1
|
Mohamed G, Munir M, Rai A, Gaddam S. Pancreatic Cancer: Screening and Early Detection. Gastroenterol Clin North Am 2025; 54:205-221. [PMID: 39880528 DOI: 10.1016/j.gtc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Pancreatic cancer, often diagnosed at advanced stages, has poor survival rates. Effective screening aims to detect the disease early, improving outcomes. Current guidelines recommend screening high-risk groups, including those with a family history or genetic predispositions, using methods like endoscopic ultrasound and MRI. The American Gastroenterological Association and other organizations advise annual surveillance for high-risk individuals, typically starting at the age of 50 or 10 years younger than the youngest affected relative. For certain genetic syndromes, such as Peutz-Jeghers syndrome or hereditary pancreatitis, screening may begin as early as the age of 35 to 40 years.
Collapse
Affiliation(s)
- Ghada Mohamed
- Department of Internal Medicine, Lahey Hospital & Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Malak Munir
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, ST, Suite 7705, Los Angeles, CA 90048, USA
| | - Amar Rai
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, ST, Suite 7705, Los Angeles, CA 90048, USA
| | - Srinivas Gaddam
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, ST, Suite 7705, Los Angeles, CA 90048, USA.
| |
Collapse
|
2
|
Nakamura S, Kojima Y, Takeuchi S. Causative Genes of Homologous Recombination Deficiency (HRD)-Related Breast Cancer and Specific Strategies at Present. Curr Oncol 2025; 32:90. [PMID: 39996890 PMCID: PMC11854191 DOI: 10.3390/curroncol32020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Recently, homologous recombination deficiency (HRD) has become a new target for hereditary cancers. Molecular-based approaches for hereditary cancers in the clinical setting have been reviewed. In particular, the efficacy of the PARP inhibitor has been considered by several clinical trials for various kinds of hereditary cancers. This indicates that the PARP inhibitor can be effective for any kind of BRCA mutated cancers, regardless of the organ-specific cancer. Homologous recombination deficiency (HRD) has become a new target for hereditary cancers, indicating the necessity to confirm the status of HRD-related genes. ARID1A, ATM, ATRX, PALB2, BARD1, RAD51C and CHEK2 are known as HRD-related genes for which simultaneous examination as part of panel testing is more suitable. Both surgical and medical oncologists should learn the basis of genetics including HRD. An understanding of the basic mechanism of homologous repair recombination (HRR) in BRCA-related breast cancer is mandatory for all surgical or medical oncologists because PARP inhibitors may be effective for these cancers and a specific strategy of screening for non-cancers exists. The clinical behavior of each gene should be clarified based on a large-scale database in the future, or, in other words, on real-world data. Firstly, HRD-related genes should be examined when the hereditary nature of a cancer is placed in doubt after an examination of the relevant family history. Alternatively, HRD score examination is a solution by which to identify HRD-related genes at the first step. If lifetime risk is estimated at over 20%, an annual breast MRI is necessary for high-risk screening. However, there are limited data to show its benefit compared with BRCA. Therefore, a large-scale database, including clinical information and a long-term follow-up should be established, after which a periodical assessment is mandatory. The clinical behavior of each gene should be clarified based on a large-scale database, or, in other words, real-world data.
