1
|
Guo X, He Y, Yuan Z, Nie T, Liu Y, Xu H. Association Analysis Between Intratumoral and Peritumoral MRI Radiomics Features and Overall Survival of Neoadjuvant Therapy in Rectal Cancer. J Magn Reson Imaging 2025; 61:452-465. [PMID: 38733601 DOI: 10.1002/jmri.29396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The use of peritumoral features to determine the survival time of patients with rectal cancer (RC) is still imprecise. PURPOSE To explore the correlation between intratumoral, peritumoral and combined features, and overall survival (OS). STUDY TYPE Retrospective. POPULATION One hundred sixty-six RC patients (53 women, 113 men; average age: 55 ± 12 years) who underwent radical resection after neoadjuvant therapy. FIELD STRENGTH/SEQUENCE 3 T; T2WI sagittal, T1WI axial, T2WI axial with fat suppression, and high-resolution T2WI axial sequences, enhanced T1WI axial and sagittal sequences with fat suppression. ASSESSMENT Radiologist A segmented 166 patients, and radiologist B randomly segmented 30 patients. Intratumoral and peritumoral features were extracted, and features with good stability (ICC ≥0.75) were retained through intra-observer analysis. Seven classifiers, including Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Extremely randomized trees (ET), eXtreme Gradient Boosting (XGBoost), and LightGBM (LGBM), were applied to select the classifier with the best performance. Next, the Rad-score of best classifier and the clinical features were selected to establish the models, thus, nomogram was built to identify the association with 1-, 3-, and 5-year OS. STATISTICAL TESTS LASSO, regression analysis, ROC, DeLong method, Kaplan-Meier curve. P < 0.05 indicated a significant difference. RESULTS Only Node (irregular tumor nodules in the surrounding mesentery) and ExtraMRF (lymph nodes outside the perirectal mesentery) were significantly different in 20 clinical features. Twelve intratumoral, 3 peritumoral, and 14 combined features related to OS were selected. LR, SVM, and RF classier showed the best efficacy in the intratumoral, peritumoral, and combined model, respectively. The combined model (AUC = 0.954 and 0.821) had better survival association than the intratumoral model (AUC = 0.833 and 0.813) and the peritumoral model (AUC = 0.824 and 0.687). DATA CONCLUSION The proposed peritumoral model with radiomics features may serve as a tool to improve estimated survival time. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaofang Guo
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Colorectal Cancer, Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Qin S, Lu S, Liu K, Zhou Y, Wang Q, Chen Y, Zhang E, Wang H, Lang N. Radiomics from Mesorectal Blood Vessels and Lymph Nodes: A Novel Prognostic Predictor for Rectal Cancer with Neoadjuvant Therapy. Diagnostics (Basel) 2023; 13:1987. [PMID: 37370882 DOI: 10.3390/diagnostics13121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of our study is to investigate the predictive value of various combinations of radiomic features from intratumoral and different peritumoral regions of interest (ROIs) for achieving a good pathological response (pGR) following neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). This retrospective study was conducted using data from LARC patients who underwent nCRT between 2013 and 2021. Patients were divided into training and validation cohorts at a ratio of 4:1. Intratumoral ROIs (ROIITU) were segmented on T2-weighted imaging, while peritumoral ROIs were segmented using two methods: ROIPTU_2mm, ROIPTU_4mm, and ROIPTU_6mm, obtained by dilating the boundary of ROIITU by 2 mm, 4 mm, and 6 mm, respectively; and ROIMR_F and ROIMR_BVLN, obtained by separating the fat and blood vessels + lymph nodes in the mesorectum. After feature extraction and selection, 12 logistic regression models were established using radiomics features derived from different ROIs or ROI combinations, and five-fold cross-validation was performed. The average area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. The study included 209 patients, consisting of 118 pGR and 91 non-pGR patients. The model that integrated ROIITU and ROIMR_BVLN features demonstrated the highest predictive ability, with an AUC (95% confidence interval) of 0.936 (0.904-0.972) in the training cohort and 0.859 (0.745-0.974) in the validation cohort. This model outperformed models that utilized ROIITU alone (AUC = 0.779), ROIMR_BVLN alone (AUC = 0.758), and other models. The radscore derived from the optimal model can predict the treatment response and prognosis after nCRT. Our findings validated that the integration of intratumoral and peritumoral radiomic features, especially those associated with mesorectal blood vessels and lymph nodes, serves as a potent predictor of pGR to nCRT in patients with LARC. Pending further corroboration in future research, these insights could provide novel imaging markers for refining therapeutic strategies.
