / ms $$ 1.21{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.19 μm 2 / ms $$ 0.19\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ) and 1.20 μm 2 / ms $$ 1.20{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.11 μm 2 / ms $$ 0.11\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ); for f $$ f $$ they were 29.7% (6.2%) and 27.7% (3.6%); and for D * $$ {D}^{\ast } $$ they were 8.76 ⋅ 10 - 2 mm 2 / s $$ 8.76\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.54 ⋅ 10 - 2 mm 2 / s $$ 4.54\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ) and 8.71 ⋅ 10 - 2 mm 2 / s $$ 8.71\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.06 ⋅ 10 - 2 mm 2 / s $$ 4.06\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ). CONCLUSION Biexponential IVIM parameters in the liver are comparable among IVIM studies that use different slice settings, with mostly negligible saturation effects. However, this may not hold for studies that use much shorter TR.
Collapse
Affiliation(s)
- Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Abstract
Early diagnosis of hepatic fibrosis (HF) is pivotal for management to cease progression to cirrhosis and hepatocellular carcinoma. HF is the telltale sign of chronic liver disease, and confirmed by liver biopsy, which is an invasive technique and inclined to sampling errors. The morphologic parameters of cirrhosis are assessed on conventional imaging such as on ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI). Newer imaging modalities such as magnetic resonance elastography and US elastography are reliable and accurate. More research studies on novel imaging modalities such as MRI with diffusion weighted imaging, enhancement by hepatobiliary contrast agents, and CT using perfusion are essential for earlier diagnosis, surveillance and accurate management. The purpose of this article is to discuss non-invasive CT, MRI, and US imaging modalities for diagnosis and stratify HF.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Neuroradiology, The University of Texas Health Science Center, Houston, TX.
| | - Ajaykumar C Morani
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Priya Bhosale
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
7
|
Yang J, Meng M, Pan C, Qian L, Sun Y, Shi H, Shen Y, Dou W. Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic Resonance Imaging to Early Detect Tissue Injury and Microcirculation Alteration in Hepatic Injury Induced by Intestinal Ischemia-Reperfusion in a Rat Model. J Magn Reson Imaging 2021; 54:751-760. [PMID: 33749079 PMCID: PMC8451931 DOI: 10.1002/jmri.27604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background Intravoxel incoherent motion (IVIM) can provide quantitative information about water diffusion and perfusion that can be used to evaluate hepatic injury, but it has not been studied in hepatic injury induced by intestinal ischemia–reperfusion (IIR). Dynamic contrast‐enhanced (DCE) magnetic resonance imaging (MRI) can provide perfusion data, but it is unclear whether it can provide useful information for assessing hepatic injury induced by IIR. Purpose To examine whether IVIM and DCE‐MRI can detect early IIR‐induced hepatic changes, and to evaluate the relationship between IVIM and DCE‐derived parameters and biochemical indicators and histological scores. Study Type Prospective pre‐clinical study. Population Forty‐two male Sprague–Dawley rats. Field Strength/Sequence IVIM‐diffusion‐weighted imaging (DWI) using diffusion‐weighted echo‐planar imaging sequence and DCE‐MRI using fast spoiled gradient recalled‐based sequence at 3.0 T. Assessment All rats were randomly divided into the control group (Sham), the simple ischemia group, the ischemia–reperfusion (IR) group (IR1h, IR2h, IR3h, and IR4h) in a model of secondary hepatic injury caused by IIR, and IIR was induced by clamping the superior mesenteric artery for 60 minutes and then removing the vascular clamp. Advanced Workstation (AW) 4.6 was used to calculate the imaging parameters (apparent diffusion coefficient [ADC], true diffusion coefficient [D], perfusion‐related diffusion [D*] and volume fraction [f]) of IVIM. OmniKinetics (OK) software was used to calculate the DCE imaging parameters (Ktrans, Kep, and Ve). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed with an automatic biochemical analyzer. Superoxide dismutase (SOD) activity was assessed using the nitro‐blue tetrazolium method. Malondialdehyde (MDA) was determined by thiobarbituric acid colorimetry. Histopathology was performed with hematoxylin and eosin staining. Statistical Tests One‐way analysis of variance (ANOVA) and Bonferroni post‐hoc tests were used to analyze the imaging parameters and biochemical indicators among the different groups. Pearson correlation analysis was applied to determine the correlation between imaging parameters and biochemical indicators or histological score. Results ALT and MDA reached peak levels at IR4h, while SOD reached the minimum level at IR4h (all P < 0.05). ADC, D, D*, and f gradually decreased as reperfusion continued, and Ktrans and Ve gradually increased (all P < 0.05). The degrees of change for f and Ve were greater than those of other imaging parameters at IR1h (all P < 0.05). All groups showed good correlation between imaging parameters and SOD and MDA (r[ADC] = 0.615, −0.666, r[D] = 0.493, −0.612, r[D*] = 0.607, −0.647, r[f] = 0.637, −0.682, r[Ktrans] = −0.522, 0.500, r[Ve] = −0.590, 0.665, respectively; all P < 0.05). However, the IR groups showed poor or no correlation between the imaging parameters and SOD and MDA (P [Ktrans and MDA] = 0.050, P [D and SOD] = 0.125, P [the remaining imaging parameters] < 0.05). All groups showed a positive correlation between histological score and Ktrans and Ve (r = 0.775, 0.874, all P < 0.05), and a negative correlation between histological score and ADC, D, f, and D* (r = −0.739, −0.821, −0.868, −0.841, respectively; all P < 0.05). For the IR groups, there was a positive correlation between histological score and Ktrans and Ve (r = 0.747, 0.802, all P < 0.05), and a negative correlation between histological score and ADC, D, f, and D* (r = −0.567, −0.712, −0.715, −0.779, respectively; all P < 0.05). Data Conclusion The combined application of IVIM and DCE‐MRI has the potential to be used as an imaging tool for monitoring IIR‐induced hepatic histopathology. Level of Evidence 1 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Jiaxing Yang
- Department of RadiologyChangzhou Second People's HospitalChangzhouChina
- Graduate CollegeDalian Medical UniversityDalianChina
| | - Mingzhu Meng
- Department of RadiologyChangzhou Second People's HospitalChangzhouChina
| | - Changjie Pan
- Department of RadiologyChangzhou Second People's HospitalChangzhouChina
| | - Liulan Qian
- Department of Science and EducationChangzhou Second People's HospitalChangzhouChina
| | - Yangyang Sun
- Department of PathologyChangzhou Second People's HospitalChangzhouChina
| | - Haifeng Shi
- Department of RadiologyChangzhou Second People's HospitalChangzhouChina
| | - Yong Shen
- Department of Enhanced ApplicationGE Healthcare ChinaBeijingChina
| | - Weiqiang Dou
- Department of MR ResearchGE Healthcare ChinaBeijingChina
| |
Collapse
|
8
|
Marti-Aguado D, Rodríguez-Ortega A, Alberich-Bayarri A, Marti-Bonmati L. Magnetic Resonance imaging analysis of liver fibrosis and inflammation: overwhelming gray zones restrict clinical use. Abdom Radiol (NY) 2020; 45:3557-3568. [PMID: 32857259 DOI: 10.1007/s00261-020-02713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Magnetic resonance (MR) identification and grading of subjects with liver fibrosis and inflammation represents a clinical challenge. MR elastography plays a well-defined role in fibrosis estimation, but its use is not widely available in clinical settings. Given that liver MR is becoming the reference standard for fat and iron quantitation, there is a need to clarify whether there is any role for MR imaging in the concomitant evaluation of fibrosis and inflammation in this setting. This review summarizes the diagnostic estimations of different MR imaging parameters obtained from conventional non-contrast-enhanced multiple b values diffusion-weighted acquisitions, variable flip angles T1 relaxation maps and STIR images. Although some derived parameters have shown a significant correlation to histological scores, a small magnitude of effect with wide overlap across severity grades is the rule. Contrary to fat and iron quantification, the low precision and reproducibility of MR imaging metrics limits its clinical relevance in fibrosis and inflammation assessment. In a sequential clinical approach combining different methodologies, MR imaging has no applicability for ruling-out and low accuracy for ruling-in advanced fibrosis. Thereby, MR elastography remains as the only image method with high diagnostic accuracy for the detection of advanced fibrosis. Until date, inflammation remains in a gray zone where biopsy cannot be replaced, and further investigations are needed. The present review offers an in-depth discuss of the MR imaging diagnostic performance for the evaluation of liver fibrosis and inflammation, highlighting the need for scientific improvements.
