1
|
Salman R, Nguyen HN, Sher AC, Hallam K, Seghers VJ, Sammer MBK. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection on chest computed tomography: comparison of simulated lower radiation doses. Eur J Pediatr 2023; 182:5159-5165. [PMID: 37698612 DOI: 10.1007/s00431-023-05194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The combination of low dose CT and AI performance in the pediatric population has not been explored. Understanding this relationship is relevant for pediatric patients given the potential radiation risks. Here, the objective was to determine the diagnostic performance of commercially available Computer Aided Detection (CAD) for pulmonary nodules in pediatric patients at simulated lower radiation doses. Retrospective chart review of 30 sequential patients between 12-18 years old who underwent a chest CT on the Siemens SOMATOM Force from December 20, 2021, to April 12, 2022. Simulated lower doses at 75%, 50%, and 25% were reconstructed in lung kernel at 3 mm slice thickness using ReconCT and imported to Syngo CT Lung CAD software for analysis. Two pediatric radiologists reviewed the full dose CTs to determine the reference read. Two other pediatric radiologists compared the Lung CAD results at 100% dose and each simulated lower dose level to the reference on a nodule by nodule basis. The sensitivity (Sn), positive predictive value (PPV), and McNemar test were used for comparison of Lung CAD performance based on dose. As reference standard, 109 nodules were identified by the two radiologists. At 100%, and simulated 75%, 50%, and 25% doses, lung CAD detected 60, 62, 58, and 62 nodules, respectively; 28, 28, 29, and 26 were true positive (Sn = 26%, 26%, 27%, 24%), 30, 32, 27, and 34 were false positive (PPV = 48%, 47%, 52%, 43%). No statistically significance difference of Lung CAD performance at different doses was found, with p-values of 1.0, 1.0, and 0.7 at simulated 75%, 50%, and 25% doses compared to standard dose. CONCLUSION The Lung CAD shows low sensitivity at all simulated lower doses for the detection of pulmonary nodules in this pediatric population. However, radiation dose may be reduced from standard without further compromise to the Lung CAD performance. WHAT IS KNOWN • High diagnostic performance of Lung CAD for detection of pulmonary nodules in adults. • Several imaging techniques are applied to reduce pediatric radiation dose. WHAT IS NEW • Low sensitivity at all simulated lower doses for the detection of pulmonary nodules in our pediatric population. • Radiation dose may be reduced from standard without further compromise to the Lung CAD performance.
Collapse
Affiliation(s)
- Rida Salman
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA
| | - HaiThuy N Nguyen
- Department of Radiology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew C Sher
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA
| | - Kristina Hallam
- CT R&D Collaborations, Siemens Healthineers, Malvern, PA, USA
| | - Victor J Seghers
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA
| | - Marla B K Sammer
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Chhetri S, Pendem S, Bharath J, Priyanka. Low kilovoltage and low contrast volume neck CT protocol using iterative reconstruction techniques: A comparison with standard dose protocol. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Simulated Radiation Dose Reduction in Whole-Body CT on a 3rd Generation Dual-Source Scanner: An Intraindividual Comparison. Diagnostics (Basel) 2021; 11:diagnostics11010118. [PMID: 33450942 PMCID: PMC7828410 DOI: 10.3390/diagnostics11010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
To evaluate the effect of radiation dose reduction on image quality and diagnostic confidence in contrast-enhanced whole-body computed tomography (WBCT) staging. We randomly selected March 2016 for retrospective inclusion of 18 consecutive patients (14 female, 60 ± 15 years) with clinically indicated WBCT staging on the same 3rd generation dual-source CT. Using low-dose simulations, we created data sets with 100, 80, 60, 40, and 20% of the original radiation dose. Each set was reconstructed using filtered back projection (FBP) and Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 1–5, resulting in 540 datasets total. ADMIRE 2 was the reference standard for intraindividual comparison. The effective radiation dose was calculated using commercially available software. For comparison of objective image quality, noise assessments of subcutaneous adipose tissue regions were performed automatically using the software. Three radiologists blinded to the study evaluated image quality and diagnostic confidence independently on an equidistant 5-point Likert scale (1 = poor to 5 = excellent). At 100%, the effective radiation dose in our population was 13.3 ± 9.1 mSv. At 20% radiation dose, it was possible to obtain comparably low noise levels when using ADMIRE 5 (p = 1.000, r = 0.29). We identified ADMIRE 3 at 40% radiation dose (5.3 ± 3.6 mSv) as the lowest achievable radiation dose with image quality and diagnostic confidence equal to our reference standard (p = 1.000, r > 0.4). The inter-rater agreement for this result was almost perfect (ICC ≥ 0.958, 95% CI 0.909–0.983). On a 3rd generation scanner, it is feasible to maintain good subjective image quality, diagnostic confidence, and image noise in single-energy WBCT staging at dose levels as low as 40% of the original dose (5.3 ± 3.6 mSv), when using ADMIRE 3.