Collapse
Affiliation(s)
- Siyuan Qin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Siyi Lu
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Ke Liu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yan Zhou
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Qizheng Wang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yongye Chen
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Enlong Zhang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
- Department of Radiology, Peking University International Hospital, Life Park Road No. 1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing 102206, China
| | - Hao Wang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
3
|
Lu BL, Chen Y, Wen ZQ, Liu YY, Ma YR, Que YT, Zhang ZW, Wu XH, Yu SP. Quantitative assessment of the microstructure of the mesorectum with different prognostic statuses by intravoxel incoherent motion diffusion-weighed magnetic resonance imaging. BMC Gastroenterol 2022; 22:481. [PMID: 36418952 PMCID: PMC9685901 DOI: 10.1186/s12876-022-02555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The mesorectum surrounding the rectum provides an ideal substrate for tumour spread. However, preoperative risk assessment is still an issue. This study aimed to investigate the microstructural features of mesorectum with different prognostic statuses by intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI). METHODS Patients with pathologically proven rectal adenocarcinoma underwent routine high-resolution rectal magnetic resonance imaging (MRI) and IVIM DWI sequences were acquired. The MRI-detected circumferential resection margin (mrCRM) and extramural vascular invasion (mrEMVI) were evaluated. IVIM parameters of the mesorectum adjacent to (MAT) and distant from (MDT) the tumour were measured and compared between and within the prognostic factor groups. RESULTS The positive mrCRM (pMAT < 0.001; pMDT = 0.013) and mrEMVI (pMAT = 0.001; pMDT < 0.001) groups demonstrated higher D values in the MAT and MDT than the corresponding negative groups. Conversely, the positive mrCRM (p = 0.001) and mrEMVI (p < 0.001) groups both demonstrated lower f values in the MAT. Similarly, in the self-comparison between the MAT and MDT in the above subgroups, D showed a significant difference in all subgroups (p < 0.001 for all), and f showed a significant difference in the positive mrCRM (p = 0.001) and mrEMVI (p = 0.002) groups. Moreover, the MAT displayed a higher D* in the positive mrCRM (p = 0.014), negative mrCRM (p = 0.009) and negative mrEMVI groups (p < 0.001). CONCLUSION The microstructure of the mesorectum in patients with rectal cancer with poor prognostic status shows changes based on IVIM parameters. IVIM parameters might be promising imaging biomarkers for risk assessment of tumour spread in mesorectum preoperatively.
Collapse
Affiliation(s)
- Bao-Lan Lu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Zi-Qiang Wen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Yi-Yan Liu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Yu-Ru Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Yu-Tao Que
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Zhi-Wen Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Xue-Han Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China
| | - Shen-Ping Yu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
5
|
Evaluation of Mesorectal Microcirculation With Quantitative Dynamic Contrast-Enhanced MRI. AJR Am J Roentgenol 2020; 215:1370-1376. [PMID: 32991218 DOI: 10.2214/ajr.19.22116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE. The purpose of this study was to use quantitative dynamic contrast-enhanced MRI (DCE-MRI) to evaluate mesorectal microcirculation in patients with rectal cancer. MATERIALS AND METHODS. A total of 53 patients with semicircular rectal tumors underwent DCE-MRI with a 3-T MRI system before surgery. ROIs were manually delineated in the mesorectum that surrounded the tumor and the mesorectum that surrounded the normal rectal wall. DCE-MRI parameters including forward volume transfer constant (Ktrans), reverse volume transfer constant (kep), and fractional extravascular extracellular space volume (Ve) were estimated using computer software. Histopathologic analysis served as the standard reference. RESULTS. Mesorectum that surrounded the tumor showed significantly higher Ktrans val ues than mesorectum that surrounded normal rectal wall (mean, 0.069 ± 0.035 [SD] vs 0.039 ± 0.020 min-1; p < 0.001). The tumor-surrounding mesorectum also showed higher Ve values than normal mesorectum (p < 0.001). An opposite trend was observed for kep, but this was not significant (p = 0.077). A lower Ktrans of the tumor-surrounding mesorectum was observed in patients with malignant lymph nodes compared with those with benign lymph nodes (mean, 0.054 ± 0.027 vs 0.076 ± 0.036 min-1; p = 0.034). Although kep values for the tumor-surrounding mesorectum were higher in patients with tumors categorized as pathologic Tis (pTis) to pT2 than in those with pT3 tumors, the p value was close to 0.05 (p = 0.047). The tumor-surrounding mesorectum showed no significant differences in the aforementioned parameters between patients with positive MRI-detected extramural vascular invasion (mrEMVI) and those with negative mrEMVI. CONCLUSION. Mesorectum that surrounded rectal tumor had a higher blood flow than that close to the normal rectal wall. The blood flow decreased in the tumor-surrounding mesorectum when there was nodal involvement.