Collapse
Affiliation(s)
- D Marti-Aguado
- Department of Gastroenterology and Hepatology, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
| | - A Rodríguez-Ortega
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
| | - A Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - L Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain.
- Radiology Department, La Fe University and Polytechnic Hospital, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
9
|
Diffusion-weighted imaging and texture analysis: current role for diffuse liver disease. Abdom Radiol (NY) 2020; 45:3523-3531. [PMID: 33064169 DOI: 10.1007/s00261-020-02772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
Multiparametric MRI represents the primary imaging modality to assess diffuse liver disease, both in a qualitative and in a quantitative manner. Diffusion-weighted imaging (DWI) is among the imaging techniques that can be used to assess fibrosis due to its unique capability to assess microstructural changes at the tissue level. DWI is based on water mobility patterns and has the potential to become a non-invasive and non-destructive virtual biopsy to assess diffuse liver disease, overcoming sampling bias errors due to its three-dimensional imaging capabilities. Parallel to DWI, another quantitative method called texture analysis may be used to assess early and advanced diffused liver disease through quantifying spatial relationships in a global and local level, applying to any type of digital imaging technique like MRI or CT. Initial results using texture analysis hold great promise. In the current paper, we will review the role of DWI and texture analysis using MR images in assessing diffuse liver disease.
Collapse
|
10
|
Wu R, An DA, Shi RY, Chen BH, Wu CW, Jiang M, Xu JR, Wu LM, Pu J. The feasibility and diagnostic value of intravoxel incoherent motion diffusion-weighted imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy patients. Eur J Radiol 2020; 132:109333. [PMID: 33068839 DOI: 10.1016/j.ejrad.2020.109333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/27/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the feasibility and diagnostic value of intravoxel incoherent motion (IVIM) in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients. METHODS Fifty-five HCM patients underwent IVIM diffusion-weighted cardiovascular resonance imaging; Cine, T1 mapping, IVIM and late gadolinium enhancement (LGE) were performed. The relationship of strain, pre T1, extracellular volume (ECV), IVIM-derived parameters (D, D* and f) and LGE were analyzed based on 16 American Heart Association segments. Abnormal segments of myocardial fibrosis were defined as: the presence of LGE (LGE+) or ECV ≥ 29.6 %. RESULTS D parameter was significantly increased in LGE + vs LGE- (1.89 ± 0.14 μm2/ms vs. 1.63 ± 0.12 μm2/ms, p < 0.001) and ECV ≥ 29.6 % vs ECV < 29.6 % (1.84 ± 0.13 μm2/ms vs. 1.61 ± 0.12 μm2/ms, p < 0.001), respectively. D* and f parameters were significantly decreased in LGE + vs LGE- (D*: 34.9 ± 6.6 μm2/m vs 55.2 ± 11.4 μm2/m, p < 0.001; f: 10.8 ± 1.29 % vs 12.5 ± 1.26 %, p < 0.001) and ECV ≥ 29.6 % vs ECV < 29.6 % (D*: 37.5 ± 6.9 μm2/m vs 59.6 ± 9.2 μm2/m, p < 0.001; f: 10.9 ± 1.1 % vs 13.00 ± 1.0 %, p = 0.021), respectively. Moreover, significant correlations were demonstrated between D and ECV, as well as D* and f. CONCLUSIONS IVIM DW-CMR has proven to be ingenious in the investigation of myocardial fibrosis; D* and f parameters may have potential value to assess the perfusion status of fibrotic regions in HCM patients.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Chong-Wen Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China.
| |
Collapse
|
11
|
Tao YY, Zhou Y, Wang R, Gong XQ, Zheng J, Yang C, Yang L, Zhang XM. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases. World J Clin Cases 2020; 8:3164-3176. [PMID: 32874971 PMCID: PMC7441263 DOI: 10.12998/wjcc.v8.i15.3164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Traditional magnetic resonance (MR) diffusion-weighted imaging (DWI) uses a single exponential model to obtain the apparent diffusion coefficient to quantitatively reflect the diffusion motion of water molecules in living tissues, but it is affected by blood perfusion. Intravoxel incoherent motion (IVIM)-DWI utilizes a double-exponential model to obtain information on pure water molecule diffusion and microcirculatory perfusion-related diffusion, which compensates for the insufficiency of traditional DWI. In recent years, research on the application of IVIM-DWI in the diagnosis and treatment of hepatic diseases has gradually increased and has achieved considerable progress. This study mainly reviews the basic principles of IVIM-DWI and related research progress in the diagnosis and treatment of hepatic diseases.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ran Wang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xue-Qin Gong
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jing Zheng
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
12
|
Gulbay M, Ciliz DS, Celikbas AK, Ocalan DT, Sayin B, Ozbay BO, Alp E. Intravoxel incoherent motion parameters in the evaluation of chronic hepatitis B virus-induced hepatic injury: fibrosis and capillarity changes. Abdom Radiol (NY) 2020; 45:2345-2357. [PMID: 32162021 DOI: 10.1007/s00261-020-02430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the diagnostic efficacy of intravoxel incoherent motion (IVIM) parameters in hepatitis B virus (HBV)-induced hepatic fibrosis using different calculation methods and to investigate histopathologic origins. MATERIALS AND METHODS Liver biopsies from 37 prospectively recruited chronic hepatitis B patients were obtained. Twelve b-value (0-1000 s/mm2) diffusion-weighted imaging (DWI) was performed with a 1.5 T scanner and was followed by blinded percutaneous liver biopsy. All biopsy specimens were evaluated with Ishak staging, and the microvascular density (MVD) was calculated. Patients were classified as having no/mild (F0-1), moderate (F2-3), or marked (F4-5) fibrosis. Pseudodiffusion (D*), the perfusion fraction (f), and the apparent diffusion coefficient (ADC) were calculated using all b-values, while true diffusion (D) was calculated using all b-values [D0-1000] and b-values greater than 200 s/mm2 [D200-1000]. Three concentric regions of interest (ROIs) (5, 10, and 20 mm) centered on the biopsy site were used. RESULTS D* was correlated with the MVD (p = 0.015, Pearson's r = 0.415), but f was not (p = 0.119). D0-1000 was inversely correlated with Ishak stage (p = 0.000, Spearman's rs = - 0.685) and was significantly decreased in all the fibrosis groups; however, only the no/mild and marked fibrosis groups had significantly different D200-1000 values. A pairwise comparison of receiver operating characteristic (ROC) curves of D0-1000 and D200-1000 showed significant differences (p = 0.039). D* was the best at discriminating early fibrosis (AUC = 0.861), while the ADC best discriminated advanced fibrosis (AUC = 0.964). CONCLUSION D* was correlated with the MVD and is a powerful parameter to discriminate early hepatic fibrosis. D significantly decreased with advanced fibrosis stage when using b-values less than 200 s/mm2 in calculations.
