1
|
Static CT myocardial perfusion imaging: image quality, artifacts including distribution and diagnostic performance compared to 82Rb PET. Eur J Hybrid Imaging 2022; 6:1. [PMID: 34981241 PMCID: PMC8724508 DOI: 10.1186/s41824-021-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Rubidium-82 positron emission tomography (82Rb PET) MPI is considered a noninvasive reference standard for the assessment of myocardial perfusion in coronary artery disease (CAD) patients. Our main goal was to compare the diagnostic performance of static rest/ vasodilator stress CT myocardial perfusion imaging (CT-MPI) to stress/ rest 82Rb PET-MPI for the identification of myocardial ischemia.
Methods Forty-four patients with suspected or diagnosed CAD underwent both static CT-MPI and 82Rb PET-MPI at rest and during pharmacological stress. The extent and severity of perfusion defects on PET-MPI were assessed to obtain summed stress score, summed rest score, and summed difference score. The extent and severity of perfusion defects on CT-MPI was visually assessed using the same grading scale. CT-MPI was compared with PET-MPI as the gold standard on a per-territory and a per-patient basis.
Results On a per-patient basis, there was moderate agreement between CT-MPI and PET-MPI with a weighted 0.49 for detection of stress induced perfusion abnormalities. Using PET-MPI as a reference, static CT-MPI had 89% sensitivity (SS), 58% specificity (SP), 71% accuracy (AC), 88% negative predictive value (NPV), and 59% positive predictive value (PPV) to diagnose stress-rest perfusion deficits on a per-patient basis. On a per-territory analysis, CT-MPI had 73% SS, 65% SP, 67% AC, 90.8% NPV, and 34% PPV to diagnose perfusion deficits. Conclusions CT-MPI has high sensitivity and good overall accuracy for the diagnosis of functionally significant CAD using 82Rb PET-MPI as the reference standard. CT-MPI may play an important role in assessing the functional significance of CAD especially in combination with CCTA.
Collapse
|
2
|
Chen J, Zhang P, Liu H, Xu L, Zhang H. Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion. Med Image Anal 2021; 74:102207. [PMID: 34487982 DOI: 10.1016/j.media.2021.102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shanodng, China.
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Heye Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Stress Myocardial Blood Flow Ratio by Dynamic CT Perfusion Identifies Hemodynamically Significant CAD. JACC Cardiovasc Imaging 2020; 13:966-976. [DOI: 10.1016/j.jcmg.2019.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022]
|
4
|
Nomura CH, Assuncao-Jr AN, Guimarães PO, Liberato G, Morais TC, Fahel MG, Giorgi MCP, Meneghetti JC, Parga JR, Dantas-Jr RN, Cerri GG. Association between perivascular inflammation and downstream myocardial perfusion in patients with suspected coronary artery disease. Eur Heart J Cardiovasc Imaging 2020; 21:599-605. [DOI: 10.1093/ehjci/jeaa023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
Abstract
Aims
To investigate the association between pericoronary adipose tissue (PCAT) computed tomography (CT) attenuation derived from coronary computed tomography angiography (CTA) and coronary flow reserve (CFR) by positron emission tomography (PET) in patients with suspected coronary artery disease (CAD).
Methods and results
PCAT CT attenuation was measured in proximal segments of all major epicardial coronary vessels of 105 patients with suspected CAD. We evaluated the relationship between PCAT CT attenuation and other quantitative/qualitative CT-derived anatomic parameters with CFR by PET. Overall, the mean age was 60 ± 12 years and 93% had intermediate pre-test probability of obstructive CAD. Obstructive CAD (≥50% stenosis) was detected in 37 (35.2%) patients and impaired CFR (<2.0) in 32 (30.5%) patients. On a per-vessel analysis (315 vessels), obstructive CAD, non-calcified plaque volume, and PCAT CT attenuation were independently associated with CFR. In patients with coronary calcium score (CCS) <100, those with high-PCAT CT attenuation presented significantly lower CFR values than those with low-PCAT CT attenuation (2.47 ± 0.95 vs. 3.13 ± 0.89, P = 0.003). Among those without obstructive CAD, CFR was significantly lower in patients with high-PCAT CT attenuation (2.51 ± 0.95 vs. 3.02 ± 0.84, P = 0.021).
Conclusion
Coronary perivascular inflammation by CTA was independently associated with downstream myocardial perfusion by PET. In patients with low CCS or without obstructive CAD, CFR was lower in the presence of higher perivascular inflammation. PCAT CT attenuation might help identifying myocardial ischaemia particularly among patients who are traditionally considered non-high risk for future cardiovascular events.
