1
|
Mills ES, Becerra JA, Yensen K, Bolia IK, Shontz EC, Kebaish KJ, Dobitsch A, Hasan LK, Haratian A, Ong CD, Gross J, Petrigliano FA, Weber AE. Current and Future Advanced Imaging Modalities for the Diagnosis of Early Osteoarthritis of the Hip. Orthop Res Rev 2022; 14:327-338. [PMID: 36131944 PMCID: PMC9482955 DOI: 10.2147/orr.s357498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hip osteoarthritis (OA) can be idiopathic or develop secondary to structural joint abnormalities of the hip joint (alteration of normal anatomy) and/or due to a systemic condition with joint involvement. Early osteoarthritic changes to the hip can be completely asymptomatic or may cause the development hip symptomatology without evidence of OA on radiographs. Delaying the progression of hip OA is critical due to the significant impact of this condition on the patient’s quality of life. Pre-OA of the hip is a newly established term that is often described as the development of signs and symptoms of degenerative hip disease but no radiographic evidence of OA. Advanced imaging methods can help to diagnose pre-OA of the hip in patients with hip pain and normal radiographs or aid in the surveillance of asymptomatic patients with an underlying hip diagnosis that is known to increase the risk of early OA of the hip. These methods include the delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC), quantitative magnetic resonance imaging (qMRI- T1rho, T2, and T2* relaxation time mapping), 7-Tesla MRI, computed tomography (CT), and optical coherence tomography (OCT). dGEMRIC proved to be a reliable and accurate modality though it is limited by the significant time necessary for contrast washout between scans. This disadvantage is potentially overcome by T2 weighted MRIs, which do not require contrast. 7-Tesla MRI is a promising development for enhanced imaging resolution compared to 1.5 and 3T MRIs. This technique does require additional optimization and development prior to widespread clinical use. The purpose of this review was to summarize the results of translational and clinical studies investigating the utilization of the above-mentioned imaging modalities to diagnose hip pre-OA, with special focus on recent research evaluating their implementation into clinical practice.
Collapse
Affiliation(s)
- Emily S Mills
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jacob A Becerra
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katie Yensen
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ioanna K Bolia
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Correspondence: Ioanna K Bolia, USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, 1520 San Pablo st #2000, Los Angeles, CA, 90033, USA, Tel +1 9703432813, Fax +8181 658 5920, Email
| | - Edward C Shontz
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kareem J Kebaish
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Dobitsch
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laith K Hasan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aryan Haratian
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charlton D Ong
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jordan Gross
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank A Petrigliano
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander E Weber
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ben-Eliezer N, Raya JG, Babb JS, Youm T, Sodickson DK, Lattanzi R. A New Method for Cartilage Evaluation in Femoroacetabular Impingement Using Quantitative T2 Magnetic Resonance Imaging: Preliminary Validation against Arthroscopic Findings. Cartilage 2021; 13:1315S-1323S. [PMID: 31455091 PMCID: PMC8808928 DOI: 10.1177/1947603519870852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The outcome of arthroscopic treatment for femoroacetabular impingement (FAI) depends on the preoperative status of the hip cartilage. Quantitative T2 can detect early biochemical cartilage changes, but its routine implementation is challenging. Furthermore, intrinsic T2 variability between patients makes it difficult to define a threshold to identify cartilage lesions. To address this, we propose a normalized T2-index as a new method to evaluate cartilage in FAI. DESIGN We retrospectively analyzed magnetic resonance imaging (MRI) data of 18 FAI patients with arthroscopically confirmed cartilage defects. Cartilage T2 maps were reconstructed from multi-spin-echo 3-T data using the echo-modulation-curve (EMC) model-based technique. The central femoral cartilage, assumed healthy in early-stage FAI, was used as the normalization reference to define a T2-index. We investigated the ability of the T2-index to detect surgically confirmed cartilage lesions. RESULTS The average T2-index was 1.14 ± 0.1 and 1.13 ± 0.1 for 2 separated segmentations. Using T2-index >1 as the threshold for damaged cartilage, accuracy was 88% and 100% for the 2 segmentations. We found moderate intraobserver repeatability, although separate segmentations yielded comparable accuracy. Damaged cartilage could not be identified using nonnormalized average T2 values. CONCLUSIONS This preliminary study confirms the importance of normalizing T2 values to account for interpatient variability and suggests that the T2-index is a promising biomarker for the detection of cartilage lesions in FAI. Future work is needed to confirm that combining T2-index with morphologic MRI and other quantitative biomarkers could improve cartilage assessment in FAI.