Collapse
Affiliation(s)
- Mutlu Gulbay
- Department of Radiology, Ankara Numune Education and Research Hospital, Ankara, Turkey.
- Ankara Sehir Hastanesi Radyoloji Klinigi, 06800, Universiteler Mah Bilkent Blv No:1, Ankara, Turkey.
| | - Deniz Sozmen Ciliz
- Department of Radiology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Aysel Kocagul Celikbas
- Department of Clinical Microbiology and Infectious Diseases, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Devrim Tuba Ocalan
- Department of Pathology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Bige Sayin
- Department of Radiology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Bahadır Orkun Ozbay
- Department of Clinical Microbiology and Infectious Diseases, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Emre Alp
- Department of Radiology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Li C, Ye J, Prince M, Peng Y, Dou W, Shang S, Wu J, Luo X. Comparing mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted MR imaging for stratifying non-alcoholic fatty liver disease in a rabbit model. Eur Radiol 2020; 30:6022-6032. [PMID: 32591883 DOI: 10.1007/s00330-020-07005-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To compare diffusion parameters obtained from mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted imaging (DWI) in stratifying non-alcoholic fatty liver disease (NAFLD). METHODS Thirty-two New Zealand rabbits were fed a high-fat/cholesterol or standard diet to obtain different stages of NAFLD before 12 b-values (0-800 s/mm2) DWI. The apparent diffusion coefficient (ADC) from the mono-exponential model; pure water diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) from bi-exponential DWI; and distributed diffusion coefficient (DDC) and water molecular diffusion heterogeneity index (α) from stretched-exponential DWI were calculated for hepatic parenchyma. The goodness of fit of the three models was compared. NAFLD severity was pathologically graded as normal, simple steatosis, borderline, and non-alcoholic steatohepatitis (NASH). Spearman rank correlation analysis and receiver operating characteristic curves were used to assess NAFLD severity. RESULTS Upon comparison, the goodness of fit chi-square from stretched-exponential fitting (0.077 ± 0.012) was significantly lower than that for the bi-exponential (0.110 ± 0.090) and mono-exponential (0.181 ± 0.131) models (p < 0.05). Seven normal, 8 simple steatosis, 6 borderline, and 11 NASH livers were pathologically confirmed from 32 rabbits. Both α and D increased with increasing NAFLD severity (r = 0.811 and 0.373, respectively; p < 0.05). ADC, f, and DDC decreased as NAFLD severity increased (r = - 0.529, - 0.717, and - 0.541, respectively; p < 0.05). Both α (area under the curve [AUC] = 0.952) and f (AUC = 0.931) had significantly greater AUCs than ADC (AUC = 0.727) in the differentiation of NASH from borderline or less severe groups (p < 0.05). CONCLUSIONS Stretched-exponential DWI with higher fitting efficiency performed, as well as bi-exponential DWI, better than mono-exponential DWI in the stratification of NAFLD severity. KEY POINTS • Stretched-exponential diffusion model fitting was more reliable than the bi-exponential and mono-exponential diffusion models (p = 0.039 and p < 0.001, respectively). • As NAFLD severity increased, the diffusion heterogeneity index (α) increased, while the perfusion fraction (f) decreased (r = 0.811, - 0.717, p < 0.05). • Both α and f showed superior NASH diagnostic performance (AUC = 0.952, 0.931) compared with ADC (AUC = 0.727, p < 0.05).
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China.,Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China
| | - Jing Ye
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Martin Prince
- Department of Radiology, Weill Medical College of Cornell University, 407 E 61st Street, New York, NY, 10065, USA
| | - Yun Peng
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Bejing, 100176, China
| | - Songan Shang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Jingtao Wu
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Xianfu Luo
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
14
|
Ye Z, Wei Y, Chen J, Yao S, Song B. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis. World J Gastroenterol 2020; 26:3304-3317. [PMID: 32684744 PMCID: PMC7336331 DOI: 10.3748/wjg.v26.i23.3304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis (LF) is a common pathological feature of all chronic liver diseases. With the accumulation of extracellular matrix in the fibrotic liver, true molecular water diffusion and perfusion-related diffusion are restricted. Intravoxel incoherent motion (IVIM) can capture the information on tissue diffusivity and microcapillary perfusion separately and reflect the fibrotic severity with diffusion coefficients.
AIM To investigate the diagnostic performance of IVIM in detecting and staging LF with histology as a reference standard.
METHODS A comprehensive literature search was conducted to identify studies on the diagnostic accuracy of IVIM for assessment of histologically proven LF. The stages of LF were classified as F0 (no fibrosis), F1 (portal fibrosis without septa), F2 (periportal fibrosis with few septa), F3 (septal fibrosis), and F4 (cirrhosis) according to histopathological findings. Data were extracted to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio, as well as the area under the summary receiver operating characteristic curve (AUC) in each group.