Collapse
Affiliation(s)
- Seigo Nakamura
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
- Division of Breast Surgical Oncology, Department of Surgery, Showa University, Tokyo 142-8666, Japan
| | - Yasuyuki Kojima
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
- Division of Breast Surgical Oncology, Department of Surgery, Showa University, Tokyo 142-8666, Japan
| | - Sayoko Takeuchi
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
| |
Collapse
|
3
|
Jian Y, Yang S, Liu R, Tan X, Zhao Q, Wu J, Chen Y. Radiomics Analysis of Different Machine Learning Models based on Multiparametric MRI to Identify Benign and Malignant Testicular Lesions. Acad Radiol 2025:S1076-6332(25)00067-4. [PMID: 39904666 DOI: 10.1016/j.acra.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a machine learning-based prediction model for the use of multiparametric magnetic resonance imaging(MRI) to predict benign and malignant lesions in the testis. MATERIALS AND METHODS The study retrospectively enrolled 148 patients with pathologically confirmed benign and malignant testicular lesions, dividing them into: training set (n=103) and validation set (n=45). Radiomics characteristics were derived from T2-weighted(T2WI)、contrast-enhanced T1-weighted(CE-T1WI)、diffusion-weighted imaging(DWI) and Apparent diffusion coefficient(ADC) MRI images, followed by feature selection. A machine learning-based combined model was developed by incorporating radiomics scores (rad scores) from the optimal radiomics model along with clinical predictors. Draw the receiver operating characteristic (ROC) curve and use the area under the curve (AUC) to evaluate and compare the predictive performance of each model. The diagnostic efficacy of the various machine learning models was evaluated using the Delong test. RESULTS Radiomics features were extracted from four sequence-based groups(CE-T1WI+DWI+ADC+T2WI), and the model that combined Logistic Regression(LR) machine learning showed the best performance in the radiomics model. The clinical model identified one independent predictors. The combined clinical-radiomics model showed the best performance, whose AUC value was 0.932(95% confidence intervals(CI)0.868-0.978), sensitivity was 0.875, specificity was 0.871 and accuracy was 0.884 in validation set. CONCLUSION The combined clinical-radiomics model can be used as a reliable tool to predict benign and malignant testicular lesions and provide a reference for clinical treatment method decisions.
Collapse
Affiliation(s)
- Yuanxi Jian
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.).
| | - Suping Yang
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.)
| | - Rui Liu
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.)
| | - Xin Tan
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.)
| | - Qian Zhao
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.)
| | - Junlin Wu
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.)
| | - Yuan Chen
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.)
| |
Collapse
|
4
|
Ming Y, Yang F, Xiao Y, Yue S, Peng P, Yue X, Pu Q, Yang H, Liang H, Zhang B, Huang J, Sun J. Exploring the feasibility of FOCUS DWI with deep learning reconstruction for breast cancer diagnosis: A comparative study with conventional DWI. PLoS One 2024; 19:e0313011. [PMID: 39480865 PMCID: PMC11527270 DOI: 10.1371/journal.pone.0313011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE This study compared field-of-view (FOV) optimized and constrained undistorted single-shot diffusion-weighted imaging (FOCUS DWI) with deep-learning-based reconstruction (DLR) to conventional DWI for breast imaging. METHODS This study prospectively enrolled 49 female patients suspected of breast cancer from July to December 2023. The patients underwent conventional and FOCUS breast DWI and data were reconstructed with and without DLR. Two radiologists independently evaluated three images per patient using a 5-point Likert scale. Objective evaluations, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC), were conducted using manual region of interest-based analysis. The subjective and objective evaluations were compared using the Friedman test. RESULTS The scores for the overall image quality, anatomical details, lesion conspicuity, artifacts, and distortion in FOCUS-DLR DWI were higher than in conventional DWI (all P < 0.001). The SNR of FOCUS-DLR DWI was higher than that of conventional and FOCUS DWI (both P < 0.001), while FOCUS and conventional DWI were similar (P = 0.096). Conventional, FOCUS, and FOCUS-DLR DWI had similar CNR and ADC values. CONCLUSION Our findings indicate that images produced by FOCUS-DLR DWI were superior to conventional DWI, supporting the applicability of this technique in clinical practice. DLR provides a new approach to optimize breast DWI.