Collapse
Affiliation(s)
- Cesar H Nomura
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
- Department of Radiology, Institute of Radiology, InRad, University of Sao Paulo Medical School, R. Dr. Ovidio Pires de Campos 75, Cerqueira Cesar, Sao Paulo - SP, 05403-010, Brazil
| | - Antonildes N Assuncao-Jr
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Patricia O Guimarães
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Gabriela Liberato
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Thamara C Morais
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Mateus G Fahel
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Maria C P Giorgi
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - José C Meneghetti
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Jose R Parga
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Roberto N Dantas-Jr
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
| | - Giovanni G Cerri
- Heart Institute, InCor, Cardiovascular Imaging Department, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44, Andar AB, Cerqueira Cesar, Sao Paulo – SP, 05403-000, Brazil
- Department of Radiology, Institute of Radiology, InRad, University of Sao Paulo Medical School, R. Dr. Ovidio Pires de Campos 75, Cerqueira Cesar, Sao Paulo - SP, 05403-010, Brazil
| |
Collapse
|
5
|
Li JJ, Zeng M. Clinical impact of low-radiation computed tomography coronary angiography diagnosis for coronary artery stenosis: Study Protocol. Medicine (Baltimore) 2019; 98:e17474. [PMID: 31725604 PMCID: PMC6867739 DOI: 10.1097/md.0000000000017474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The objective of this study aims to assess the clinic impact of low-radiation computed tomography coronary angiography (LR-CTCA) diagnosis for coronary artery stenosis (CAS). METHODS This study will comprehensively search the following electronic databases from inception to the present: PUBMED, EMBASE, Cochrane Library, PsycINFO, Web of Science, Google, Allied and Complementary Medicine Database, Chinese Biomedical Literature Database, VIP database, WANGFANG, and China National Knowledge Infrastructure. All these electronic databases will be searched without language restrictions. All case-controlled studies on assessing the clinical impact of LR-CTCA diagnosis for patients with CAS will be included. Quality Assessment of Diagnostic Accuracy Studies tool will be utilized to evaluate the methodological quality for each qualified studies. RESULTS We will assess the clinic impact of LR-CTCA diagnosis for CAS by measuring sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio. CONCLUSION The results of this study will summarize the latest evidence of LR-CTCA diagnosis for CAS. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019139336.
Collapse
Affiliation(s)
- Jian-Jun Li
- Department of CT Diagnosis, Yan’an People's Hospital, Yan’an, China
| | - Ming Zeng
- Department of Radiology, Yan’an Hospital of Traditional Chinese Medicine, Yan’an, China
| |
Collapse
|
6
|
Yi Y, Xu C, Wu W, Wang Y, Li YM, Shen ZJ, Jin ZY, Wang YN. Myocardial blood flow analysis of stress dynamic myocardial CT perfusion for hemodynamically significant coronary artery disease diagnosis: The clinical value of relative parameter optimization. J Cardiovasc Comput Tomogr 2019; 14:314-321. [PMID: 31953042 DOI: 10.1016/j.jcct.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The methods for calculating the optimal myocardial blood flow (MBF) relative parameters in stress dynamic myocardial CT perfusion (CTP) in the detection of hemodynamically significant coronary artery disease (CAD) are non-uniform and lack standards. METHODS A total of 86 patients who were prospectively recruited underwent APT stress dynamic myocardial CTP. The relative MBF perfusion parameters were calculated as av_Ratio, Q3av_Ratio and hi_Ratio according to the three types of reference MBF values, respectively: (1) average segmental MBF value, (2) the third quartile of the average segmental MBF value, and (3) highest segmental MBF value. All the data were derived from both the endocardial and transmural layers of the myocardium. Invasive coronary angiography and fractional flow reserve (ICA/FFR) were used as the reference standards for myocardial ischemia evaluation. RESULTS A total of 151 vessels of 60 patients (43 men and 17 women; 61.38 ± 8.01 years) were enrolled in the analysis. The performance of the endocardial layer was superior to that of the transmural layer (all P < 0.05). The hi_Ratio of the endocardial myocardium (AUC = 0.906, 95% CI: 0.857-0.954), for which the highest segmental value was selected as the reference MBF, was superior to both av_Ratio and Q3av_Ratio for ischemia detection (AUC, 0.906 vs.0.879, P < 0.05; 0.906 vs.0.891, P = 0.18), and the sensitivity, specificity, PPV, NPV and diagnostic accuracy were 74.1%, 93.6%, 87.8%, 85.3% and 86.1%, respectively. The cutoff value of hi_Ratio was 0.675. CONCLUSIONS The relative MBF parameter of the endocardial myocardium using the highest segmental MBF value as a reference provided optimal diagnostic accuracy for the detection of hemodynamically significant CAD.