RESULTS A total of 12 studies with 923 subjects were included in this meta-analysis with 5 studies (n = 465) for LF ≥ F1, 9 studies (n = 757) for LF ≥ F2, 4 studies (n = 413) for LF ≥ F3, and 6 studies (n = 562) for LF = F4. The pooled sensitivity and specificity were estimated to be 0.78 (95% confidence interval: 0.73-0.82) and 0.81 (0.74-0.86) for LF ≥ F1 detection with IVIM; 0.82 (0.79-0.86) and 0.80 (0.75-0.84) for staging F2 fibrosis; 0.85 (0.79-0.90) and 0.83 (0.77-0.87) for staging F3 fibrosis, and 0.90 (0.84-0.94) and 0.75 (0.70-0.79) for detecting F4 cirrhosis, respectively. The AUCs for LF ≥ F1, F2, F3, F4 detection were 0.862 (0.811-0.914), 0.883 (0.856-0.909), 0.886 (0.865-0.907), and 0.899 (0.866-0.932), respectively. Moderate to substantial heterogeneity was observed with inconsistency index (I2) ranging from 0% to 77.9%. No publication bias was detected.
CONCLUSION IVIM is a noninvasive tool with good diagnostic performance in detecting and staging LF. Optimized and standardized IVIM protocols are needed to further improve its diagnostic accuracy in clinical practice.
Collapse
Affiliation(s)
- Zheng Ye
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shan Yao
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Peng J, Zheng J, Yang C, Wang R, Zhou Y, Tao YY, Gong XQ, Wang WC, Zhang XM, Yang L. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Sci Rep 2020. [DOI: doi.org/10.1038/s41598-020-64804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AbstractThe present study aimed to explore the value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). This study included 65 patients with malignant hepatic nodules (55 with HCC, 10 with ICC), and 17 control patients with normal livers. All patients underwent IVIM-DWI scans on a 3.0 T magnetic resonance imaging (MRI) scanner. The standard apparent diffusion coefficient (ADC), pure diffusion coefficient (Dslow), pseudo-diffusion coefficient (Dfast), and perfusion fraction (f) were obtained. Differences in the parameters among the groups were analysed using one-way ANOVA, with p < 0.05 indicating statistical significance. Receiver operating characteristic (ROC) curve analysis was used to compare the efficacy of each parameter in differentiating HCC from ICC. ADC, Dslow, Dfast, f significantly differed among the three groups. ADC and Dslow were significantly lower in the HCC group than in the ICC group, while Dfast was significantly higher in the HCC group than in the ICC group; f did not significantly differ between the HCC and ICC groups. When the cut-off values of ADC, Dslow, and Dfast were 1.27 × 10−3 mm2/s, 0.81 × 10−3 mm2/s, and 26.04 × 10−3 mm2/s, respectively, their diagnostic sensitivities for differentiating HCC from ICC were 98.18%, 58.18%, and 94.55%, their diagnostic specificities were 50.00%, 80.00%, and 80.00%, and their areas under the ROC curve (AUCs) were 0.687, 0.721, and 0.896, respectively. Dfast displayed the largest AUC value. IVIM-DWI can be used to differentiate HCC from ICC.
Collapse
|
16
|
Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Sci Rep 2020; 10:7717. [PMID: 32382050 PMCID: PMC7206040 DOI: 10.1038/s41598-020-64804-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The present study aimed to explore the value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). This study included 65 patients with malignant hepatic nodules (55 with HCC, 10 with ICC), and 17 control patients with normal livers. All patients underwent IVIM-DWI scans on a 3.0 T magnetic resonance imaging (MRI) scanner. The standard apparent diffusion coefficient (ADC), pure diffusion coefficient (Dslow), pseudo-diffusion coefficient (Dfast), and perfusion fraction (f) were obtained. Differences in the parameters among the groups were analysed using one-way ANOVA, with p < 0.05 indicating statistical significance. Receiver operating characteristic (ROC) curve analysis was used to compare the efficacy of each parameter in differentiating HCC from ICC. ADC, Dslow, Dfast, f significantly differed among the three groups. ADC and Dslow were significantly lower in the HCC group than in the ICC group, while Dfast was significantly higher in the HCC group than in the ICC group; f did not significantly differ between the HCC and ICC groups. When the cut-off values of ADC, Dslow, and Dfast were 1.27 × 10−3 mm2/s, 0.81 × 10−3 mm2/s, and 26.04 × 10−3 mm2/s, respectively, their diagnostic sensitivities for differentiating HCC from ICC were 98.18%, 58.18%, and 94.55%, their diagnostic specificities were 50.00%, 80.00%, and 80.00%, and their areas under the ROC curve (AUCs) were 0.687, 0.721, and 0.896, respectively. Dfast displayed the largest AUC value. IVIM-DWI can be used to differentiate HCC from ICC.
Collapse
|
17
|
Tosun M, Onal T, Uslu H, Alparslan B, Çetin Akhan S. Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation. Abdom Radiol (NY) 2020; 45:15-23. [PMID: 31705248 DOI: 10.1007/s00261-019-02300-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the diagnostic accuracy of intravoxel incoherent motion (IVIM) model parameters for the diagnosis and staging of liver fibrosis and inflammation in patients with chronic hepatitis B. METHODS Fifty-four patients with chronic hepatitis B and 42 healthy volunteers were included in the study. All subjects were examined by 3 T magnetic resonance imaging. Diffusion-weighted imaging was undertaken with sixteen b values. IVIM parameters [D (true diffusion coefficient), D* (pseudo-diffusion coefficient), f (perfusion fraction)] were calculated. Histological evaluation of biopsy samples was considered the reference standard for the staging of liver fibrosis and inflammation. Differences in IVIM parameters between patient and control groups were analyzed. In the patient group, fibrosis stage and inflammation grade groups were analyzed with respect to IVIM parameters. The correlation was assessed between IVIM parameters and Ishak-modified scale of fibrosis stages and inflammation grades. RESULTS The D was significantly lower in the patient group than the control group, p = 0.038 with Cohen's d effect size of 0.452. D was significantly different between fibrosis stage levels. D values decreased in fibrosis stages from the minimal to moderate to marked fibrosis. Fibrosis grades significantly negatively correlated with D and D* values, p = 0.001, and 0.021, respectively. In addition, inflammation grades negatively correlated with f values, p = 0.047. CONCLUSION D values measured with IVIM imaging may help to diagnose liver fibrosis. IVIM imaging could be an alternative to liver biopsy for the staging of liver fibrosis.
