1
|
Fujisaki A, Tsukamoto J, Narimatsu H, Hayashida Y, Todoroki Y, Hirano N, Takeda K, Shin S, Ota S, Anai K, Fukumitsu S, Yoshimatsu Y, Kono Y, Ueno M, Ide S, Murakami Y, Aoki T. Zero Echo Time Magnetic Resonance Imaging; Techniques and Clinical Utility in Musculoskeletal System. J Magn Reson Imaging 2024; 59:32-42. [PMID: 37288953 DOI: 10.1002/jmri.28843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Zero echo time (ZTE) sequence is recent advanced magnetic resonance technique that utilizes ultrafast readouts to capture signals from short-T2 tissues. This sequence enables T2- and T2* weighted imaging of tissues with short intrinsic relaxation times by using an extremely short TE, and are increasingly used in the musculoskeletal system. We review the imaging physics of these sequences, practical limitations, and image reconstruction, and then discuss the clinical utilities in various disorders of the musculoskeletal system. ZTE can be readily incorporated into the clinical workflow, and is a promising technique to avoid unnecessary radiation exposure, cost, and time-consuming by computed tomography in some cases. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Akitaka Fujisaki
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Jun Tsukamoto
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Hidekuni Narimatsu
- Department of Radiology, Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiko Hayashida
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yo Todoroki
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Natsumi Hirano
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Kazuki Takeda
- Department of Radiology, Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sho Shin
- Department of Radiology, Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoru Ota
- Department of Radiology, Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenta Anai
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Satoshi Fukumitsu
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yuta Yoshimatsu
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yuichiro Kono
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Midori Ueno
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yu Murakami
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Takatoshi Aoki
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
2
|
Lancione M, Bosco P, Costagli M, Nigri A, Aquino D, Carne I, Ferraro S, Giulietti G, Napolitano A, Palesi F, Pavone L, Pirastru A, Savini G, Tagliavini F, Bruzzone MG, Gandini Wheeler-Kingshott CA, Tosetti M, Biagi L. Multi-centre and multi-vendor reproducibility of a standardized protocol for quantitative susceptibility Mapping of the human brain at 3T. Phys Med 2022; 103:37-45. [DOI: 10.1016/j.ejmp.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
|
3
|
Jacobs SM, Versteeg E, van der Kolk AG, Visser LNC, Oliveira ÍAF, van Maren E, Klomp DWJ, Siero JCW. Image quality and subject experience of quiet T1-weighted 7-T brain imaging using a silent gradient coil. Eur Radiol Exp 2022; 6:36. [PMID: 36042139 PMCID: PMC9428090 DOI: 10.1186/s41747-022-00293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Acoustic noise in magnetic resonance imaging (MRI) negatively impacts patients. We assessed a silent gradient coil switched at 20 kHz combined with a T1-weighted magnetisation prepared rapid gradient-echo (MPRAGE) sequence at 7 T. Methods Five healthy subjects (21–29 years; three females) without previous 7-T MRI experience underwent both a quiet MPRAGE (Q-MPRAGE) and conventional MPRAGE (C-MPRAGE) sequence twice. Image quality was assessed quantitatively, and qualitatively by two neuroradiologists. Sound level was measured objectively and rated subjectively on a 0 to 10 scale by all subjects immediately following each sequence and after the whole examination (delayed). All subjects also reported comfort level, overall experience and willingness to undergo the sequence again. Results Compared to C-MPRAGE, Q-MPRAGE showed higher signal-to-noise ratio (10%; p = 0.012) and lower contrast-to-noise ratio (20%; p < 0.001) as well as acceptable to good image quality. Q-MPRAGE produced 27 dB lower sound level (76 versus 103 dB). Subjects reported lower sound level for Q-MPRAGE both immediate (4.4 ± 1.4 versus 6.4 ± 1.3; p = 0.007) and delayed (4.6 ± 1.4 versus 6.3 ± 1.3; p = 0.005), while they rated comfort level (7.4 ± 1.0 versus 6.1 ± 1.7; p = 0.016) and overall experience (7.6 ± 1.0 versus 6.0 ± 0.9; p = 0.005) higher. Willingness to undergo the sequence again was also higher, however not significantly (8.1 ± 1.0 versus 7.2 ± 1.3; p = 0.066). Conclusion Q-MPRAGE using a silent gradient coil reduced sound level by 27 dB compared to C-MPRAGE at 7 T while featuring acceptable-to-good image quality and a quieter and more pleasant subject experience.