Collapse
Affiliation(s)
- Noam Ben-Eliezer
- Center for Advanced Imaging Innovation
and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging,
Department of Radiology, New York University School of Medicine, New York, NY,
USA
| | - José G. Raya
- Center for Advanced Imaging Innovation
and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging,
Department of Radiology, New York University School of Medicine, New York, NY,
USA,The Sackler Institute of Graduate
Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - James S. Babb
- Center for Advanced Imaging Innovation
and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging,
Department of Radiology, New York University School of Medicine, New York, NY,
USA
| | - Thomas Youm
- Department of Orthopedic Surgery, New
York University Hospital for Joint Diseases, New York, NY, USA
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation
and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging,
Department of Radiology, New York University School of Medicine, New York, NY,
USA,The Sackler Institute of Graduate
Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation
and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging,
Department of Radiology, New York University School of Medicine, New York, NY,
USA,The Sackler Institute of Graduate
Biomedical Sciences, New York University School of Medicine, New York, NY, USA,Riccardo Lattanzi, The Bernard and Irene
Schwartz Center for Biomedical Imaging, New York University Langone Health, 660
First Avenue Room 203, New York, NY 10016, USA.
| |
Collapse
|
3
|
von Deuster C, Sommer S, Germann C, Hinterholzer N, Heidemann RM, Sutter R, Nanz D. Controlling Through-Slice Chemical-Shift Artifacts for Improved Non-Fat-Suppressed Musculoskeletal Turbo-Spin-Echo Magnetic Resonance Imaging at 7 T. Invest Radiol 2021; 56:545-552. [PMID: 33813573 DOI: 10.1097/rli.0000000000000778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Through-slice chemical shift artifacts in state-of-the-art turbo-spin-echo (TSE) images can be significantly more severe at 7 T than at lower field strengths. In musculoskeletal applications, these artifacts appear similar to bone fractures or neoplastic bone marrow disease. The objective of this work was to explore and reduce through-slice chemical shift artifacts in 2-dimensional (2D) TSE imaging at 7 T. MATERIALS AND METHODS This prospective study was approved by the local ethics board. The bandwidths of the excitation and refocusing radiofrequency (RF) pulses of a prototype 2D TSE sequence were individually modified and their effect on the slice profiles and relative slice locations of water and fat spins was assessed in an oil-water phantom. Based on these results, it was hypothesized that the combination of matched and increased excitation and refocusing RF pulse bandwidths ("MIB") of 1500 Hz would enable 2D TSE imaging with significantly reduced chemical shift artifacts compared with a state-of-the-art sequence with unmatched and moderate RF pulse bandwidths ("UMB") of 1095 and 682 Hz.A series of T1-weighted sagittal knee examinations in 10 healthy human subjects were acquired using the MIB and UMB sequences and independently evaluated by 2 radiologists. They measured the width of chemical shift artifacts at 2 standardized locations and graded the perceived negative effect of chemical shift artifacts on image quality in the bones and in the whole gastrocnemius muscle on a 5-point scale. Similar knee, wrist, and foot images were acquired in a single subject. Signal-to-noise ratios in the femoral bone marrow were computed between the UMB and MIB sequences. RESULTS Phantom measurements confirmed the expected spatial separation of simultaneously affected water and fat slices between 40% and 200% of the prescribed slice thickness for RF pulse bandwidths between 2500 and 500 Hz. Through-slice chemical shift artifacts at the bone-cartilage interface were significantly smaller with MIB than with UMB (location 1: 0.35 ± 0.20 mm vs 1.27 ± 0.27 mm, P < 0.001; location 2: 0.25 ± 0.13 mm vs 1.48 ± 0.46 mm, P < 0.001; intraclass correlation coefficient = 0.98). The negative effect of chemical shift artifacts on image quality was significantly smaller with MIB than with UMB (bone: 2 ± 0 vs 4 ± 1, P < 0.004 [both readers]; muscle: 3 ± 0 vs 2 ± 0, P < 0.004 [both readers]; κ = 0.69). The signal-to-noise ratio of the UMB and MIB sequences was comparable, with a ratio of 99 ± 7%. Images acquired using the UMB sequence displayed numerous artifactual hyperintensities and diffuse, as well as locally severe, fat signal loss in all examined regions, whereas the MIB sequence consistently yielded high image quality with bright T1-weighted fat signal and excellent depiction of fine tissue structures. CONCLUSIONS On 7 T systems, the selection of high and matched RF bandwidths for excitation and refocusing pulses for 2D TSE imaging without fat suppression showed consistently better image quality than state-of-the-art sequences with unmatched lower RF pulse bandwidths.