Collapse
Affiliation(s)
- Mesude Tosun
- Department of Radiology, Kocaeli University School of Medicine, Kocaeli, Turkey.
| | | | - Hande Uslu
- Department of Radiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Burcu Alparslan
- Department of Radiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sıla Çetin Akhan
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
18
|
Yoon JH, Lee JM, Lee KB, Kim D, Kabasawa H, Han JK. Comparison of monoexponential, intravoxel incoherent motion diffusion-weighted imaging and diffusion kurtosis imaging for assessment of hepatic fibrosis. Acta Radiol 2019; 60:1593-1601. [PMID: 30935212 DOI: 10.1177/0284185119840219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jeong Hee Yoon
- Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Lee
- Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Kyung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongeun Kim
- GE Healthcare Korea, Seoul, Republic of Korea
| | | | - Joon Koo Han
- Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
19
|
Intravoxel incoherent motion imaging has the possibility to detect liver abnormalities in young Fontan patients with good hemodynamics. Cardiol Young 2019; 29:898-903. [PMID: 31250776 DOI: 10.1017/s1047951119001070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Liver fibrosis and cirrhosis are one of the critical complications in Fontan patients. However, there are no well-established non-invasive and quantitative techniques for evaluating liver abnormalities in Fontan patients. Intravoxel incoherent motion diffusion-weighted imaging with MRI is a non-invasive and quantitative method to evaluate capillary network perfusion and molecular diffusion. The objective of this study is to assess the feasibility of intravoxel incoherent motion imaging in evaluating liver abnormalities in Fontan children. MATERIALS AND METHODS Five consecutive Fontan patients and four age-matched healthy volunteers were included. Fontan patients were 12.8 ± 1.5 years old at the time of MRI scan. Intravoxel incoherent motion imaging parameters (D, D*, and f values) within the right hepatic lobe were compared. Laboratory test, ultrasonography, and cardiac MRI were also conducted in the Fontan patients. Results of cardiac catheterization conducted within one year of the intravoxel incoherent motion imaging were also examined. RESULTS In Fontan patients, laboratory test and liver ultrasonography showed almost normal liver condition. Cardiac catheter and MRI showed good Fontan circulation. Cardiac index was 2.61 ± 0.23 L/min/m2. Intravoxel incoherent motion imaging parameters D, D*, and f values were lower in Fontan patients compared with controls (D: 1.1 ± 0.0 versus 1.3 ± 0.2 × 10-3 mm2/second (p = 0.04), D*: 30.8 ± 24.8 versus 113.2 ± 25.6 × 10-3 mm2/second (p < 0.01), and f: 13.2 ± 3.1 versus 22.4 ± 2.4% (p < 0.01), respectively). CONCLUSIONS Intravoxel incoherent motion imaging is feasible for evaluating liver abnormalities in children with Fontan circulation.
Collapse
|
20
|
Wáng YXJ, Li YT, Chevallier O, Huang H, Leung JCS, Chen W, Lu PX. Dependence of intravoxel incoherent motion diffusion MR threshold b-value selection for separating perfusion and diffusion compartments and liver fibrosis diagnostic performance. Acta Radiol 2019; 60:3-12. [PMID: 29742916 DOI: 10.1177/0284185118774913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) tissue parameters depend on the threshold b-value. PURPOSE To explore how threshold b-value impacts PF ( f), Dslow ( D), and Dfast ( D*) values and their performance for liver fibrosis detection. MATERIAL AND METHODS Fifteen healthy volunteers and 33 hepatitis B patients were included. With a 1.5-T magnetic resonance (MR) scanner and respiration gating, IVIM data were acquired with ten b-values of 10, 20, 40, 60, 80, 100, 150, 200, 400, and 800 s/mm2. Signal measurement was performed on the right liver. Segmented-unconstrained analysis was used to compute IVIM parameters and six threshold b-values in the range of 40-200 s/mm2 were compared. PF, Dslow, and Dfast values were placed along the x-axis, y-axis, and z-axis, and a plane was defined to separate volunteers from patients. RESULTS Higher threshold b-values were associated with higher PF measurement; while lower threshold b-values led to higher Dslow and Dfast measurements. The dependence of PF, Dslow, and Dfast on threshold b-value differed between healthy livers and fibrotic livers; with the healthy livers showing a higher dependence. Threshold b-value = 60 s/mm2 showed the largest mean distance between healthy liver datapoints vs. fibrotic liver datapoints, and a classification and regression tree showed that a combination of PF (PF < 9.5%), Dslow (Dslow < 1.239 × 10-3 mm2/s), and Dfast (Dfast < 20.85 × 10-3 mm2/s) differentiated healthy individuals and all individual fibrotic livers with an area under the curve of logistic regression (AUC) of 1. CONCLUSION For segmented-unconstrained analysis, the selection of threshold b-value = 60 s/mm2 improves IVIM differentiation between healthy livers and fibrotic livers.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Yáo T Li
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Olivier Chevallier
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
- Department of Vascular and Interventional Radiology, University of Bourgogne/Franche-Comté, François-Mitterrand Teaching Hospital, Dijon Cedex, France
| | - Hua Huang
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong Province, PR China
| | - Jason Chi Shun Leung
- JC Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Pu-Xuan Lu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong Province, PR China
| |
Collapse
|
21
|
Intravoxel Incoherent Motion (IVIM) Diffusion-Weighted Imaging (DWI) in Patients with Liver Dysfunction of Chronic Viral Hepatitis: Segmental Heterogeneity and Relationship with Child-Turcotte-Pugh Class at 3 Tesla. Gastroenterol Res Pract 2018; 2018:2983725. [PMID: 30647733 PMCID: PMC6311737 DOI: 10.1155/2018/2983725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Few studies focused on the region of interest- (ROI-) related heterogeneity of liver intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI). The aim of the study was to evaluate the differences of liver IVIM parameters among liver segments in cirrhotic livers (chronic viral hepatitis). Material and Methods This was a retrospective study of 82 consecutive patients with chronic liver disease who underwent MRI examination at the Jinan Infectious Diseases Hospital between January 2015 and December 2016. IVIM DWI (seven different b values) was performed on a Siemens 3.0-T MRI scanner. Pure molecular diffusion (D), pseudodiffusion (D∗), and perfusion fraction (f) in different liver segments were evaluated. Results f, D, and D∗ were different among the liver segments (all p < 0.05), indicating heterogeneity in IVIM parameters among liver segments. f was consistently higher in Child-Turcotte-Pugh (CTP) class A compared with CTP class B + C (p < 0.01). D and D∗ were higher in CTP class A compared with CTP class B + C (p < 0.05). In patients with mean f value of >0.29, the AUC was 0.88 (95% CI: 0.81-0.96), with 86.8% sensitivity and 81.8% specificity for predicting CTP class A from CTP class B + C. Conclusion Liver IVIM could be a promising method for classifying the severity of segmental liver dysfunction of chronic viral hepatitis as evaluated by the CTP class, which provides a noninvasive alternative for evaluating segmental liver dysfunction with accurate selection of ROIs. Potentially it can be used to monitor the progression of CLD and LC in the future.