Collapse
Affiliation(s)
- Sarah M Jacobs
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edwin Versteeg
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Anja G van der Kolk
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie N C Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden
| | - Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands.,Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Emiel van Maren
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis W J Klomp
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Sartoretti E, Sartoretti T, Wyss M, van Smoorenburg L, Eichenberger B, van der Duim S, Cereghetti D, Binkert CA, Sartoretti-Schefer S, Najafi A. Impact of Acoustic Noise Reduction on Patient Experience in Routine Clinical Magnetic Resonance Imaging. Acad Radiol 2022; 29:269-276. [PMID: 33158702 DOI: 10.1016/j.acra.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Acoustic noise emission from MRI scanners is considered a major factor of patient discomfort during routine MRI examinations. We prospectively evaluated the impact of acoustic noise reduction using software implementations in routine clinical MRI on subjective patient experience and image quality. METHODS Two-hundred consecutive patients undergoing one of four MRI examinations (brain, lumbar spine, shoulder, and knee) at a single center were prospectively randomized into two groups at a 1 to 1 ratio: standard MRI examination and MRI examination with acoustic noise reduction. After the examination, patients were asked to complete a questionnaire aimed at defining their subjective experience (primary endpoint). Two readers assessed subjective image quality of all patient studies in consensus (secondary endpoint). Nonparametric tests and logistic regression models were used for statistical analysis. RESULTS Hundred-seventy-four patients were included in the final study. Patients in the intervention group felt less discomforted by the acoustic noise (p = 0.01) and reported increased audibility of music through the headphones (p = 0.03). No significant difference in subjective image quality was found. CONCLUSION Our study indicates that the effects of acoustic noise reduction in routine clinical MRI can be translated into reduced patient discomfort from acoustic noise and improved audibility of music. Acoustic noise reduction thus significantly contributes to increased patient comfort during MRI examinations.
Collapse
|
5
|
Di Giuliano F, Minosse S, Picchi E, Ferrazzoli V, Da Ros V, Muto M, Pistolese CA, Garaci F, Floris R. Qualitative and quantitative analysis of 3D T1 Silent imaging. Radiol Med 2021; 126:1207-1215. [PMID: 34131844 DOI: 10.1007/s11547-021-01380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare brain magnetic resonance imaging (MRI) using T1 3D Silent and fast T1 3D Gradient-Echo (GRE) BRAin VOlume (known as BRAVO) sequences. The primary aim is to assess the quantitative and qualitative analysis of Silent and BRAVO images by the measurement of the contrast (C), the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The second aim is to estimate the subjective sound levels and the specific absorption rate (SAR). METHODS Twenty-two subjects had T1 3D Silent and T1 3D BRAVO sequences added to the standard MR examination. The qualitative analysis of the two sequences was performed by two radiologists independently. The quantitative analysis was performed by placing regions of interest on the cerebrospinal fluid, on the white and grey matter. The C, the CNR and the SNR were calculated for each sequence. After each T1-3D sequence, subjects gave a score rating to evaluate the acoustic noise. Finally, the SAR was evaluated by the digital imaging and communications in medicine (DICOM) tags. RESULTS The image quality scores obtained by the two radiologists were higher for BRAVO compared to the Silent. However, qualitatively, the Silent images were similar to BRAVO for diagnostic use. Quantitatively, CNR for GM-CSF was comparable in the two sequences and SNR in CSF was higher in Silent than BRAVO. The acoustic noise of Silent sequence was statistically lower compared with BRAVO. The maximum SAR measured was 1.4 W/kg. CONCLUSIONS 3D T1 Silent can be a valid alternative technique to conventional BRAVO to reduce the acoustic noise preserving the diagnostic accuracy. However, radiologists preferred the conventional sequence to Silent.