Collapse
|
4
|
Winkelmann MT, Afat S, Walter SS, Stock E, Schwarze V, Brendlin A, Kolb M, Artzner CP, Othman AE. Diagnostic Performance of Different Simulated Low-Dose Levels in Patients with Suspected Cervical Abscess Using a Third-Generation Dual-Source CT Scanner. Diagnostics (Basel) 2020; 10:diagnostics10121072. [PMID: 33322074 PMCID: PMC7764070 DOI: 10.3390/diagnostics10121072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the effects of dose reduction on diagnostic accuracy and image quality of cervical computed tomography (CT) in patients with suspected cervical abscess. Forty-eight patients (mean age 45.5 years) received a CT for suspected cervical abscess. Low-dose CT (LDCT) datasets with 25%, 50%, and 75% of the original dose were generated with a realistic simulation. The image data were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) (strengths 3 and 5). A five-point Likert scale was used to assess subjective image quality and diagnostic confidence. The signal-to-noise ratio (SNR) of the sternocleidomastoid muscle and submandibular gland and the contrast-to-noise ratio (CNR) of the sternocleidomastoid muscle and submandibular glandular fat were calculated to assess the objective image quality. Diagnostic accuracy was calculated for LDCT using the original dose as the reference standard. The prevalence of cervical abscesses was high (72.9%) in the cohort; the mean effective dose for all 48 scans was 1.8 ± 0.8 mSv. Sternocleidomastoid and submandibular SNR and sternocleidomastoid muscle fat and submandibular gland fat CNR increased with higher doses and were significantly higher for ADMIRE compared to FBP, with the best results in ADMIRE 5 (all p < 0.001). Subjective image quality was highest for ADMIRE 5 at 75% and lowest for FBP at 25% of the original dose (p < 0.001). Diagnostic confidence was highest for ADMIRE 5 at 75% and lowest for FBP at 25% (p < 0.001). Patient-based diagnostic accuracy was high for all LDCT datasets, down to 25% for ADMIRE 3 and 5 (sensitivity: 100%; specificity: 100%) and lower for FBP at 25% dose reduction (sensitivity: 88.6-94.3%; specificity: 92.3-100%). The use of a modern dual-source CT of the third generation and iterative reconstruction allows a reduction in the radiation dose to 25% (0.5 mSv) of the original dose with the same diagnostic accuracy for the assessment of neck abscesses.
