1
|
Oebel S, Jahnke C, Bode K, Paetsch I. Electrophysiological Cardiovascular Magnetic Resonance (EP-CMR)-Guided Interventional Procedures: Challenges and Opportunities. Curr Cardiol Rep 2024; 26:903-910. [PMID: 39023800 DOI: 10.1007/s11886-024-02092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular magnetic resonance (CMR) imaging excels in providing detailed three-dimensional anatomical information together with excellent soft tissue contrast and has already become a valuable tool for diagnostic evaluation, electrophysiological procedure (EP) planning, and therapeutical stratification of atrial or ventricular rhythm disorders. CMR-based identification of ablation targets may significantly impact existing concepts of interventional electrophysiology. In order to exploit the inherent advantages of CMR imaging to the fullest, CMR-guided ablation procedures (EP-CMR) are justly considered the ultimate goal. RECENT FINDINGS Electrophysiological cardiovascular magnetic resonance (EP-CMR) interventional procedures have more recently been introduced to the CMR armamentarium: in a single-center series of 30 patients, an EP-CMR guided ablation success of 93% has been reported, which is comparable to conventional ablation outcomes for typical atrial flutter and procedure and ablation time were also reported to be comparable. However, moving on from already established workflows for the ablation of typical atrial flutter in the interventional CMR environment to treatment of more complex ventricular arrhythmias calls for technical advances regarding development of catheters, sheaths and CMR-compatible defibrillator equipment. CMR imaging has already become an important diagnostic tool in the standard clinical assessment of cardiac arrhythmias. Previous studies have demonstrated the feasibility and safety of performing electrophysiological interventional procedures within the CMR environment and fully CMR-guided ablation of typical atrial flutter can be implemented as a routine procedure in experienced centers. Building upon established workflows, the market release of new, CMR-compatible interventional devices may finally enable targeting ventricular arrhythmias.
Collapse
Affiliation(s)
- Sabrina Oebel
- Department of Electrophysiology, HELIOS Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany.
| | - Cosima Jahnke
- Department of Electrophysiology, HELIOS Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Kerstin Bode
- Department of Electrophysiology, HELIOS Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Ingo Paetsch
- Department of Electrophysiology, HELIOS Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| |
Collapse
|
2
|
Tampakis K, Pastromas S, Sykiotis A, Kampanarou S, Kourgiannidis G, Pyrpiri C, Bousoula M, Rozakis D, Andrikopoulos G. Real-time cardiovascular magnetic resonance-guided radiofrequency ablation: A comprehensive review. World J Cardiol 2023; 15:415-426. [PMID: 37900261 PMCID: PMC10600785 DOI: 10.4330/wjc.v15.i9.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Cardiac magnetic resonance (CMR) imaging could enable major advantages when guiding in real-time cardiac electrophysiology procedures offering high-resolution anatomy, arrhythmia substrate, and ablation lesion visualization in the absence of ionizing radiation. Over the last decade, technologies and platforms for performing electrophysiology procedures in a CMR environment have been developed. However, performing procedures outside the conventional fluoroscopic laboratory posed technical, practical and safety concerns. The development of magnetic resonance imaging compatible ablation systems, the recording of high-quality electrograms despite significant electromagnetic interference and reliable methods for catheter visualization and lesion assessment are the main limiting factors. The first human reports, in order to establish a procedural workflow, have rationally focused on the relatively simple typical atrial flutter ablation and have shown that CMR-guided cavotricuspid isthmus ablation represents a valid alternative to conventional ablation. Potential expansion to other more complex arrhythmias, especially ventricular tachycardia and atrial fibrillation, would be of essential impact, taking into consideration the widespread use of substrate-based strategies. Importantly, all limitations need to be solved before application of CMR-guided ablation in a broad clinical setting.
Collapse
Affiliation(s)
- Konstantinos Tampakis
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece.