Collapse
Affiliation(s)
- Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
| | - Silvia Minosse
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy.
| | - Eliseo Picchi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Valentina Ferrazzoli
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
| | - Valerio Da Ros
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
| | - Massimo Muto
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80100, Naples, Italy
| | - Chiara Adriana Pistolese
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- San Raffaele Cassino, Cassino, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Viale Oxford 81, 00133, Rome, Italy
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
6
|
Spiral 3-Dimensional T1-Weighted Turbo Field Echo: Increased Speed for Magnetization-Prepared Gradient Echo Brain Magnetic Resonance Imaging. Invest Radiol 2021; 55:775-784. [PMID: 32816415 DOI: 10.1097/rli.0000000000000705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Spiral magnetic resonance imaging acquisition may enable improved image quality and higher scan speeds than Cartesian trajectories. We tested the performance of four 3D T1-weighted (T1w) TFE sequences (magnetization-prepared gradient echo magnetic resonance sequence) with isotropic spatial resolution for brain imaging at 1.5 T in a clinical patient cohort based on qualitative and quantitative image quality metrics. Two prototypical spiral TFE sequences (spiral 1.0 and spiral 0.85) and a Cartesian compressed sensing technology accelerated TFE sequence (CS 2.5; acceleration factor of 2.5) were compared with a conventional (reference standard) Cartesian parallel imaging accelerated TFE sequence (SENSE; acceleration factor of 1.8). MATERIALS AND METHODS The SENSE (5:52 minutes), CS 2.5 (3:17 minutes), and spiral 1.0 (2:16 minutes) sequences all had identical spatial resolutions (1.0 mm). The spiral 0.85 (3:47 minutes) had a higher spatial resolution (0.85 mm). The 4 TFE sequences were acquired in 41 patients (20 with and 21 without contrast media). Three readers rated qualitative image quality (12 categories) and selected their preferred sequence for each patient. Two readers performed quantitative analysis whereby 6 metrics were derived: contrast-to-noise ratio for white and gray matter (CNRWM/GM), contrast ratio for gray matter-CSF (CRGM/CSF), and white matter-CSF (CRWM/CSF); and coefficient of variations for gray matter (CVGM), white matter (CVWM), and CSF (CVCSF). Friedman tests with post hoc Nemenyi tests, exact binomial tests, analysis of variance with post hoc Dunnett tests, and Krippendorff alphas were computed. RESULTS Concerning qualitative analysis, the CS 2.5 sequence significantly outperformed the SENSE in 4/1 (with/without contrast) categories, whereas the spiral 1.0 and spiral 0.85 showed significantly improved scores in 10/9and 7/7 categories, respectively (P's < 0.001-0.039). The spiral 1.0 was most frequently selected as the preferred sequence (reader 1, 10/15 times; reader 2, 9/12 times; reader 3, 11/13times [with/without contrast]). Interreader agreement ranged from substantial to almost perfect (alpha = 0.615-0.997). Concerning quantitative analysis, compared with the SENSE, the CS 2.5 had significantly better scores in 2 categories (CVWM, CVCSF) and worse scores in 2 categories (CRGM/CSF, CRWM/CSF), the spiral 1.0 had significantly improved scores in 4 categories (CNRWM/GM, CRGM/CSF, CRWM/CSF, CVWM), and the spiral 0.85 had significantly better scores in 2 categories (CRGM/CSF, CRWM/CSF). CONCLUSIONS Spiral T1w TFE sequences may deliver high-quality clinical brain imaging, thus matching the performance of conventional parallel imaging accelerated T1w TFEs. Imaging can be performed at scan times as short as 2:16 minutes per sequence (61.4% scan time reduction compared with SENSE). Optionally, spiral imaging enables increased spatial resolution while maintaining the scan time of a Cartesian-based acquisition schema.