Collapse
Affiliation(s)
- Moritz T Winkelmann
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Saif Afat
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Sven S Walter
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Eva Stock
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Vincent Schwarze
- Department of Radiology, University Hospital LMU, 81337 Munich, Germany
| | - Andreas Brendlin
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Manuel Kolb
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Christoph P Artzner
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Ahmed E Othman
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
5
|
Effects of radiation dose reduction on diagnostic performance of 3rd generation Dual Source CT pulmonary angiography. Eur J Radiol 2020; 134:109426. [PMID: 33254062 DOI: 10.1016/j.ejrad.2020.109426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/19/2020] [Accepted: 11/14/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the effects of radiation dose reduction on diagnostic accuracy and image quality of pulmonary angiography CT (CTPA) in adults with suspected pulmonary embolism (PE). MATERIAL & METHODS 52 consecutive patients received CTPA for suspected PE. Realistic low-Dose CT simulations were generated using an offline software (ReconCT, Siemens Healthineers, Forchheim, Germany), as either filter back projections (FBP) or iterative reconstruction as ADMIRE (strength 3 or 5) with 25 %, 50 % and 75 % of the original dose. To assess image quality (overall image quality, noise, artifacts, and sharpness) and diagnostic confidence, a five-point scale was used. Patient-based and segment-based diagnostic accuracy was calculated for Low-dose computed tomography (LDCT)-reconstruction with original dose CTPA as a standard of reference. Furthermore, effective radiation doses were calculated using a commercially available dose management platform (Radimetrics, Bayer HealthCare, Leverkusen, Germany). RESULTS Among 52 patients, a total of 15 patients (28.8 %) had acute pulmonary artery embolism. The median dose-length product and effective dose for all 52 scans were 291.1 ± 210.1 mGy⋅cm and 5.8 ± 3.4 mSv. Overall subjective image quality was highest for ADMIRE 5 with 75 % and lowest for FBP with 25 % of the original dose (median [interquartile range]:5 [5] vs. 3 [2-3], p < 0.001. Patient-based diagnostic accuracy was perfect for all iteratively reconstructed data sets (ADMIRE 3 and 5) (sensitivity: 100 %, negative predictive value [NPV]: 100 %). LDCT data sets with FBP had perfect diagnostic accuracy at 50 % and 75 % of the original dose, which however decreased at 25 % of the original dose (sensitivity: 93 %; [NPV]: 97 %). Segment-based diagnostic accuracy was high for ADMIRE 3 and 5 down to 25 % dose reduction (sensitivity: 90.4 % specificity: 99.5 %) and lowest for FBP with 25 % dose reduction (sensitivity: 84.6 %, specificity: 98.9 %). Inter-class correlation regarding the detection of PE was almost perfect at all doses and recons (ICC: 96.1-1.0). Thus, accurate diagnosis for PE was possible for ADMIRE 3 and 5 datasets with 25 % of the original dose (1.45 mSv) and for FBP with 50 % of the original dose (2.9 mSv). CONCLUSION Our findings indicate that radiation dose reduction down to 25 % (1.45 mSv) of the original data via iterative reconstruction algorithms on a 3rd generation Dual Source CT (DSCT) scanner maintained the diagnostic accuracy and image quality for the assessment of PE in CTPA.
Collapse
|
6
|
Chung MS, Choi YJ, Hwang JY, Yoon DH, Seo KJ, Lee JH, Baek JH. Feasibility of reduced-dose CT of the head and neck with iterative reconstruction: a phantom and prospective clinical study. Acta Radiol 2019; 60:1457-1464. [PMID: 30776905 DOI: 10.1177/0284185119830276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jae-Yeon Hwang
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeonsangnam-do, Republic of Korea
| | - Dok Hyun Yoon
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyeong Jin Seo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hyun Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jung Hwan Baek
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Ultra-Low-Dose Neck CT With Low-Dose Contrast Material for Preoperative Staging of Thyroid Cancer: Image Quality and Diagnostic Performance. AJR Am J Roentgenol 2019; 212:748-754. [PMID: 30900916 DOI: 10.2214/ajr.18.20334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Although CT has been used as a complementary diagnostic method for the preoperative diagnosis of thyroid cancer, it has the shortcomings of substantial radiation exposure and the use of contrast material (CM). The purpose of this article is to evaluate the image quality and diagnostic performance of 70-kVp thyroid CT with low volumes of CM versus conventional 120-kVp thyroid CT protocol. MATERIALS AND METHODS Eighty patients referred for preoperative thyroid CT were randomly divided into two groups (group A: 40 patients, 70 kVp, 60 mL of CM; group B: 40 patients, 120 kVp, 100 mL of CM). Quantitative and qualitative image quality and radiation doses for the two groups were compared using the Mann-Whitney U and chi-square tests. Degrees of agreement between preoperative CT staging and pathologic results were evaluated and compared using the Wald statistic. RESULTS Calculated signal-to-noise ratios of different anatomic structures, calculated contrast-to-noise ratios, overall image quality, subjective noise, and streak artifacts were not significantly different between the two groups (all p > 0.05), and neither were the accuracies of preoperative CT staging (all p > 0.05). The estimated effective doses were significantly lower in group A (mean [± SD], 0.52 ± 0.14 mSv in group A and 2.28 ± 0.29 mSv in group B; p < 0.001). CONCLUSION Ultra-low-dose 70-kVp CT with a low volume of CM provides sufficient image quality for preoperative staging of thyroid cancer and substantially reduces the radiation dose compared with standard 120-kVp CT.