Collapse
Affiliation(s)
| | | | | | - Natalie Hinterholzer
- SCMI, Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland
| | | | | | | |
Collapse
|
4
|
Aringhieri G, Zampa V, Tosetti M. Musculoskeletal MRI at 7 T: do we need more or is it more than enough? Eur Radiol Exp 2020; 4:48. [PMID: 32761480 PMCID: PMC7410909 DOI: 10.1186/s41747-020-00174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ultra-high field magnetic resonance imaging (UHF-MRI) provides important diagnostic improvements in musculoskeletal imaging. The higher signal-to-noise ratio leads to higher spatial and temporal resolution which results in improved anatomic detail and higher diagnostic confidence. Several methods, such as T2, T2*, T1rho mapping, delayed gadolinium-enhanced, diffusion, chemical exchange saturation transfer, and magnetisation transfer techniques, permit a better tissue characterisation. Furthermore, UHF-MRI enables in vivo measurements by low-γ nuclei (23Na, 31P, 13C, and 39K) and the evaluation of different tissue metabolic pathways. European Union and Food and Drug Administration approvals for clinical imaging at UHF have been the first step towards a more routinely use of this technology, but some drawbacks are still present limiting its widespread clinical application. This review aims to provide a clinically oriented overview about the application of UHF-MRI in the different anatomical districts and tissues of musculoskeletal system and its pros and cons. Further studies are needed to consolidate the added value of the use of UHF-MRI in the routine clinical practice and promising efforts in technology development are already in progress.
Collapse
Affiliation(s)
- Giacomo Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36, Pisa, Italy.
| | - Virna Zampa
- Diagnostic and Interventional Radiology, University Hospital of Pisa, Via paradisa, 2, Pisa, Italy
| | | |
Collapse
|
5
|
Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol 2019; 15:533-549. [PMID: 31395974 DOI: 10.1038/s41584-019-0274-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Bone is organized in a hierarchical 3D architecture. Traditionally, analysis of the skeletal system was based on bone mass assessment by radiographic methods or on the examination of bone structure by 2D histological sections. Advanced imaging technologies and big data analysis now enable the unprecedented examination of bone and provide new insights into its 3D macrostructure and microstructure. These technologies comprise ex vivo and in vivo methods including high-resolution computed tomography (CT), synchrotron-based imaging, X-ray microscopy, ultra-high-field magnetic resonance imaging (MRI), light-sheet fluorescence microscopy, confocal and intravital two-photon imaging. In concert, these techniques have been used to detect and quantify a novel vascular system of trans-cortical vessels in bone. Furthermore, structures such as the lacunar network, which harbours and connects osteocytes, become accessible for 3D imaging and quantification using these methods. Next-generation imaging of the skeletal system and its blood supply are anticipated to contribute to an entirely new understanding of bone tissue composition and function, from macroscale to nanoscale, in health and disease. These insights could provide the basis for early detection and precision-type intervention of bone disorders in the future.
Collapse
|
6
|
Abstract
Radiofrequency (RF) coils are an essential part of the magnetic resonance (MR) system. To exploit the inherently higher signal-to-noise ratio at ultrahigh magnetic fields (UHF), research sites were forced to build up expertise in RF coil development, as the number of commercially available RF coils were limited. In addition, an integrated transmit body RF coil, which is well-established at MR systems of lower field strength, is still missing at UHF due to technical and physical constraints. This review article provides a brief recapitulation of RF characteristics and RF coils in general to introduce terminology and RF-related parameters, and will then provide an extensive overview of current state-of-the-art RF coils used for MRI from head to toe at 7 Tesla. Finally, a section on RF safety will briefly discuss challenges in performing a safety assessment for custom-designed RF coils, and issues arising from the interaction of the RF field and potentially implanted medical devices.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Alizai H, Chang G, Regatte RR. MR Imaging of the Musculoskeletal System Using Ultrahigh Field (7T) MR Imaging. PET Clin 2019; 13:551-565. [PMID: 30219187 DOI: 10.1016/j.cpet.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MR imaging is an indispensable instrument for the diagnosis of musculoskeletal diseases. In vivo MR imaging at 7T offers many advantages, including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. There are also however technical challenges of imaging at a higher field strength compared with 1.5 and 3T MR imaging systems. We discuss the many potential opportunities as well as the challenges presented by 7T MR imaging systems and highlight recent developments in in vivo research imaging of musculoskeletal applications in general and cartilage, skeletal muscle, and bone in particular.