Collapse
|
7
|
Ljungberg E, Damestani NL, Wood TC, Lythgoe DJ, Zelaya F, Williams SCR, Solana AB, Barker GJ, Wiesinger F. Silent zero TE MR neuroimaging: Current state-of-the-art and future directions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:73-93. [PMID: 34078538 PMCID: PMC7616227 DOI: 10.1016/j.pnmrs.2021.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Magnetic Resonance Imaging (MRI) scanners produce loud acoustic noise originating from vibrational Lorentz forces induced by rapidly changing currents in the magnetic field gradient coils. Using zero echo time (ZTE) MRI pulse sequences, gradient switching can be reduced to a minimum, which enables near silent operation.Besides silent MRI, ZTE offers further interesting characteristics, including a nominal echo time of TE = 0 (thus capturing short-lived signals from MR tissues which are otherwise MR-invisible), 3D radial sampling (providing motion robustness), and ultra-short repetition times (providing fast and efficient scanning).In this work we describe the main concepts behind ZTE imaging with a focus on conceptual understanding of the imaging sequences, relevant acquisition parameters, commonly observed image artefacts, and image contrasts. We will further describe a range of methods for anatomical and functional neuroimaging, together with recommendations for successful implementation.
Collapse
Affiliation(s)
- Emil Ljungberg
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Nikou L Damestani
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Florian Wiesinger
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; ASL Europe, GE Healthcare, Munich, Germany
| |
Collapse
|
8
|
Brunnquell CL, Hoff MN, Balu N, Nguyen XV, Oztek MA, Haynor DR. Making Magnets More Attractive: Physics and Engineering Contributions to Patient Comfort in MRI. Top Magn Reson Imaging 2020; 29:167-174. [PMID: 32541257 DOI: 10.1097/rmr.0000000000000246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patient comfort is an important factor of a successful magnetic resonance (MR) examination, and improvements in the patient's MR scanning experience can contribute to improved image quality, diagnostic accuracy, and efficiency in the radiology department, and therefore reduced cost. Magnet designs that are more open and accessible, reduced auditory noise of MR examinations, light and flexible radiofrequency (RF) coils, and faster motion-insensitive imaging techniques can all significantly improve the patient experience in MR imaging. In this work, we review the design, development, and implementation of these physics and engineering approaches to improve patient comfort.
Collapse
Affiliation(s)
- Christina L Brunnquell
- Department of Radiology, University of Washington, Seattle, WA Department of Radiology, The Ohio State University Wexler Medical Center, Columbus, OH
| | | | | | | | | | | |
Collapse
|
9
|
Kosior-Jarecka E, Pankowska A, Polit P, Stępniewski A, Symms MR, Kozioł P, Żarnowski T, Pietura R. Volume of Lateral Geniculate Nucleus in Patients with Glaucoma in 7Tesla MRI. J Clin Med 2020; 9:jcm9082382. [PMID: 32722571 PMCID: PMC7466157 DOI: 10.3390/jcm9082382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to assess the volume of the lateral geniculate nucleus (LGN) in patients with open-angle glaucoma in 7Tesla MRI and to evaluate its relation to RNFL thickness and VF indices. Material and methods. The studied group consisted of 20 open-angle glaucoma patients with bilaterally the same stage of glaucoma (11 with early glaucoma and nine with advanced glaucoma) and nine healthy volunteers from the Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Poland. Circumpapillary RNFL-thickness measurements were performed using OCT in all patients and visual fields were performed in the glaucoma group. A 7Tesla MRI was performed to assess the volume of both lateral geniculate bodies. Results. The LGN volume varied significantly between groups from 122.1 ± 14.4 mm3 (right LGN) and 101.6 ± 13.3 mm3 (left LGN) in the control group to 80.2 ± 17.7 mm3 (right LGN) and 71.8 ± 14.2 mm3 (left