Collapse
|
6
|
Cao Y, Zhang G, Bao H, Zhang S, Zhang J, Zhao Z, Zhang W, Li W, Yan X, Zhou J. Development of a dual-energy spectral CT based nomogram for the preoperative discrimination of mutated and wild-type KRAS in patients with colorectal cancer. Clin Imaging 2020; 69:205-212. [PMID: 32920468 DOI: 10.1016/j.clinimag.2020.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a dual-energy spectral CT (DESCT) nomogram for the preoperative identification of KRAS mutation in patients with colorectal cancer (CRC). METHOD One hundred and twenty-four patients who underwent energy spectrum CT pre-operatively were recruited and split into mutated KRAS group (n = 50) and wild-type KRAS group (n = 74). DESCT parameters, including monochromatic CT value, iodine concentration, water concentration, and effective atomic number were measured independently by two reviewers in the arterial, venous, and delayed phases. Normalized iodine concentration (NIC) and slope k of the spectral HU curve were calculated. Evaluate other imaging features such as ATL/LTL ratio, tumor gross pattern, pericolorectal fat invasion (PFI) was also performed by these reviewers. Independent predictors for KRAS mutation were screened out using logistic regression, and these predictors were presented as a nomogram. The receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA) were used to evaluate the clinical usefulness of the nomogram. RESULTS The slope k in the arterial phase, effective atomic number in the arterial phase, NIC in the venous phase, ATL/LTL ratio and PFI were significant independent predictors for KRAS mutation. Based on these independent predictors, a quantitative nomogram was developed to predict individual KRAS mutation probability. The nomogram had excellent performance with an AUC of 0.848 and excellent calibration. DCA showed that our nomogram has outstanding clinical utility. CONCLUSIONS This study demonstrates that a DESCT based nomogram has potential value for individual preoperative identification of KRAS mutation in CRC patients.
Collapse
Affiliation(s)
- Yuntai Cao
- Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging, Gansu Province, Lanzhou, China; Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China; Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guojin Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging, Gansu Province, Lanzhou, China
| | - Haihua Bao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Shenghui Zhang
- Department of Physics, University of Illinois at Chicago, Chicago, USA
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging, Gansu Province, Lanzhou, China
| | - Zhiyong Zhao
- Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging, Gansu Province, Lanzhou, China
| | - Wenjuan Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging, Gansu Province, Lanzhou, China
| | - Weixia Li
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Xiaohong Yan
- Department of Critical Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Junlin Zhou
- Key Laboratory of Medical Imaging, Gansu Province, Lanzhou, China; Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
7
|
Readout-segmented echo-planar diffusion-weighted MR for the evaluation of aggressive characteristics of rectal cancer. Sci Rep 2018; 8:12554. [PMID: 30135478 PMCID: PMC6105660 DOI: 10.1038/s41598-018-30488-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/31/2018] [Indexed: 02/05/2023] Open
Abstract
To evaluate whether aggressive characteristics of rectal cancer can be predicted by the apparent diffusion coefficient (ADC) obtained using readout-segmented echo-planar imaging (rs-EPI) diffusion-weighted magnetic resonance. We enrolled one hundred and fifteen patients. The image quality of ADC maps by rs-EPI was compared with that by traditional single-shot echo-planar imaging (ss-EPI), and ADC measurement was performed on the rs-EPI based ADC maps. Differences in ADC values of tumors grouped according to differentiation grade, clinical T stage and plasmatic carcinoembryonic antigen (CEA) level were tested. The correlation between each aggressive characteristic and the corresponding ADC values was evaluated. The image quality of ADC maps obtained by rs-EPI was superior toss-EPI (P < 0.05). The ADC values of tumor were categorized based on the following differentiation grades: poor (0.89 ± 0.12 × 10−3 mm2/s), moderate (1.13 ± 0.25 × 10−3 mm2/s), and good (1.31 ± 0.19 × 10−3 mm2/s); P < 0.001. Tumors with lower differentiation grades corresponded to lower ADC values (r = 0.59, P < 0.001). However, ADC differences were not observed in different clinical T stage (P = 0.22) and plasmatic CEA level (P = 0.38). Rs-EPI sequence-based ADC values represent a potential imaging marker for the aggressive rectal cancer characteristics.