Collapse
Affiliation(s)
- Yan Yi
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Cheng Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yun Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Yu-Mei Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Zhu-Jun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Yi-Ning Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Ker WDS, Neves DGD, Magalhães TA, Santos AASMDD, Mesquita CT, Nacif MS. Myocardial Perfusion by Coronary Computed Tomography in the Evaluation of Myocardial Ischemia: Simultaneous Stress Protocol with SPECT. Arq Bras Cardiol 2019; 113:1092-1101. [PMID: 31596324 PMCID: PMC7021272 DOI: 10.5935/abc.20190201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Functional assessment to rule out myocardial ischemia using coronary computed tomography angiography (CCTA) is extremely important and data on the Brazilian population are still limited. OBJECTIVE To assess the diagnostic performance of myocardial perfusion by CCTA in the detection of severe obstructive coronary artery disease (CAD) compared with single-photon emission computerized tomography (SPECT). To analyze the importance of anatomical knowledge to understand the presence of myocardial perfusion defects on SPECT imaging that is not identified on computed tomography (CT) scan. METHOD A total of 35 patients were evaluated by a simultaneous pharmacologic stress protocol. Fisher's exact test was used to compare proportions. The patients were grouped according to the presence or absence of significant CAD. The area under the ROC curve was used to identify the diagnostic performance of CCTA and SPECT in perfusion assessment. P < 0.05 values were considered statistically significant. RESULTS For detection of obstructive CAD, CT myocardial perfusion analysis yielded an area under the ROC curve of 0.84 [a 95% confidence interval (CI95%): 0.67-0.94, p < 0.001]. SPECT myocardial perfusion imaging, on the other hand, showed an AUC of 0.58 (95% CI 0.40 - 0.74, p < 0.001). In this study, false-positive results with SPECT are described. CONCLUSION Myocardial perfusion analysis by CTA displays satisfactory results compared to SPECT in the detection of obstructive CAD. CCTA can rule out false-positive results of SPECT.
Collapse
Affiliation(s)
- Wilter Dos Santos Ker
- Hospital Universitário Antonio Pedro, Niterói, RJ - Brazil.,Universidade Federal Fluminense, Niterói, RJ - Brazil
| | | | - Tiago Augusto Magalhães
- Complexo Hospital de Clínicas da Universidade Federal do Paraná (CHC-UFPR), Curitiba, PR - Brazil
| | | | | | - Marcelo Souto Nacif
- Hospital Universitário Antonio Pedro, Niterói, RJ - Brazil.,Universidade Federal Fluminense, Niterói, RJ - Brazil.,Complexo Hospital de Clínicas da Universidade Federal do Paraná (CHC-UFPR), Curitiba, PR - Brazil
| |
Collapse
|
8
|
Alessio AM, Bindschadler M, Busey JM, Shuman WP, Caldwell JH, Branch KR. Accuracy of Myocardial Blood Flow Estimation From Dynamic Contrast-Enhanced Cardiac CT Compared With PET. Circ Cardiovasc Imaging 2019; 12:e008323. [PMID: 31195817 DOI: 10.1161/circimaging.118.008323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The accuracy of absolute myocardial blood flow (MBF) from dynamic contrast-enhanced cardiac computed tomography acquisitions has not been fully characterized. We evaluate computed tomography (CT) compared with rubidium-82 positron emission tomography (PET) MBF estimates in a high-risk population. Methods In a prospective trial, patients receiving clinically indicated rubidium-82 PET exams were recruited to receive a dynamic contrast-enhanced cardiac computed tomography exam. The CT protocol included a rest and stress dynamic portion each acquiring 12 to 18 cardiac-gated frames. The global MBF was estimated from the PET and CT exam. Results Thirty-four patients referred for cardiac rest-stress PET were recruited. Of the 68 dynamic contrast-enhanced cardiac computed tomography scans, 5 were excluded because of injection errors or mismatched hemodynamics. The CT-derived global MBF was highly correlated with the PET MBF (r=0.92; P<0.001) with a mean difference of 0.7±26.4%. The CT MBF estimates were within 20% of PET estimates ( P<0.02) with a mean of (1) MBF for resting flow of PET versus CT of 0.9±0.3 versus 1.0±0.2 mL/min per gram and (2) MBF for stress flow of 2.1±0.7 versus 2.0±0.8 mL/min per gram. Myocardial flow reserve was -14±28% underestimated with CT (PET versus CT myocardial flow reserve, 2.5±0.6 versus 2.2±0.6). The proposed rest+stress+computed tomography angiography protocol had a dose length product of 598±76 mGy×cm resulting in an approximate effective dose of 8.4±1.1 mSv. Conclusions In a high-risk clinical population, a clinically practical dynamic contrast-enhanced cardiac computed tomography provided unbiased MBF estimates within 20% of rubidium-82 PET. Although unbiased, the CT estimates contain substantial variance with an standard error of the estimate of 0.44 mL/min per gram. Myocardial flow reserve estimation was not as accurate as individual MBF estimates.
Collapse
Affiliation(s)
- Adam M Alessio
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington.,Computational Mathematics, Biomedical Engineering, and Radiology, Michigan State University (A.M.A.)
| | - Michael Bindschadler
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington
| | - Janet M Busey
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington
| | - William P Shuman
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington
| | - James H Caldwell
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington.,Division of Cardiology, Department of Medicine (J.H.C., K.R.B.), University of Washington
| | - Kelley R Branch
- Division of Cardiology, Department of Medicine (J.H.C., K.R.B.), University of Washington
| |
Collapse
|