| | - Sokratis Pastromas
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Alexandros Sykiotis
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | | | - Georgios Kourgiannidis
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Chrysa Pyrpiri
- Department of Radiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Maria Bousoula
- Department of Anesthesiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Dimitrios Rozakis
- Department of Anesthesiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - George Andrikopoulos
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| |
Collapse
|
3
|
Bauer BK, Meier C, Bietenbeck M, Lange PS, Eckardt L, Yilmaz A. Cardiovascular Magnetic Resonance-Guided Radiofrequency Ablation: Where Are We Now? JACC Clin Electrophysiol 2022; 8:261-274. [PMID: 35210090 DOI: 10.1016/j.jacep.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
The possibilities of cardiovascular magnetic resonance (CMR) imaging for myocardial tissue characterization and catheter ablation guidance are accompanied by some fictional concepts. In this review, we present the available facts about CMR-guided catheter ablation procedures as well as promising, however unproven, theoretical concepts. CMR promises to visualize the respective arrhythmogenic substrate and may thereby make it more localizable for electrophysiology (EP)-based ablation. Robust CMR imaging is challenged by motion of the heart resulting from cardiac and respiratory cycles. In contrast to conventional "passive" tracking of the catheter tip by real-time CMR, novel approaches based on "active" tracking are performed by integrating microcoils into the catheter tip that send a receiver signal. Several experimental and clinical studies were already performed based on real-time CMR for catheter ablation of atrial and ventricular arrhythmias. Importantly, successful ablation of the cavotricuspid isthmus was already performed in patients with typical atrial flutter. However, a complete EP procedure with real-time CMR-guided transseptal puncture and subsequent pulmonary vein isolation has not been shown so far in patients with atrial fibrillation. Moreover, real-time CMR-guided EP for ventricular tachycardia ablation was only performed in animal models using a transseptal, retrograde, or epicardial access-but not in humans. Essential improvements within the next few years regarding basic technical requirements, such as higher spatial and temporal resolution of real-time CMR imaging as well as clinically approved cardiac magnetic resonance-conditional defibrillators, are ultimately required-but can also be expected-and will move this field forward.
Collapse
Affiliation(s)
- Bastian Klemens Bauer
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Claudia Meier
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Michael Bietenbeck
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Philipp Sebastian Lange
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Lars Eckardt
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Ali Yilmaz
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany.
| |
Collapse
|
4
|
Khalaph M, Guckel D, Bergau L, Sohns C, Jahnke C, Paetsch I, Sommer P. [MRI-based catheter ablation : Current status and outlook]. Herzschrittmacherther Elektrophysiol 2022; 33:19-25. [PMID: 34994850 DOI: 10.1007/s00399-021-00832-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Fluoroscopy-based catheter ablation has established itself as a standard procedure for the treatment of patients with cardiac arrhythmias. However, it is subject to certain limitations with regard to the visualization of arrhythmogenic substrate and ablation lesions and is associated with radiation exposure. Within the framework of studies, initial experience with MRI-based, radiation-free electrophysiological examinations and ablations could be gained. The integration of MRI technology into electrophysiological procedures promises numerous advantages. The ability to operate in a radiation-free environment during MRI-based catheter ablation is significant and promising. Furthermore, MRI provides important procedure-relevant information in terms of visualization of individual arrhythmogenic substrate. In order to further improve immediate and long-term ablation success, especially in the context of complex arrhythmias and structural heart disease, the direct and successful integration of MRI-generated findings into the ablation process is of utmost importance. The future of MRI-based catheter ablation could thus lie in particular in the treatment of more complex cardiac arrhythmias, which require personalized therapy paths. In this respect, however, the data situation is still extremely limited. Further technical developments and larger studies are indispensable in order to gain further important insights into the feasibility, safety and success rate of MRI-based invasive electrophysiological diagnostics and therapy in comparison to conventional ablation methods.
Collapse
Affiliation(s)
- M Khalaph
- Klinik für Elektrophysiologie/Rhythmologie, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland.
| | - D Guckel
- Klinik für Elektrophysiologie/Rhythmologie, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland
| | - L Bergau
- Klinik für Elektrophysiologie/Rhythmologie, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland
| | - C Sohns
- Klinik für Elektrophysiologie/Rhythmologie, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland
| | - C Jahnke
- Abteilung für Rhythmologie, Herzzentrum Leipzig, Klinik für Kardiologie, Universität Leipzig, Helios-Stiftungsprofessur, Struempellstr. 39, 04289, Leipzig, Deutschland
| | - I Paetsch
- Abteilung für Rhythmologie, Herzzentrum Leipzig, Klinik für Kardiologie, Universität Leipzig, Helios-Stiftungsprofessur, Struempellstr. 39, 04289, Leipzig, Deutschland
| | - P Sommer
- Klinik für Elektrophysiologie/Rhythmologie, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland
| |
Collapse
|
5
|
Rier SC, Vreemann S, Nijhof WH, van Driel VJHM, van der Bilt IAC. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. Ther Adv Cardiovasc Dis 2022; 16:17539447221119624. [PMID: 36039865 PMCID: PMC9434707 DOI: 10.1177/17539447221119624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) provides excellent temporal and spatial resolution, tissue characterization, and flow measurements. This enables major advantages when guiding cardiac invasive procedures compared with X-ray fluoroscopy or ultrasound guidance. However, clinical implementation is limited due to limited availability of technological advancements in magnetic resonance imaging (MRI) compatible equipment. A systematic review of the available literature on past and present applications of interventional MR and its technology readiness level (TRL) was performed, also suggesting future applications. METHODS A structured literature search was performed using PubMed. Search terms were focused on interventional CMR, cardiac catheterization, and other cardiac invasive procedures. All search results were screened for relevance by language, title, and abstract. TRL was adjusted for use in this article, level 1 being in a hypothetical stage and level 9 being widespread clinical translation. The papers were categorized by the type of procedure and the TRL was estimated. RESULTS Of 466 papers, 117 papers met the inclusion criteria. TRL was most frequently estimated at level 5 meaning only applicable to in vivo animal studies. Diagnostic right heart catheterization and cavotricuspid isthmus ablation had the highest TRL of 8, meaning proven feasibility and efficacy in a series of humans. CONCLUSION This article shows that interventional CMR has a potential widespread application although clinical translation is at a modest level with TRL usually at 5. Future development should be directed toward availability of MR-compatible equipment and further improvement of the CMR techniques. This could lead to increased TRL of interventional CMR providing better treatment.