Collapse
|
8
|
Leithner D, Wichmann JL, Mahmoudi S, Martin SS, Albrecht MH, Vogl TJ, Scholtz JE. Diagnostic yield of 90-kVp low-tube-voltage carotid and intracerebral CT-angiography: effects on radiation dose, image quality and diagnostic performance for the detection of carotid stenosis. Br J Radiol 2018; 91:20170927. [PMID: 29493282 DOI: 10.1259/bjr.20170927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the impact of low-tube-voltage 90-kVp acquisition combined with advanced modeled iterative reconstruction algorithm (Admire) on radiation exposure, image quality, artifacts, and assessment of stenosis in carotid and intracranial CT angiography (CTA). METHODS Dual-energy CTA studies of 43 patients performed on a third-generation 192-slice dual-source CT were retrospectively evaluated. Intraindividual comparison of 90-kVp and linearly blended 120-kVp equivalent image series (M_0.6, 60% 90-kVp, 40% Sn-150-kVp) was performed. Contrast-to-noise and signal-to-noise ratios of common carotid artery, internal carotid artery, middle cerebral artery, and basilar artery were calculated. Qualitative image analysis included evaluation of artifacts and suitability for angiographical assessment at shoulder level, carotid bifurcation, siphon, and intracranial by three independent radiologists. Detection and quantification of carotid stenosis were performed. Radiation dose was expressed as dose-length product (DLP). RESULTS Contrast-to-noise values of all arteries were significantly increased in 90-kVp compared to M_0.6 (p < 0.001). Suitability for angiographical evaluation was rated excellent with low artifacts for all levels in both image series. Both 90-kVp and M_0.6 showed excellent accordance for detection and grading of carotid stenosis with almost perfect interobserver agreement (carotid stenoses in 32 of 129 segments; intraclass correlation coefficient, 0.94). dose-length product was reduced by 40.3% in 90-kVp (110.6 ± 32.1 vs 185.4 ± 47.5 mGy·cm, p < 0.001). CONCLUSION 90-kVp carotid and intracranial CTA with Admire provides increased quantitative and similarly good qualitative image quality, while reducing radiation exposure substantially compared to M_0.6. Diagnostic performance for arterial stenosis detection and quantification remained excellent. Advances in knowledge: 90-kVp carotid and intracranial CTA with an advanced iterative reconstruction algorithm results in excellent image quality and reduction of radiation exposure without limiting diagnostic performance.
Collapse
Affiliation(s)
- Doris Leithner
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany
| | - Julian L Wichmann
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany
| | - Scherwin Mahmoudi
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany
| | - Simon S Martin
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany
| | - Moritz H Albrecht
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany
| | - Thomas J Vogl
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany
| | - Jan-Erik Scholtz
- 1 Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt , Frankfurt , Germany.,2 Division of Radiology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
9
|
Scholtz JE, Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc Diagn Ther 2017; 7:439-451. [PMID: 29255688 PMCID: PMC5716940 DOI: 10.21037/cdt.2017.06.07] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/25/2017] [Indexed: 01/27/2023]
Abstract
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.