Collapse
|
22
|
Using IVIM-MRI and R2⁎ Mapping to Differentiate Early Stage Liver Fibrosis in a Rat Model of Radiation-Induced Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4673814. [PMID: 30627558 PMCID: PMC6304485 DOI: 10.1155/2018/4673814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Rationale and Objectives To investigate the utility of intravoxel incoherent motion MRI (IVIM-MRI) and R2⁎ mapping in diagnosing early stage liver fibrosis in a radiation-induced rat model. Materials and Methods Thirty rats were randomly divided into three groups with 10 rats in each group. Liver fibrosis was induced by exposure of right lobe of liver in each animal to 20 Gy of radiation. MRI examination was conducted at baseline, one month, two months, and three months after radiation using T1WI, T2WI, IVIM-DWI, and R2⁎ sequences. The pathological examination included hematoxylin eosin, masson trichrome, and prussian blue staining. D, D⁎, f, and R2⁎ values were measured in both left and right lobes for quantitative analysis. Results Regarding the surviving 23 rats, eight rats were diagnosed with stage F0, ten with stage F1, and five with stage F2 liver fibrosis using METAVIR Scores. The D values of right lobes decreased (P<0.05), and R2⁎ values increased (P<0.01) significantly as fibrosis levels increased. But there was no statistical difference in D⁎ (P=0.970) and f values (P=0.079). R2⁎ value showed a strong positive correlation (r=0.819, P<0.001), while D value showed a negative correlation with fibrosis stages (r=-0.424, P<0.001). D⁎ (r=0.029, P=0.744) and f values (r=-0.055, P=0.536) were poorly correlated with fibrosis levels. Conclusion IVIM-MRI and R2⁎ mapping are useful techniques for evaluating the severity of liver fibrosis in a radiation-induced rat model, and R2⁎ value is the most sensitive parameter in detecting early stage fibrosis.
Collapse
|
23
|
Does intravoxel incoherent motion reliably stage hepatic fibrosis, steatosis, and inflammation? Abdom Radiol (NY) 2018; 43:600-606. [PMID: 28828711 DOI: 10.1007/s00261-017-1263-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the usefulness of intravoxel incoherent motion (IVIM) in determining the severity of hepatic fibrosis, steatosis, and inflammation in patients with chronic liver disease. METHODS Forty-nine patients who had liver MRI with IVIM sequence and liver biopsy within three months of MRI were enrolled. A reviewer, blinded to histology, placed regions of interest of 1-2 cm2 in the right liver lobe. In addition, the first twenty patients were assessed with a second reviewer. Perfusion fraction (f), pseudodiffusion coefficient (D fast), true diffusion coefficient (D slow), and apparent diffusion coefficient (ADC) were calculated from normalized signal intensities that were fitted into a biexponential model. Errors in the model were minimized with global stochastic optimization using Simulated Annealing. ANOVA with post hoc Tukey-Kramer test and multivariate generalized linear model analysis were performed, using histological findings as the gold standard. RESULTS The most common etiologies for liver disease were hepatitis C and alcohol, accounting together for 76% (37/49) of patients. Low-grade fibrosis (F0, F1), hepatic steatosis, and inflammation were seen in 24% (12/49), 31% (15/49), and 29% (14/49) of patients, respectively. The interobserver correlation was poor for D fast and D slow (0.105, 0.173) and moderate for f and ADC (0.461, 0.418). ANOVA showed a strong inverse association between D fast and liver fibrosis grade (p = 0.001). A weak inverse association was seen between ADC and hepatic steatosis (p = 0.059). Multivariate general linear model revealed that the only significant association between IVIM parameters and pathological features was between D fast and fibrosis. On ROC curve analysis, D fast < 23.4 × 10-3 mm2/s had a sensitivity of 82.8% and a specificity of 64.3% in predicting high-grade fibrosis. CONCLUSION D fast has the strongest association with hepatic fibrosis but has weak interobserver correlation. IVIM parameters were not significantly associated with hepatic inflammation or steatosis.
Collapse
|
24
|
Kayal EB, Kandasamy D, Khare K, Alampally JT, Bakhshi S, Sharma R, Mehndiratta A. Quantitative Analysis of Intravoxel Incoherent Motion (IVIM) Diffusion MRI using Total Variation and Huber Penalty Function. Med Phys 2017; 44:5849-5858. [DOI: 10.1002/mp.12520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | | | - Kedar Khare
- Department of Physics; Indian Institute of Technology Delhi; New Delhi India
| | | | - Sameer Bakhshi
- Dr. B.R. Ambedkar Institute-Rotary Cancer Hospital (IRCH); All India Institute of Medical Sciences; New Delhi India
| | - Raju Sharma
- Department of Radio Diagnosis; All India Institute of Medical Sciences; New Delhi India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi; New Delhi India
- Department of Biomedical Engineering; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
25
|
Horowitz JM, Venkatesh SK, Ehman RL, Jhaveri K, Kamath P, Ohliger MA, Samir AE, Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH. Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol (NY) 2017. [PMID: 28624924 DOI: 10.1007/s00261-017-1211-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis is potentially reversible; however early diagnosis is necessary for treatment in order to halt progression to cirrhosis and development of complications including portal hypertension and hepatocellular carcinoma. Morphologic signs of cirrhosis on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) alone are unreliable and are seen with more advanced disease. Newer imaging techniques to diagnose liver fibrosis are reliable and accurate, and include magnetic resonance elastography and US elastography (one-dimensional transient elastography and point shear wave elastography or acoustic radiation force impulse imaging). Research is ongoing with multiple other techniques for the noninvasive diagnosis of hepatic fibrosis, including MRI with diffusion-weighted imaging, hepatobiliary contrast enhancement, and perfusion; CT using perfusion, fractional extracellular space techniques, and dual-energy, contrast-enhanced US, texture analysis in multiple modalities, quantitative mapping, and direct molecular imaging probes. Efforts to advance the noninvasive imaging assessment of hepatic fibrosis will facilitate earlier diagnosis and improve patient monitoring with the goal of preventing the progression to cirrhosis and its complications.
Collapse
Affiliation(s)
- Jeanne M Horowitz
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 676 St. Clair St, Suite 800, Chicago, IL, 60611, USA.