Collapse
Affiliation(s)
- Sophie C Rier
- Cardiology Division, Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, Postbus 40551, The Hague 2504 LN, The Netherlands
| | - Suzan Vreemann
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | - Wouter H Nijhof
- Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | | | | |
Collapse
|
6
|
Heidt T, Reiss S, Lottner T, Özen AC, Bode C, Bock M, von Zur Mühlen C. Magnetic resonance imaging for pathobiological assessment and interventional treatment of the coronary arteries. Eur Heart J Suppl 2020; 22:C46-C56. [PMID: 32368198 PMCID: PMC7189741 DOI: 10.1093/eurheartj/suaa009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray-based fluoroscopy is the standard tool for diagnostics and intervention in coronary artery disease. In recent years, computed tomography has emerged as a non-invasive alternative to coronary angiography offering detection of coronary calcification and imaging of the vessel lumen by the use of iodinated contrast agents. Even though currently available invasive or non-invasive techniques can show the degree of vessel stenosis, they are unable to provide information about biofunctional plaque properties, e.g. plaque inflammation. Furthermore, the use of radiation and the necessity of iodinated contrast agents remain unfavourable prerequisites. Magnetic resonance imaging (MRI) is a radiation-free alternative to X-ray which offers anatomical and functional imaging contrasts fostering the idea of non-invasive biofunctional assessment of the coronary vessel wall. In combination with molecular contrast agents that target-specific epitopes of the vessel wall, MRI might reveal unique plaque properties rendering it, for example, ‘vulnerable and prone to rupture’. Early detection of these lesions may allow for early or prophylactic treatment even before an adverse coronary event occurs. Besides diagnostic imaging, advances in real-time image acquisition and motion compensation now provide grounds for MRI-guided coronary interventions. In this article, we summarize our research on MRI-based molecular imaging in cardiovascular disease and feature our advances towards real-time MRI-based coronary interventions in a porcine model.
Collapse
Affiliation(s)
- Timo Heidt
- Department of Cardiology, Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Simon Reiss
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Ali C Özen
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.,German Cancer Consortium Partner Site Freiburg, German Cancer Research Center (DKFZ), Stefan-Meier-Str. 17, 79104 Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology, Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology, Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Mukherjee RK, Whitaker J, Williams SE, Razavi R, O'Neill MD. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace 2019; 20:1721-1732. [PMID: 29584897 PMCID: PMC6212773 DOI: 10.1093/europace/euy040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Catheter ablation has an important role in the management of patients with ventricular tachycardia (VT) but is limited by modest long-term success rates. Magnetic resonance imaging (MRI) can provide valuable anatomic and functional information as well as potentially improve identification of target sites for ablation. A major limitation of current MRI protocols is the spatial resolution required to identify the areas of tissue responsible for VT but recent developments have led to new strategies which may improve substrate assessment. Potential ways in which detailed information gained from MRI may be utilized during electrophysiology procedures include image integration or performing a procedure under real-time MRI guidance. Image integration allows pre-procedural magnetic resonance (MR) images to be registered with electroanatomical maps to help guide VT ablation and has shown promise in preliminary studies. However, multiple errors can arise during this process due to the registration technique used, changes in ventricular geometry between the time of MRI and the ablation procedure, respiratory and cardiac motion. As isthmus sites may only be a few millimetres wide, reducing these errors may be critical to improve outcomes in VT ablation. Real-time MR-guided intervention has emerged as an alternative solution to address the limitations of pre-acquired imaging to guide ablation. There is now a growing body of literature describing the feasibility, techniques, and potential applications of real-time MR-guided electrophysiology. We review whether real-time MR-guided intervention could be applied in the setting of VT ablation and the potential challenges that need to be overcome.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK.,Department of Cardiology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - Mark D O'Neill
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK.,Department of Cardiology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Heidt T, Reiss S, Krafft AJ, Özen AC, Lottner T, Hehrlein C, Galmbacher R, Kayser G, Hilgendorf I, Stachon P, Wolf D, Zirlik A, Düring K, Zehender M, Meckel S, von Elverfeldt D, Bode C, Bock M, von Zur Mühlen C. Real-time magnetic resonance imaging - guided coronary intervention in a porcine model. Sci Rep 2019; 9:8663. [PMID: 31209241 PMCID: PMC6572773 DOI: 10.1038/s41598-019-45154-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/03/2019] [Indexed: 11/28/2022] Open