LGN) in the advanced glaucoma group (right LGN p = 0.003, left LGN p = 0.018). However, volume values from early glaucoma: right LGN = 120.2 ± 26.5 mm3 and left LGN = 103.2 ± 28.0 mm3 differed significantly only from values from the advanced group (right LGN p = 0.006, left LGN p = 0.012), but not from controls (right LGN p = 0.998, left LGN p = 0.986). There were no significant correlations between visual field indices (MD (mean deviation) and VFI (visual field index)) and LGN volumes in both glaucoma groups. Significant correlations between mean RNFL (retinal nerve fiber layers) thickness and corresponding and contralateral LGN were observed for the control group (corresponding LGN: p = 0.064; contralateral LGN: p = 0.031) and early glaucoma (corresponding LGN: p = 0.017; contralateral LGN: p = 0.008), but not advanced glaucoma (corresponding LGN: p = 0.496; contralateral LGN: p = 0.258). Conclusions. The LGN volume decreases in the course of glaucoma. These changes are correlated with RNFL thickness in early stages of glaucoma and are not correlated with visual field indices.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland; (P.P.); (T.Ż.)
- Correspondence:
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, 20-079 Lublin, Poland; (A.P.); (P.K.); (R.P.)
| | - Piotr Polit
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland; (P.P.); (T.Ż.)
| | - Andrzej Stępniewski
- Centrum ECO-TECH COMPLEX Maria Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland;
| | | | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, 20-079 Lublin, Poland; (A.P.); (P.K.); (R.P.)
| | - Tomasz Żarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland; (P.P.); (T.Ż.)
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, 20-079 Lublin, Poland; (A.P.); (P.K.); (R.P.)
| |
Collapse
|
10
|
Bae K, Jeon KN, Hwang MJ, Lee JS, Park SE, Kim HC, Menini A. Respiratory motion-resolved four-dimensional zero echo time (4D ZTE) lung MRI using retrospective soft gating: feasibility and image quality compared with 3D ZTE. Eur Radiol 2020; 30:5130-5138. [PMID: 32333146 DOI: 10.1007/s00330-020-06890-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate the feasibility and image quality of respiratory motion-resolved 4D zero echo time (ZTE) lung MRI compared with that of 3D ZTE. METHODS Our institutional review board approved this study. Twenty-one patients underwent lung scans using 3D ZTE and 4D ZTE sequences via prospective and retrospective soft gating techniques, respectively. Image qualities of 3D ZTE and 4D ZTE at end-expiration were compared through objective and subjective assessments. The quality of end-expiratory images of 3D ZTE and 4D ZTE of the two groups with different lung functions was also compared. RESULTS Images were successfully acquired in all patients without any adverse events. Signal-to-noise ratios (SNRs) of lung parenchyma and thoracic structures were significantly (all p < 0.001) higher in 4D ZTE. Contrast-to-noise ratios (CNRs) of peripheral bronchi, peripheral pulmonary vessels, and nodules or masses were significantly (all p < 0.001) higher in 4D ZTE. The subjective image quality assessed by two independent radiologists showed that intrapulmonary structures, noise and artifacts, and overall acceptability were superior in 4D ZTE (all p < 0.001). Image qualities of groups with normal and low lung functions differed significantly (all p < 0.05) in 3D ZTE, but not in 4D ZTE. The mean acquisition time was 136 s (127-143 s) in 3D ZTE and 325 s (308-352 s) in 4D ZTE. CONCLUSIONS Respiratory motion-resolved 4D ZTE lung imaging was feasible as part of routine chest MRI. The 4D ZTE provides motion-robust lung parenchymal images with better SNR and CNR than the 3D ZTE, regardless of patients' lung function. KEY POINTS • ZTE MRI captures rapidly decaying transverse magnetization in the lung parenchyma. • 4D ZTE provides motion-robust lung parenchymal images with better SNR and CNR compared with 3D ZTE. • Compared with 3D ZTE, the image quality of 4D ZTE lung MRI was affected less by patients' lung function and respiratory performance.