Collapse
Affiliation(s)
- Yue Ming
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yitian Xiao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuting Yue
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Pengfei Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Yue
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qian Pu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiyi Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | | | - Bo Zhang
- GE HealthCare MR Research, Beijing, China
| | - Juan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Calderwood AH, Sawhney MS, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Al-Haddad MA, Amateau SK, Buxbaum JL, DiMaio CJ, Fujii-Lau LL, Jamil LH, Jue TL, Law JK, Lee JK, Naveed M, Pawa S, Storm AC, Qumseya BJ. American Society for Gastrointestinal Endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: methodology and review of evidence. Gastrointest Endosc 2022; 95:827-854.e3. [PMID: 35183359 DOI: 10.1016/j.gie.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UTHealth, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Cancer Center, Sheba Medical Center, Yehuda, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Mohammad A Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stuart K Amateau
- Division of Gastroenterology Hepatology and Nutrition, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Christopher J DiMaio
- Department of Gastroenterology, Mount Sinai School of Medicine, New York, New York, USA
| | - Larissa L Fujii-Lau
- Department of Gastroenterology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Laith H Jamil
- Section of Gastroenterology and Hepatology, Beaumont Health, Royal Oak, Michigan, and Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Terry L Jue
- Department of Gastroenterology, The Permanente Medical Group, San Francisco, California, USA
| | - Joanna K Law
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Jeffrey K Lee
- Department of Gastroenterology, Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | - Mariam Naveed
- Advent Health Medical Group, Gastroenterology/Hepatology, Advent Health Hospital Altamonte Springs, Altamonte Springs, Florida, USA
| | - Swati Pawa
- Department of Gastroenterology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Andrew C Storm
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Sawhney MS, Calderwood AH, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Qumseya BJ. ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations. Gastrointest Endosc 2022; 95:817-826. [PMID: 35183358 DOI: 10.1016/j.gie.2021.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UT Health, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Kim SH, Hwang HK, Lee WJ, Kang CM. Biologic behavior of resected BRCA-mutated pancreatic cancer: Comparison with sporadic pancreatic cancer and other BRCA-related cancers. Pancreatology 2021; 21:544-549. [PMID: 33612442 DOI: 10.1016/j.pan.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/23/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Since margin-negative resection is essential for the cure of pancreatic cancer (PC), early detection of PC is important. Although PC is the third most common cancer associated with BRCA1/2 mutations, clinical research regarding BRCA mutations in resected PC are rare. In this study, we investigated the oncologic characteristics of resected PC with BRCA mutation to suggest management strategies. METHODS We retrospectively reviewed data from 493 patients who were confirmed to be pathogenic BRCA1/2 mutation carriers between January 2007 and December 2019. We investigated the oncologic characteristics of PC patients by comparing them with resected sporadic PC and other BRCA-related cancer groups (breast cancer, ovarian cancer, and others). RESULTS Ten BRCA mutation carriers (2.0%) experienced PC, and PC onset was significantly later than that of BRCA-related breast cancer (age: breast vs. pancreas, 45.0 vs. 53.5 years, p = 0.050). Six patients underwent pancreatectomy and their long-term survival outcomes did not differ from those of sporadic PC patients (disease free survival: BRCA1/2 vs. sporadic, 10.0 months vs. 9.0 months, p = 0.504; overall survival: BRCA1/2 vs. sporadic, 29.0 months vs. 35.0 months, p = 0.520). CONCLUSION BRCA-mutated PC occurs later than BRCA-mutated breast cancer. Active genetic testing to identify BRCA1/2 mutation carriers at the onset of breast cancer and continuous long-term surveillance of these patients can provide opportunities to detect BRCA-mutated PC at a resectable stage.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, South Korea
| | - Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, South Korea
| | - Woo Jung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, South Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, South Korea.