Abstract
X-ray fluoroscopy is the gold standard for coronary diagnostics and intervention. Magnetic resonance imaging is a radiation-free alternative to x-ray with excellent soft tissue contrast in arbitrary slice orientation. Here, we assessed real-time MRI-guided coronary interventions from femoral access using newly designed MRI technologies. Six Goettingen minipigs were used to investigate coronary intervention using real-time MRI. Catheters were custom-designed and equipped with an active receive tip-coil to improve visibility and navigation capabilities. Using modified standard clinical 5 F catheters, intubation of the left coronary ostium was successful in all animals. For the purpose of MR-guided coronary interventions, a custom-designed 8 F catheter was used. In spite of the large catheter size, and therefore limited steerability, intubation of the left coronary ostium was successful in 3 of 6 animals within seconds. Thereafter, real-time guided implantation of a non-metallic vascular scaffold into coronary arteries was possible. This study demonstrates that real-time MRI-guided coronary catheterization and intervention via femoral access is possible without the use of any contrast agents or radiation, including placement of non-metallic vascular scaffolds into coronary arteries. Further development, especially in catheter and guidewire technology, will be required to drive forward routine MR-guided coronary interventions as an alternative to x-ray fluoroscopy.
Collapse
Affiliation(s)
- Timo Heidt
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany.
| | - Simon Reiss
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Hehrlein
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Roland Galmbacher
- Department of Experimental Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gian Kayser
- Department of Pathology, Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ingo Hilgendorf
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Peter Stachon
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Andreas Zirlik
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | | | - Manfred Zehender
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Stephan Meckel
- Department of Neuroradiology, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
9
|
Mukherjee RK, Roujol S, Chubb H, Harrison J, Williams S, Whitaker J, O'Neill L, Silberbauer J, Neji R, Schneider R, Pohl T, Lloyd T, O'Neill M, Razavi R. Epicardial electroanatomical mapping, radiofrequency ablation, and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance-an in vivo feasibility study. Europace 2019; 20:f254-f262. [PMID: 29294008 PMCID: PMC6140436 DOI: 10.1093/europace/eux341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 12/03/2022] Open
Abstract
Aims Magnetic resonance imaging (MRI) is the gold standard for defining myocardial substrate in 3D and can be used to guide ventricular tachycardia ablation. We describe the feasibility of using a prototype magnetic resonance-guided electrophysiology (MR-EP) system in a pre-clinical model to perform real-time MRI-guided epicardial mapping, ablation, and lesion imaging with active catheter tracking. Methods and results Experiments were performed in vivo in pigs (n = 6) using an MR-EP guidance system research prototype (Siemens Healthcare) with an irrigated ablation catheter (Vision-MR, Imricor) and a dedicated electrophysiology recording system (Advantage-MR, Imricor). Following epicardial access, local activation and voltage maps were acquired, and targeted radiofrequency (RF) ablation lesions were delivered. Ablation lesions were visualized in real time during RF delivery using MR-thermometry and dosimetry. Hyper-acute and acute assessment of ablation lesions was also performed using native T1 mapping and late-gadolinium enhancement (LGE), respectively. High-quality epicardial bipolar electrograms were recorded with a signal-to-noise ratio of greater than 10:1 for a signal of 1.5 mV. During epicardial ablation, localized temperature elevation could be visualized with a maximum temperature rise of 35 °C within 2 mm of the catheter tip relative to remote myocardium. Decreased native T1 times were observed (882 ± 107 ms) in the lesion core 3–5 min after lesion delivery and relative location of lesions matched well to LGE. There was a good correlation between ablation lesion site on the iCMR platform and autopsy. Conclusion The MR-EP system was able to successfully acquire epicardial voltage and activation maps in swine, deliver, and visualize ablation lesions, demonstrating feasibility for intraprocedural guidance and real-time assessment of ablation injury.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Sébastien Roujol
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Henry Chubb
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - James Harrison
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Steven Williams
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - John Whitaker
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Louisa O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - John Silberbauer
- Department of Cardiology, Brighton and Sussex University Hospital NHS Trust, Eastern Road, Brighton, UK