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kartik Jhaveri
- Division of Abdominal Imaging, Joint Department of Medical Imaging, University Health Network, Mt. Sinai Hospital & Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Patrick Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Anthony E Samir
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Alvin C Silva
- Department of Radiology, Mayo Clinic in Arizona, 13400 E. Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Bachir Taouli
- Department of Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1234, New York, NY, 10029, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michael L Wells
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Benjamin Yeh
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Frank H Miller
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 676 St. Clair St, Suite 800, Chicago, IL, 60611, USA
| |
Collapse
|
26
|
Wáng YXJ, Deng M, Li YT, Huang H, Leung JCS, Chen W, Lu PX. A Combined Use of Intravoxel Incoherent Motion MRI Parameters Can Differentiate Early-Stage Hepatitis-b Fibrotic Livers from Healthy Livers. SLAS Technol 2017; 23:259-268. [PMID: 28666091 DOI: 10.1177/2472630317717049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study investigated a combined use of intravoxel incoherent motion (IVIM) parameters, Dslow ( D), PF ( f), and Dfast ( D*), for liver fibrosis evaluation. Sixteen healthy volunteers (F0) and 33 hepatitis-b patients (stage F1 = 15, stage F2-4 = 18) were included. With a 1.5 T MR scanner and respiration gating, IVIM diffusion-weighted imaging was acquired using a single-shot echo-planar imaging sequence with 10 b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, and 800 s/mm2. Signal measurement was performed on right liver parenchyma. With a three-dimensional tool, Dslow, PF, and Dfast values were placed along the x axis, y axis, and z axis, and a plane was defined to separate healthy volunteers from patients. The three-dimensional tool demonstrated that healthy volunteers and all patients with liver fibrosis could be separated. Classification and regression tree showed that a combination of PF (PF < 12.55%), Dslow (Dslow < 1.152 × 10-3 mm2/s), and Dfast (Dfast < 13.36 × 10-3 mm2/s) could differentiate healthy subjects and all fibrotic livers (F1-4) with an area under the curve of logistic regression (AUC) of 0.986. The AUC for differentiation of healthy livers versus F2-4 livers was 1. PF offered the best diagnostic value, followed by Dslow; however, all three parameters of PF, Dslow, and Dfast contributed to liver fibrosis detection.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Yáo T Li
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Hua Huang
- 2 Department of Radiology, The Shenzhen No. 3 People's Hospital, Shenzhen, Guangdong Province, China
| | - Jason Chi Shun Leung
- 3 JC Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Weitian Chen
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Pu-Xuan Lu
- 4 Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong Province, China
| |
Collapse
|
27
|
Jiang H, Chen J, Gao R, Huang Z, Wu M, Song B. Liver fibrosis staging with diffusion-weighted imaging: a systematic review and meta-analysis. Abdom Radiol (NY) 2017; 42:490-501. [PMID: 27678393 DOI: 10.1007/s00261-016-0913-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE A meta-analysis was performed to assess the diagnostic performance of diffusion-weighted imaging (DWI) in liver fibrosis (LF) staging. METHODS We conducted a comprehensive literature search to identify relevant articles. Diagnostic data were extracted for each METAVIR fibrosis stage (F0-F4). A bivariate binomial model was used to combine sensitivities and specificities. Summary receiver operating characteristics (SROC) curves were performed and areas under SROC curve (AUC) were calculated to indicate diagnostic accuracies. Subgroup analyses were performed between different study characteristics. RESULTS Twelve studies met the inclusion criteria for LF ≥F1, 16 for ≥F2, 18 for ≥F3, and 12 for F4. AUCs of DWI were 0.8554, 0.8770, 0.8836, and 0.8596 for ≥F1, ≥F2, ≥F3, and F4, respectively. Subgroup analyses showed that for LF ≥F2 and ≥F3, maximal b values (b max) ≥ 800 s/mm2 performed significantly better than b max < 800 s/mm2. The diagnostic accuracies of 3.0 T and intravoxel incoherent motion (IVIM)-DWI were significantly higher than those of 1.5 T and conventional DWI for diagnosing liver cirrhosis (F4). CONCLUSIONS DWI is a reliable noninvasive technique with good diagnostic accuracy for LF staging. Using b max ≥ 800 s/mm2, high-field strength (3.0 T) and IVIM-DWI can optimize the diagnostic performance of DWI.
Collapse
Affiliation(s)
- Hanyu Jiang
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan, China
| | - Jie Chen
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan, China
| | - Ronghui Gao
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan, China
| | - Zixing Huang
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan, China
| | - Mingpeng Wu
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan, China
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Unal E, Idilman IS, Karçaaltıncaba M. Multiparametric or practical quantitative liver MRI: towards millisecond, fat fraction, kilopascal and function era. Expert Rev Gastroenterol Hepatol 2017; 11:167-182. [PMID: 27937040 DOI: 10.1080/17474124.2017.1271710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New advances in liver magnetic resonance imaging (MRI) may enable diagnosis of unseen pathologies by conventional techniques. Normal T1 (550-620 ms for 1.5 T and 700-850 ms for 3 T), T2, T2* (>20 ms), T1rho (40-50 ms) mapping, proton density fat fraction (PDFF) (≤5%) and stiffness (2-3kPa) values can enable differentiation of a normal liver from chronic liver and diffuse diseases. Gd-EOB-DTPA can enable assessment of liver function by using postcontrast hepatobiliary phase or T1 reduction rate (normally above 60%). T1 mapping can be important for the assessment of fibrosis, amyloidosis and copper overload. T1rho mapping is promising for the assessment of liver collagen deposition. PDFF can allow objective treatment assessment in NAFLD and NASH patients. T2 and T2* are used for iron overload determination. MR fingerprinting may enable single slice acquisition and easy implementation of multiparametric MRI and follow-up of patients. Areas covered: T1, T2, T2*, PDFF and stiffness, diffusion weighted imaging, intravoxel incoherent motion imaging (ADC, D, D* and f values) and function analysis are reviewed. Expert commentary: Multiparametric MRI can enable biopsyless diagnosis and more objective staging of diffuse liver disease, cirrhosis and predisposing diseases. A comprehensive approach is needed to understand and overcome the effects of iron, fat, fibrosis, edema, inflammation and copper on MR relaxometry values in diffuse liver disease.
Collapse
Affiliation(s)
- Emre Unal
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey.,b Department of Radiology , Zonguldak Ataturk State Hospital , Zonguldak , Turkey
| | - Ilkay Sedakat Idilman
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey.,c Department of Radiology , Ankara Ataturk Education and Research Hospital , Ankara , Turkey
| | - Muşturay Karçaaltıncaba
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
| |
Collapse
|
29
|
Saito K, Tajima Y, Harada TL. Diffusion-weighted imaging of the liver: Current applications. World J Radiol 2016; 8:857-867. [PMID: 27928467 PMCID: PMC5120245 DOI: 10.4329/wjr.v8.i11.857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/10/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Diffusion-weighted imaging (DWI) of the liver can be performed using most commercially available machines and is currently accepted in routine sequence. This sequence has some potential as an imaging biomarker for fibrosis, tumor detection/characterization, and following/predicting therapy. To improve reliability including accuracy and reproducibility, researchers have validated this new technique in terms of image acquisition, data sampling, and analysis. The added value of DWI in contrast-enhanced magnetic resonance imaging was established in the detection of malignant liver lesions. However, some limitations remain in terms of lesion characterization and fibrosis detection. Furthermore, the methodologies of image acquisition and data analysis have been inconsistent. Therefore, researchers should make every effort to not only improve accuracy and reproducibility but also standardize imaging parameters.
