1
|
Chen X, Xia Y, Shen S, Wang C, Zan R, Yu H, Yang S, Zheng X, Yang J, Suo T, Gu Y, Zhang X. Research on the Current Application Status of Magnesium Metal Stents in Human Luminal Cavities. J Funct Biomater 2023; 14:462. [PMID: 37754876 PMCID: PMC10532415 DOI: 10.3390/jfb14090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The human body comprises various tubular structures that have essential functions in different bodily systems. These structures are responsible for transporting food, liquids, waste, and other substances throughout the body. However, factors such as inflammation, tumors, stones, infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular structures, which can impair the normal function of the corresponding organs or tissues. To address luminal obstructions, stenting is a commonly used treatment. However, to minimize complications associated with the long-term implantation of permanent stents, there is an increasing demand for biodegradable stents (BDS). Magnesium (Mg) metal is an exceptional choice for creating BDS due to its degradability, good mechanical properties, and biocompatibility. Currently, the Magmaris® coronary stents and UNITY-BTM biliary stent have obtained Conformité Européene (CE) certification. Moreover, there are several other types of stents undergoing research and development as well as clinical trials. In this review, we discuss the required degradation cycle and the specific properties (anti-inflammatory effect, antibacterial effect, etc.) of BDS in different lumen areas based on the biocompatibility and degradability of currently available magnesium-based scaffolds. We also offer potential insights into the future development of BDS.
Collapse
Affiliation(s)
- Xiang Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
| | - Yan Xia
- School of Stomatology, Anhui Medical College, Hefei 230601, China;
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Chunyan Wang
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Xiaohong Zheng
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Jiankang Yang
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Yaqi Gu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| |
Collapse
|
2
|
Teng S, Zhu Z, Li Y, Hu X, Fang Z, Liu Z, Zhou S. A novel glycyrrhizin acid-coated stent reduces neointimal formation in a rabbit iliac artery model. Front Pharmacol 2023; 14:1159779. [PMID: 37266147 PMCID: PMC10229815 DOI: 10.3389/fphar.2023.1159779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Most drug-eluting stents (DESs) inhibit intimal hyperplasia but impair re-endothelialization. This study aimed to evaluate in vivo strut coverage and neointimal growth in a new glycyrrhizin acid (GA)-eluting stent. Methods: New Zealand White rabbits (n = 20) with atherosclerotic plaques were randomly divided into three groups based on implanted iliac artery stents: bare-metal stents (BMSs), rapamycin-eluting stents, and GA-eluting stents. After the in vivo intravascular ultrasound (IVUS) assessment at 28 days, the vessels were harvested for scanning electron microscopy (SEM) and histology. After 4 weeks of follow-up, the stent and external elastic lamina (EEL) areas were compared among the groups. Results: The rapamycin- or GA-eluting stents significantly reduced the neointimal area compared with BMSs, though GA-eluting stents had the lowest reduction. There were more uncovered struts for rapamycin-eluting stents than those for GA-eluting stents and bare-metal stents. The endothelial nitric oxide synthase (eNOS) expression in GA-eluting stents was much higher than that in BMSs and rapamycin-eluting stents, even though the endothelial coverage between struts was equivalent between BMSs and GA-eluting stents. Moreover, GA-eluting stents markedly promoted re-endothelialization and improved arterial healing compared to rapamycin-eluting stents in a rabbit atherosclerotic model. Conclusion: In conclusion, the novel GA-coated stent used in this study inhibited intimal hyperplasia and promoted re-endothelialization.
Collapse
Affiliation(s)
- Shuai Teng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Li
- Department of Vascular Surgery, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjiang Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Sun Y, Wu H, Wang W, Zan R, Peng H, Zhang S, Zhang X. Translational status of biomedical Mg devices in China. Bioact Mater 2019; 4:358-365. [PMID: 31909297 PMCID: PMC6939060 DOI: 10.1016/j.bioactmat.2019.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Magnesium (Mg) and its alloys as temporary medical implants with biodegradable and properly mechanical properties have been investigated for a long time. There are already three kinds of biodegradable Mg implants which are approved by Conformite Europeene (CE) or Korea Food and Drug Administration (KFDA), but not China Food and Drug Administration (CFDA, now it is National Medical Products Administration, NMPA). As we know, Chinese researchers, surgeons, and entrepreneurs have tried a lot to research and develop biodegradable Mg implants which might become other new approved implants for clinical applications. So in this review, we present the representative Mg implants of three categories, orthopedic implants, surgical implants, and intervention implants and provide an overview of current achievement in China from academic publications and Chinese patents. We would like to provide a systematic way to translate Mg and its alloy implants from experiment designs to clinical products.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhui Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhou Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| |
Collapse
|
4
|
Geng J, Hu P, Ma Y, Zhang P, Zhang H. Endovascular treatment of V3 segment vertebro-vertebral arteriovenous fistula with Willis covered stent: Case report and literature review. Interv Neuroradiol 2018; 25:97-101. [PMID: 30165773 DOI: 10.1177/1591019918796607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A 46-year-old male presented to our hospital suffering from right mastoid pulsatile tinnitus secondary to traffic trauma. Digital subtraction angiography was remarkable for a vertebro-vertebral arteriovenous fistula fed by the right vertebral artery at the C1 level. Dual platelet therapy was administrated before and after the operation, then a Willis covered stent was deployed at the orifice of the fistula. Post-operative angiography showed proper stent localization but some contrast agent leaking from the fistula. Angiography performed 6 months post-operatively demonstrated no leak from the fistula and the patency of the right vertebral artery. This case demonstrated that an intracranial covered stent could be used as an alternative, successful treatment for vertebro-vertebral arteriovenous fistula.
Collapse
Affiliation(s)
- Jiewen Geng
- Department of Neurosurgery, China International Neuroscience Institute, Beijing, China
| | - Peng Hu
- Department of Neurosurgery, China International Neuroscience Institute, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, China International Neuroscience Institute, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, China International Neuroscience Institute, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, China International Neuroscience Institute, Beijing, China
| |
Collapse
|