Collapse
|
8
|
Lee ES, Kim MJ, Park SC, Hur BY, Hyun JH, Chang HJ, Baek JY, Kim SY, Kim DY, Oh JH. Magnetic Resonance Imaging-Detected Extramural Venous Invasion in Rectal Cancer before and after Preoperative Chemoradiotherapy: Diagnostic Performance and Prognostic Significance. Eur Radiol 2017; 28:496-505. [PMID: 28786006 DOI: 10.1007/s00330-017-4978-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/25/2017] [Accepted: 06/29/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We evaluated the diagnostic performance of magnetic resonance imaging (MRI) in terms of identifying extramural venous invasion (EMVI) in rectal cancer patients with preoperative chemoradiotherapy (CRT) and its prognostic significance. METHODS During 2008-2010, 200 patients underwent surgery following preoperative CRT for rectal cancer. Two radiologists independently reviewed all pre- and post-CRT MRI retrospectively. We investigated diagnostic performance of pre-CRT MR-EMVI (MR-EMVI) and post-CRT MR-EMVI (yMR-EMVI), based on pathological EMVI as the standard of reference. We assessed correlation between MRI findings and patients' prognosis, such as disease-free survival (DFS) and overall survival (OS). Additionally, subgroup analysis in MR- or yMR-EMVI-positive patients was performed to confirm the significance of the severity of EMVI in MRI on patient's prognosis. RESULTS The sensitivity and specificity of yMR-EMVI were 76.19% and 79.75% (area under the curve: 0.830), respectively. In univariate analysis, yMR-EMVI was the only significant MRI factor in DFS (P = 0.027). The mean DFS for yMR-EMVI (+) patients was significantly less than for yMR-EMVI (-) patients: 57.56 months versus 72.46 months. CONCLUSION yMR-EMVI demonstrated good diagnostic performance. yMR-EMVI was the only significant EMVI-related MRI factor that correlated with patients' DFS in univariate analysis; however, it was not significant in multivariate analysis. KEY POINTS • Diagnostic performance of MRI for EMVI after preoperative chemoradiotherapy is good. • The mean DFS was lower in yMR-EMVI-positive than yMR-EMVI-negative patients. • MRI can facilitate prognosis prediction of rectal cancer patients with preoperative chemoradiotherapy.
Collapse
Affiliation(s)
- Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea.,College of Medicine and Graduate School of Medicine, Chung-Ang University, Seoul, Korea.,Department of Radiology, National Cancer Centre, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769, Korea
| | - Min Ju Kim
- Department of Radiology, National Cancer Centre, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769, Korea.
| | - Sung Chan Park
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea
| | - Bo Yun Hur
- Department of Radiology, National Cancer Centre, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769, Korea
| | - Jong Hee Hyun
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea
| | - Hee Jin Chang
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea
| | - Ji Yeon Baek
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea
| | - Sun Young Kim
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea.,Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Yong Kim
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea
| | - Jae Hwan Oh
- Centre for Colorectal Cancer, National Cancer Centre, Goyang, Gyeonggi-do, Korea
| |
Collapse
|