Collapse
Affiliation(s)
- Kyungsoo Bae
- Department of Radiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, South Korea.,Department of Radiology, Gyeongsang National University Changwon Hospital, 555 Samjeongja-dong, Seongsan-gu, Changwon, South Korea
| | - Kyung Nyeo Jeon
- Department of Radiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, South Korea. .,Department of Radiology, Gyeongsang National University Changwon Hospital, 555 Samjeongja-dong, Seongsan-gu, Changwon, South Korea.
| | | | - Joon Sung Lee
- General Electric (GE) Healthcare Korea, Seoul, South Korea
| | - Sung Eun Park
- Department of Radiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, South Korea.,Department of Radiology, Gyeongsang National University Changwon Hospital, 555 Samjeongja-dong, Seongsan-gu, Changwon, South Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Anne Menini
- Applied Science Lab, GE Healthcare, Menlo Park, CA, USA
| |
Collapse
|
11
|
The Evaluation of Optic Nerves Using 7 Tesla "Silent" Zero Echo Time Imaging in Patients with Leber's Hereditary Optic Neuropathy with or without Idebenone Treatment. J Clin Med 2020; 9:jcm9041112. [PMID: 32295018 PMCID: PMC7230870 DOI: 10.3390/jcm9041112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) of the Optic Nerve is difficult due to the fine extended nature of the structure, strong local magnetic field distortions induced by anatomy, and large motion artefacts associated with eye movement. To address these problems we used a Zero Echo Time (ZTE) MRI sequence with an Adiabatic SPectral Inversion Recovery (ASPIR) fat suppression pulse which also imbues the images with Magnetisation Transfer contrast. We investigated an application of the sequence for imaging the optic nerve in subjects with Leber's hereditary optic neuropathy (LHON). Of particular note is the sequence's near-silent operation, which can enhance image quality of the optic nerve by reducing the occurrence of involuntary saccades induced during Magnetic Resonance (MR) scanning.
Collapse
|
12
|
Ljungberg E, Wood T, Solana AB, Kolind S, Williams SCR, Wiesinger F, Barker GJ. Silent T
1
mapping using the variable flip angle method with B
1
correction. Magn Reson Med 2020; 84:813-824. [DOI: 10.1002/mrm.28178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Emil Ljungberg
- Department of Neuroimaging Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
| | - Tobias Wood
- Department of Neuroimaging Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
| | | | - Shannon Kolind
- Department of Physics and Astronomy University of British Columbia Vancouver BC Canada
- Department of Radiology University of British Columbia Vancouver BC Canada
- International Collaboration on Repair Discoveries University of British Columbia Vancouver BC Canada
- Medicine (Neurology) University of British Columbia Vancouver BC Canada
| | - Steven C. R. Williams
- Department of Neuroimaging Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
| | - Florian Wiesinger
- Department of Neuroimaging Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
- ASL Europe, General Electric Healthcare Munich Germany
| | - Gareth J. Barker
- Department of Neuroimaging Institute of Psychiatry, Psychology & Neuroscience, King's College London London UK
| |
Collapse
|
13
|
Bartolini E, Cosottini M, Costagli M, Barba C, Tassi L, Spreafico R, Garbelli R, Biagi L, Buccoliero A, Giordano F, Guerrini R. Ultra-High-Field Targeted Imaging of Focal Cortical Dysplasia: The Intracortical Black Line Sign in Type IIb. AJNR Am J Neuroradiol 2019; 40:2137-2142. [PMID: 31727747 DOI: 10.3174/ajnr.a6298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Conventional MR imaging has limitations in detecting focal cortical dysplasia. We assessed the added value of 7T in patients with histologically proved focal cortical dysplasia to highlight correlations between neuropathology and ultra-high-field imaging. MATERIALS AND METHODS Between 2013 and 2019, we performed a standardized 7T MR imaging protocol in patients with drug-resistant focal epilepsy. We focused on 12 patients in whom postsurgical histopathology revealed focal cortical dysplasia and explored the diagnostic yield of