Collapse
Affiliation(s)
- Jan-Erik Scholtz
- Cardiac MR PET CT Program, Department of Radiology (Cardiovascular Imaging) and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Ghoshhajra
- Cardiac MR PET CT Program, Department of Radiology (Cardiovascular Imaging) and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Computed Tomography of the Head and Neck Region for Tumor Staging—Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions. Invest Radiol 2017; 52:522-528. [DOI: 10.1097/rli.0000000000000377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Chen Y, Zhang X, Xue H, Zhu Y, Wang Y, Li Y, Zhang Z, Jin Z. Head and neck angiography at 70 kVp with a third-generation dual-source CT system in patients: comparison with 100 kVp. Neuroradiology 2017; 59:1071-1081. [DOI: 10.1007/s00234-017-1901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 11/30/2022]
|
12
|
Weiss J, Maurer M, Ketelsen D, Notohamiprodjo M, Zinsser D, Wichmann JL, Nikolaou K, Bamberg F, Othman AE. Effect of reduced z-axis scan coverage on diagnostic performance and radiation dose of neck computed tomography in patients with suspected cervical abscess. PLoS One 2017; 12:e0180671. [PMID: 28678820 PMCID: PMC5498060 DOI: 10.1371/journal.pone.0180671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose To evaluate the effect of reduced z-axis scan coverage on diagnostic performance and radiation dose of neck CT in patients with suspected cervical abscess. Methods Fifty-one patients with suspected cervical abscess were included and underwent contrast-enhanced neck CT on a 2nd or 3rd generation dual-source CT system. Image acquisition ranged from the aortic arch to the upper roof of the frontal sinuses (CTstd). Subsequently, series with reduced z-axis coverage (CTred) were reconstructed starting at the aortic arch up to the orbital floor. CTstd and CTred were independently assessed by two radiologists for the presence/absence of cervical abscesses and for incidental and alternative findings. In addition, diagnostic accuracy for the depiction of the cervical abscesses was calculated for both readers. Furthermore, DLP (dose-length-product), effective dose (ED) and organ doses were calculated and compared for CTred and CTstd, using a commercially available dose management platform. Results A total of 41 abscesses and 3 incidental/alternative findings were identified in CTstd. All abscesses and incidental/alternative findings could also be detected on CTred resulting in a sensitivity and specificity of 1.0 for both readers. DLP, ED and organ doses of the brain, the eye lenses, the red bone marrow and the salivary glands of CTred were significantly lower than for CTstd (p<0.001). Conclusions Reducing z-axis coverage of neck CT allows for a significant reduction of effective dose and organ doses at similar diagnostic performance as compared to CTstd.
Collapse
Affiliation(s)
- Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Michael Maurer
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Dominik Ketelsen
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mike Notohamiprodjo
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Dominik Zinsser
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Julian L. Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
13
|
Aschoff AJ, Catalano C, Kirchin MA, Krix M, Albrecht T. Low radiation dose in computed tomography: the role of iodine. Br J Radiol 2017; 90:20170079. [PMID: 28471242 PMCID: PMC5603952 DOI: 10.1259/bjr.20170079] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration.
Collapse
Affiliation(s)
- Andrik J Aschoff
- 1 Department for Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Kempten, Kempten, Germany
| | - Carlo Catalano
- 2 Department of Radiological Sciences, University of Rome "La Sapienza", Rome, Italy
| | - Miles A Kirchin
- 3 Bracco Imaging SpA, Global Medical & Regulatory Affairs, Milan, Italy
| | - Martin Krix
- 4 Bracco Imaging Germany, Global Medical & Regulatory Affairs, Konstanz, Germany
| | - Thomas Albrecht
- 5 Institut für Radiologie und Interventionelle Therapie, Vivantes-Klinikum Neukölln, Berlin, Germany
| |
Collapse
|
14
|
Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT. AJR Am J Roentgenol 2017; 208:1089-1096. [DOI: 10.2214/ajr.16.17171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages. Eur Radiol 2017; 27:5252-5259. [DOI: 10.1007/s00330-017-4825-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/08/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
|
16
|
Kaup M, Gruber-Rouh T, Scholtz JE, Albrecht MH, Bucher A, Frellesen C, Vogl TJ, Beeres M. Low-dose CT pulmonary angiography on a 15-year-old CT scanner: a feasibility study. Acta Radiol Open 2017; 5:2058460116684371. [PMID: 28286671 PMCID: PMC5330415 DOI: 10.1177/2058460116684371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/22/2016] [Indexed: 11/16/2022] Open
Abstract
Background Computed tomography (CT) low-dose (LD) imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems. Purpose To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA). Material and Methods CTPA scans from 60 prospectively randomized patients (28 men, 32 women) were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD) settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale. Results CT dose index (CTDI) in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy). Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768). Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4). Conclusion The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.