Collapse
Affiliation(s)
- Hamza Alizai
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Gregory Chang
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Ravinder R Regatte
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
8
|
Rietsch SHG, Orzada S, Maderwald S, Brunheim S, Philips BWJ, Scheenen TWJ, Ladd ME, Quick HH. 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array. Med Phys 2018; 45:2978-2990. [PMID: 29679498 DOI: 10.1002/mp.12931] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/20/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this work, a combined body coil array with eight transmit/receive (Tx/Rx) meander elements and with 24 receive-only (Rx) loops (8Tx/32Rx) was developed and evaluated in comparison with an 8-channel transmit/receive body array (8Tx/Rx) based on meander elements serving as the reference standard. METHODS Systematic evaluation of the RF array was performed on a body-sized phantom. Body imaging at 7T was performed in six volunteers in the body regions pelvis, abdomen, and heart. Coil characteristics such as signal-to-noise ratio, acceleration capability, g-factors, S-parameters, noise correlation, and B1+ maps were assessed. Safety was ensured by numerical simulations using a coil model validated by dosimetric field measurements. RESULTS Meander elements and loops are intrinsically well decoupled with a maximum coupling value of -20.5 dB. Safe use of the 8Tx/32Rx array could be demonstrated. High gain in signal-to-noise ratio (33% in the subject's center) could be shown for the 8Tx/32Rx array compared to the 8Tx/Rx array. Improvement in acceleration capability in all investigations could be demonstrated. For example, the 8Tx/32Rx array provides lower g-factors in the right-left and anterior-posterior directions with R = 3 undersampling as compared to the 8Tx/Rx array using R = 2. Both arrays are very similar regarding their RF transmit performance. Excellent image quality in the investigated body regions could be achieved with the 8Tx/32Rx array. CONCLUSION In this work, we show that a combination of eight meander elements and 24 loop receive elements is possible without impeding transmit performance. Improved SNR and g-factor performance compared to an RF array without these loops is demonstrated. Body MRI at 7T with the 8Tx/32Rx array could be accomplished in the heart, abdomen, and pelvis with excellent image quality.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Bart W J Philips
- Department of Radiology and Nuclear Medicine, Medical Center, Radboud University, 6525GA, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,Department of Radiology and Nuclear Medicine, Medical Center, Radboud University, 6525GA, Nijmegen, The Netherlands
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center, 69120, Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
9
|
Rietsch SHG, Pfaffenrot V, Bitz AK, Orzada S, Brunheim S, Lazik-Palm A, Theysohn JM, Ladd ME, Quick HH, Kraff O. An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T. Med Phys 2017; 44:6195-6208. [PMID: 28976586 DOI: 10.1002/mp.12612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. METHODS A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. RESULTS Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B1+ of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. CONCLUSIONS The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Andreas K Bitz
- Faculty of Electrical Engineering and Information Technology, Electromagnetic Theory and Applied Mathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Andrea Lazik-Palm
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, 45147, Germany
| | - Jens M Theysohn
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, 45147, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
10
|
3D double-echo steady-state sequence assessment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data. Eur Radiol 2017; 27:4360-4371. [PMID: 28432505 DOI: 10.1007/s00330-017-4834-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess the diagnostic accuracy of a high-resolution, three-dimensional (3D) double-echo steady-state (DESS) sequence with radial imaging at 3 Tesla (T) for evaluating cartilage and labral alterations in the hip. METHODS Magnetic resonance imaging (MRI) data obtained at 3 T, including radially reformatted DESS images and intraoperative data of 45 patients (mean age 42 ± 13.7 years) who underwent hip arthroscopy, were compared. The acetabular cartilage and labrum of the upper hemisphere of the acetabulum and the central femoral head cartilage were evaluated. Sensitivity, specificity, accuracy, and negative and positive predictive values were determined. RESULTS Sensitivity, specificity and accuracy of the DESS technique were 96.7%, 75% and 93.7% for detecting cartilage lesions and 98%, 76.2% and 95.9% for detecting labral lesions. The positive and negative predictive values for detecting or ruling out cartilage lesions were 96% and 78.9%. For labral lesions, the positive and negative predictive values were 97.5% and 80%. CONCLUSION A high-resolution, 3D DESS technique with radial imaging at 3 T demonstrated high accuracy for detecting hip cartilage and labral lesions with excellent interobserver agreement and moderate correlation between MRI and intraoperative assessment. KEY POINTS • High-resolution, 3D DESS with radial imaging allows accurate cartilage and labrum evaluation. • DESS demonstrated high sensitivity, specificity, accuracy for detecting cartilage and labral lesions. • Highly accurate sequence may influence treatment decisions in patients with hip pain.
Collapse
|
11
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|