| | - Radhouene Neji
- Siemens Healthcare, Sir William Siemens Square, Frimley, Camberley, UK
| | | | | | - Tom Lloyd
- Imricor Medical Systems, 400 Gateway Blvd, Burnsville, MN, USA
| | - Mark O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| |
Collapse
|
10
|
Kitamura T, Martin CA, Vlachos K, Martin R, Frontera A, Takigawa M, Thompson N, Cheniti G, Massouille G, Lam A, Bourier F, Duchateau J, Pambrun T, Denis A, Derval N, Hocini M, HaÏssaguerre M, Cochet H, JaÏs P, Sacher F. Substrate Mapping and Ablation for Ventricular Tachycardia in Patients with Structural Heart Disease: How to Identify Ventricular Tachycardia Substrate. J Innov Card Rhythm Manag 2019; 10:3565-3580. [PMID: 32477720 PMCID: PMC7252795 DOI: 10.19102/icrm.2019.100302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023] Open
Abstract
Catheter ablation for ventricular tachycardia (VT) has been increasingly used over the past two decades in patients with structural heart disease (SHD). In these individuals, a substrate mapping strategy is being more commonly applied to identify targets for VT ablation, which has been shown to be more effective versus targeting mappable VTs alone. There are a number of substrate mapping methods in existence that aim to explore potential VT isthmuses, although their success rates vary. Most of the reported electrogram-based mapping studies have been performed with ablation catheters; meanwhile, the use of multipolar mapping catheters with smaller electrodes and closer interelectrode spacing has emerged, which allows for an assessment of detailed near-field abnormal electrograms at a higher resolution. Another recent advancement has occurred in the use of imaging techniques in VT ablation, particularly in refining the substrate. The goal of this paper is to review the key developments and limitations of current mapping strategies of substrate-based VT ablation and their outcomes. In addition, we briefly summarize the role of cardiac imaging in delineating VT substrate.
Collapse
Affiliation(s)
- Takeshi Kitamura
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan
| | - Claire A Martin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Konstantinos Vlachos
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Ruairidh Martin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Newcastle University, Newcastle-upon-Tyne, UK
| | - Antonio Frontera
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,San Raffaele Hospital, Milan, Italy
| | - Masateru Takigawa
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Nathaniel Thompson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Ghassen Cheniti
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Gregoire Massouille
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Anna Lam
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Felix Bourier
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Thomas Pambrun
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Arnaud Denis
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Nicolas Derval
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Meleze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Michel HaÏssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Pierre JaÏs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Mukherjee RK, Chubb H, Roujol S, Razavi R, O'Neill MD. Advances in Real-Time MRI-Guided Electrophysiology. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:6. [PMID: 31501689 PMCID: PMC6733706 DOI: 10.1007/s12410-019-9481-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review Theoretical benefits of real-time MRI guidance over conventional electrophysiology include contemporaneous 3D substrate assessment and accurate intra-procedural guidance and evaluation of ablation lesions. We review the unique challenges inherent to MRI-guided electrophysiology and how to translate the potential benefits in the treatment of cardiac arrhythmias. Recent Findings Over the last 5 years, there has been substantial progress, initially in animal models and more recently in clinical studies, to establish methods and develop workflows within the MR environment that resemble those of conventional electrophysiology laboratories. Real-time MRI-guided systems have been used to perform electroanatomic mapping and ablation in patients with atrial flutter, and there is interest in developing the technology to tackle more complex arrhythmias including atrial fibrillation and ventricular tachycardia. Summary Mainstream adoption of real-time MRI-guided electrophysiology will require demonstration of clinical benefit and will be aided by increased availability of devices suitable for use in the MRI environment.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Henry Chubb
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Mark D O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London SE1 7EH, UK.,Department of Cardiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Bönner F, Haberkorn S, Behm P, Schnackenburg B, Krüger S, Weiss S, Meyer C, Kelm M, Neizel-Wittke M. Magnetic resonance guided renal denervation using active tracking: first in vivo experience in Swine. Int J Cardiovasc Imaging 2017; 34:431-439. [DOI: 10.1007/s10554-017-1244-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|