Collapse
Affiliation(s)
- Moritz Kaup
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Jan E Scholtz
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Andreas Bucher
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Claudia Frellesen
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| | - Martin Beeres
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt, Germany
| |
Collapse
|
17
|
van der Heyden B, Öllers M, Ritter A, Verhaegen F, van Elmpt W. Clinical evaluation of a novel CT image reconstruction algorithm for direct dose calculations. Phys Imaging Radiat Oncol 2017. [DOI: 10.1016/j.phro.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Park C, Gruber-Rouh T, Leithner D, Zierden A, Albrecht MH, Wichmann JL, Bodelle B, Elsabaie M, Scholtz JE, Kaup M, Vogl TJ, Beeres M. Single-source chest-abdomen-pelvis cancer staging on a third generation dual-source CT system: comparison of automated tube potential selection to second generation dual-source CT. Cancer Imaging 2016; 16:33. [PMID: 27724954 PMCID: PMC5057380 DOI: 10.1186/s40644-016-0093-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
Background Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging. Methods This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDIvol) values were compared. Results Diagnostic image quality was obtained in all patients. The median CTDIvol (6.1 mGy, range 3.9–22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8–22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol. Conclusion Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT.
Collapse
Affiliation(s)
- Clara Park
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Doris Leithner
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Amelie Zierden
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Mortiz H Albrecht
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julian L Wichmann
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Boris Bodelle
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Mohamed Elsabaie
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Moritz Kaup
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Martin Beeres
- Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Haus 23C UG, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
19
|
Schmid AI, Uder M, Lell MM. Reaching for better image quality and lower radiation dose in head and neck CT: advanced modeled and sinogram-affirmed iterative reconstruction in combination with tube voltage adaptation. Dentomaxillofac Radiol 2016; 46:20160131. [PMID: 27540625 DOI: 10.1259/dmfr.20160131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate image quality and radiation dose in low-dose head and neck CT comparing two different commercially available iterative reconstruction algorithms: sinogram-affirmed iterative reconstruction (SAFIRE) and advanced modeled iterative reconstruction (ADMIRE) with fixed and automated tube voltage adaptation (TVA). METHODS CT examinations of 103 patients were analysed. 58 patients were examined on a single-source CT at fixed tube voltage of 120 kV and reconstructed with filtered back projection (FBP) and SAFIRE (Strength Level 3). 45 patients were examined in a single-source mode on a dual-source CT with automated TVA and reconstructed with FBP and ADMIRE (Strength Levels 2 and 3). Image noise was calculated in seven anatomical volumes of interest. Subjective evaluation of the CT images was performed using a four-grade scale. RESULTS Mean CT numbers of FBP and the corresponding iterative reconstruction did not differ significantly (p = 0.74-0.99). Image noise was lower with both iterative reconstruction techniques than with FBP (SAFIRE 3: -22.3%; ADMIRE 2: -14.9%; ADMIRE 3: -24.2%; all p < 0.05); hence, the signal-to-noise ratio and the contrast-to-noise values were higher. Subjective image quality revealed a more favourable result for the iterative reconstruction. ADMIRE 3 in combination with automated TVA showed 14.4% (p < 0.05) less image noise with a 7.5% lower radiation dose than SAFIRE 3 with fixed tube voltage. CONCLUSIONS Higher image quality at lower radiation dose can be achieved using ADMIRE in combination with automated TVA.
Collapse
Affiliation(s)
- Andrea I Schmid
- 1 Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Michael Uder
- 1 Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.,2 Imaging Science Institute (ISI) Erlangen, Department of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Michael M Lell
- 1 Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.,3 Department of Radiology and Nuclear Medicine, Klinikum Nürnberg, Germany, Paracelsus Medical University
| |
Collapse
|
20
|
Ellmann S, Kammerer F, Allmendinger T, Brand M, Janka R, Hammon M, Lell MM, Uder M, Kramer M. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study. Dentomaxillofac Radiol 2016; 45:20160228. [PMID: 27461784 DOI: 10.1259/dmfr.20160228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. METHODS 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. RESULTS SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. CONCLUSIONS Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.
Collapse
Affiliation(s)
- Stephan Ellmann
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Ferdinand Kammerer
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Thomas Allmendinger
- 2 Siemens Healthineers GmbH, CT Division, Siemensstraße 1, Forchheim/Erlangen, Germany
| | - Michael Brand
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Rolf Janka
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Matthias Hammon
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Michael M Lell
- 3 Clinicum Nuernberg, Department of Radiology and Nuclear Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Michael Uder
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Manuel Kramer
- 1 Institute of Radiology, University Hospital Erlangen-Nuernberg, University of Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|