preoperative 7T versus 1.5/3T MR imaging and the correlations of imaging findings with histopathology. We also assessed the relationship between epilepsy surgery outcome and the completeness of surgical removal of the MR imaging-visible structural abnormality. RESULTS We observed clear abnormalities in 10/12 patients using 7T versus 9/12 revealed by 1.5/3T MR imaging. In patients with focal cortical dysplasia I, 7T MR imaging did not disclose morphologic abnormalities (n = 0/2). In patients with focal cortical dysplasia II, 7T uncovered morphologic signs that were not visible on clinical imaging in 1 patient with focal cortical dysplasia IIa (n = 1/4) and in all those with focal cortical dysplasia IIb (n = 6/6). T2*WI provided the highest added value, disclosing a peculiar intracortical hypointense band (black line) in 5/6 patients with focal cortical dysplasia IIb. The complete removal of the black line was associated with good postsurgical outcome (n = 4/5), while its incomplete removal yielded unsatisfactory results (n = 1/5). CONCLUSIONS The high sensitivity of 7T T2*-weighted images provides an additional tool in defining potential morphologic markers of high epileptogenicity within the dysplastic tissue of focal cortical dysplasia IIb and will likely help to more precisely plan epilepsy surgery and explain surgical failures.
Collapse
Affiliation(s)
- E Bartolini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini).,Neurology Unit (E.B.), USL Centro Toscana, Nuovo Ospedale Santo Stefano, Prato, Italy
| | - M Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery (M. Cosottini), University of Pisa, Pisa, Italy
| | - M Costagli
- IMAGO7 Research Foundation (M. Costagli), Pisa, Italy
| | - C Barba
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - L Tassi
- Epilepsy Surgery Centre C. Munari (L.T.), Ospedale Niguarda, Milano, Italy
| | - R Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - R Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - L Biagi
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| | - A Buccoliero
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - F Giordano
- Neurogenetics and Neurobiology Unit and Laboratories, and Pediatric Neurosurgery Unit (F.G.), Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - R Guerrini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini) .,Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| |
Collapse
|
14
|
Gagliardi V, Tiberi G, Biagi L, Retico A, Symms M, Stara R, Aringhieri G, Zampa V, Tosetti M. 252. Prediction of subject-specific SAR distribution in MSK MR exam at 7 T. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.04.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Budinger TF, Bird MD. MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: Technical feasibility, safety, and neuroscience horizons. Neuroimage 2018; 168:509-531. [DOI: 10.1016/j.neuroimage.2017.01.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022] Open
|
17
|
Tiberi G, Costagli M, Biagi L, Ciantis AD, Fontana N, Stara R, Symms MR, Cosottini M, Guerrini R, Tosetti M. SAR prediction in adults and children by combining measured B1+ maps and simulations at 7.0 Tesla. J Magn Reson Imaging 2016; 44:1048-55. [DOI: 10.1002/jmri.25241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gianluigi Tiberi
- Imago7 Foundation; Pisa Italy
- Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance; IRCCS Stella Maris Foundation; Pisa Italy
| | - Mauro Costagli
- Imago7 Foundation; Pisa Italy
- Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance; IRCCS Stella Maris Foundation; Pisa Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance; IRCCS Stella Maris Foundation; Pisa Italy
| | | | - Nunzia Fontana
- Department of Information Engineering; University of Pisa; Pisa Italy
- National Institute of Nuclear Physics (INFN); Pisa Italy
| | - Riccardo Stara
- National Institute of Nuclear Physics (INFN); Pisa Italy
| | | | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies; University of Pisa; Pisa Italy
| | | | - Michela Tosetti
- Imago7 Foundation; Pisa Italy
- Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance; IRCCS Stella Maris Foundation; Pisa Italy
| |
Collapse
|