Collapse
|
30
|
Pickhardt PJ, Malecki K, Hunt OF, Beaumont C, Kloke J, Ziemlewicz TJ, Lubner MG. Hepatosplenic volumetric assessment at MDCT for staging liver fibrosis. Eur Radiol 2016; 27:3060-3068. [PMID: 27858212 DOI: 10.1007/s00330-016-4648-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate hepatosplenic volumetry at MDCT for non-invasive prediction of hepatic fibrosis. METHODS Hepatosplenic volume analysis in 624 patients (mean age, 48.8 years; 311 M/313 F) at MDCT was performed using dedicated software and compared against pathological fibrosis stage (F0 = 374; F1 = 48; F2 = 40; F3 = 65; F4 = 97). The liver segmental volume ratio (LSVR) was defined by Couinaud segments I-III over segments IV-VIII. All pre-cirrhotic fibrosis stages (METAVIR F1-F3) were based on liver biopsy within 1 year of MDCT. RESULTS LSVR and total splenic volumes increased with stage of fibrosis, with mean(±SD) values of: F0: 0.26 ± 0.06 and 215.1 ± 88.5 mm3; F1: 0.25 ± 0.08 and 294.8 ± 153.4 mm3; F2: 0.331 ± 0.12 and 291.6 ± 197.1 mm3; F3: 0.39 ± 0.15 and 509.6 ± 402.6 mm3; F4: 0.56 ± 0.30 and 790.7 ± 450.3 mm3, respectively. Total hepatic volumes showed poor discrimination (F0: 1674 ± 320 mm3; F4: 1631 ± 691 mm3). For discriminating advanced fibrosis (≥F3), the ROC AUC values for LSVR, total liver volume, splenic volume and LSVR/spleen combined were 0.863, 0.506, 0.890 and 0.947, respectively. CONCLUSION Relative changes in segmental liver volumes and total splenic volume allow for non-invasive staging of hepatic fibrosis, whereas total liver volume is a poor predictor. Unlike liver biopsy or elastography, these CT volumetric biomarkers can be obtained retrospectively on routine scans obtained for other indications. KEY POINTS • Regional changes in hepatic volume (LSVR) correlate well with degree of fibrosis. • Total liver volume is a very poor predictor of underlying fibrosis. • Total splenic volume is associated with the degree of hepatic fibrosis. • Hepatosplenic volume assessment is comparable to elastography for staging fibrosis. • Unlike elastography, volumetric analysis can be performed retrospectively.
Collapse
Affiliation(s)
- Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA.
| | - Kyle Malecki
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Oliver F Hunt
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Claire Beaumont
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - John Kloke
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave., Madison, WI, 53792-3252, USA
| |
Collapse
|
31
|
Park HJ, Sung YS, Lee SS, Lee Y, Cheong H, Kim YJ, Lee MG. Intravoxel incoherent motion diffusion-weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters. J Magn Reson Imaging 2016; 45:1637-1647. [PMID: 27865032 DOI: 10.1002/jmri.25535] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To evaluate the influence of fitting methods on the accuracy and reliability of intravoxel incoherent motion (IVIM) parameters, with a particular emphasis on the constraint function. MATERIALS AND METHODS Diffusion-weighted (DW) imaging data were analyzed using IVIM-based full-fitting (simultaneous fit of all parameters) and segmented-fitting (step-by-step fit of each parameter), each with and without the constraint function, to estimate the molecular diffusion coefficient (Dslow ), perfusion fraction (f), and flow-related diffusion coefficient (Dfast ). Computational simulations were performed at variable signal-to-noise ratios to evaluate the relative error (RE) and coefficient of variation (CV) of the estimated IVIM parameters. DW imaging of the abdomen was performed twice at 1.5 Tesla using nine b-values (0-900 s/mm2 ) in 12 health volunteers (6 men and 6 women; mean age: 30 years). The measurement repeatability of IVIM parameters in the liver and the pancreas was evaluated using the within-subject coefficient of variation (w CV). RESULTS In simulations, full-fitting without the constraint function yielded the largest RE (P < 0.001 for Dslow and f; P ≤ 0.044 for Dfast ) and CV (P ≤ 0.033 for Dslow and f; P ≤ 0.473 for Dfast ) for IVIM parameters among all four algorithms. In volunteer imaging, full-fitting without the constraint function also resulted in the poorest repeatability for Dslow (w CV, 17.12%-65.45%) and f (w CV, 19.35%-42.84%) in the liver and pancreas, while the other algorithms had similar repeatability values (w CV, 4.05%-11.99% for Dslow and 9.65%-18.66% for f). Measurement repeatability of Dfast (w CV, 29.52%-85.01%) was the poorest among the IVIM parameters. CONCLUSION For accurate and reliable measurement of IVIM parameters, segmented fitting or full-fitting with the constraint function should be used for IVIM-based analysis of DW imaging. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1637-1647.
Collapse
Affiliation(s)
- Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Yu Sub Sung
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Yedaun Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hyunhee Cheong
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Yeong Jae Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Moon-Gyu Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| |
Collapse
|
32
|
Zhang B, Liang L, Dong Y, Lian Z, Chen W, Liang C, Zhang S. Intravoxel Incoherent Motion MR Imaging for Staging of Hepatic Fibrosis. PLoS One 2016; 11:e0147789. [PMID: 26820668 PMCID: PMC4731200 DOI: 10.1371/journal.pone.0147789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/09/2016] [Indexed: 12/14/2022] Open
Abstract
Objectives To determine the potential of intravoxel incoherent motion (IVIM) MR imaging for staging of hepatic fibrosis (HF). Methods We searched PubMed and EMBASE from their inception to 31 July 2015 to select studies reporting IVIM MR imaging and HF staging. We defined F1-2 as non-advanced HF, F3-4 as advanced HF, F0 as normal liver, F1 as very early HF, and F2-4 as significant HF. Then we compared stage F0 with F1, F0-1 with F2-3, and F1-2 with F3-4 using IVIM-derived parameters (pseudo-diffusion coefficient D*, perfusion fraction f, and pure molecular diffusion parameter D). The effect estimate was expressed as a pooled weighted mean difference (WMD) with 95% confidence interval (CI), using the fixed-effects model. Results Overall, we included six papers (406 patients) in this study. Significant differences in D* were observed between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 2.46, 95% CI 0.83–4.09, P = 0.006; WMD 13.10, 95% CI 9.53–16.67, P < 0.001; WMD 14.34, 95% CI 10.26–18.42, P < 0.001, respectively). Significant differences in f were also found between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 1.62, 95% CI 0.06–3.18, P = 0.027; WMD 5.63, 95% CI 2.74–8.52, P < 0.001; WMD 3.30, 95% CI 2.10–4.50, P < 0.001, respectively). However, D showed no differences between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 0.05, 95% CI -0.01─0.11, P = 0.105; WMD 0.04, 95% CI -0.01─0.10, P = 0.230; WMD 0.02, 95% CI -0.02─0.06, P = 0.378, respectively). Conclusions IVIM MR imaging provides an effective method of staging HF and can distinguish early HF from normal liver, significant HF from normal liver or very early HF, and advanced HF from non-advanced HF.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Graduate College, Southern Medical University, Guangzhou, China
| | - Long Liang
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Graduate College, Southern Medical University, Guangzhou, China
| | - Yuhao Dong
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
| | - Zhouyang Lian
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Graduate College, Southern Medical University, Guangzhou, China
| | - Wenbo Chen
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
| | - Changhong Liang
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
| | - Shuixing Zhang
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|