| |
Collapse
|
8
|
Paudyal R, Chen L, Oh JH, Zakeri K, Hatzoglou V, Tsai CJ, Lee N, Shukla-Dave A. Nongaussian Intravoxel Incoherent Motion Diffusion Weighted and Fast Exchange Regime Dynamic Contrast-Enhanced-MRI of Nasopharyngeal Carcinoma: Preliminary Study for Predicting Locoregional Failure. Cancers (Basel) 2021; 13:1128. [PMID: 33800762 PMCID: PMC7961986 DOI: 10.3390/cancers13051128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to identify whether the quantitative metrics from pre-treatment (TX) non-Gaussian intravoxel incoherent motion (NGIVIM) diffusion weighted (DW-) and fast exchange regime (FXR) dynamic contrast enhanced (DCE)-MRI can predict patients with locoregional failure (LRF) in nasopharyngeal carcinoma (NPC). Twenty-nine NPC patients underwent pre-TX DW- and DCE-MRI on a 3T MR scanner. DW imaging data from primary tumors were fitted to monoexponential (ADC) and NGIVIM (D, D*, f, and K) models. The metrics Ktrans, ve, and τi were estimated using the FXR model. Cumulative incidence (CI) analysis and Fine-Gray (FG) modeling were performed considering death as a competing risk. Mean ve values were significantly different between patients with and without LRF (p = 0.03). Mean f values showed a trend towards the difference between the groups (p = 0.08). Histograms exhibited inter primary tumor heterogeneity. The CI curves showed significant differences for the dichotomized cutoff value of ADC ≤ 0.68 × 10-3 (mm2/s), D ≤ 0.74 × 10-3 (mm2/s), and f ≤ 0.18 (p < 0.05). τi ≤ 0.89 (s) cutoff value showed borderline significance (p = 0.098). FG's modeling showed a significant difference for the K cutoff value of ≤0.86 (p = 0.034). Results suggest that the role of pre-TX NGIVIM DW- and FXR DCE-MRI-derived metrics for predicting LRF in NPC than alone.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
| | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - C. Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
9
|
Agostini A, Borgheresi A, Bruno F, Natella R, Floridi C, Carotti M, Giovagnoni A. New advances in CT imaging of pancreas diseases: a narrative review. Gland Surg 2020; 9:2283-2294. [PMID: 33447580 PMCID: PMC7804533 DOI: 10.21037/gs-20-551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Computed tomography (CT) plays a pivotal role as a diagnostic tool in many diagnostic and diffuse pancreatic diseases. One of the major limits of CT is related to the radiation exposure of young patients undergoing repeated examinations. Besides the standard CT protocol, the most recent technological advances, such as low-voltage acquisitions with high performance X-ray tubes and iterative reconstructions, allow for significant optimization of the protocol with dose reduction. The variety of CT tools are further expanded by the introduction of dual energy: the production of energy-selective images (i.e., virtual monochromatic images) improves the image contrast and lesion detection while the material-selective images (e.g., iodine maps or virtual unenhanced images) are valuable for lesion detection and dose reduction. The perfusion techniques provide diagnostic and prognostic information lesion and parenchymal vascularization and interstitium. Both dual energy and perfusion CT have the potential for pushing the limits of conventional CT from morphological evaluation to quantitative imaging applied to inflammatory and oncological diseases. Advances in post-processing of CT images, such as pancreatic volumetry, texture analysis and radiomics provide relevant information for pancreatic function but also for the diagnosis, management and prognosis of pancreatic neoplasms. Artificial intelligence is promising for optimization of the workflow in qualitative and quantitative analyses. Finally, basic concepts on the role of imaging on screening of pancreatic diseases will be provided.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Sciences, University of L’Aquila, L’Aquila, Italy
| | - Raffaele Natella
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Marina Carotti
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| |
Collapse
|
10
|
Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the Pancreas. J Magn Reson Imaging 2020; 53:347-359. [PMID: 32302044 DOI: 10.1002/jmri.27148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
MRI has played a critical role in the evaluation of patients with pancreatic pathologies, from screening of patients at high risk for pancreatic cancer to the evaluation of pancreatic cysts and indeterminate pancreatic lesions. The high mortality associated with pancreatic adenocarcinomas has spurred much interest in developing effective screening tools, with MRI using magnetic resonance cholangiopancreatography (MRCP) playing a central role in the hopes of identifying cancers at earlier stages amenable to curative resection. Ongoing efforts to improve the resolution and robustness of imaging of the pancreas using MRI may thus one day reduce the mortality of this deadly disease. However, the increasing use of cross-sectional imaging has also generated a concomitant clinical conundrum: How to manage incidental pancreatic cystic lesions that are found in over a quarter of patients who undergo MRCP. Efforts to improve the specificity of MRCP for patients with pancreatic cysts and with indeterminate pancreatic masses may be achieved with continued technical advances in MRI, including diffusion-weighted and T1 -weighted dynamic contrast-enhanced MRI. However, developments in quantitative MRI of the pancreas remain challenging, due to the small size of the pancreas and its upper abdominal location, adjacent to bowel and below the diaphragm. Further research is needed to improve MRI of the pancreas as a clinical tool, to positively affect the lives of patients with pancreatic abnormalities. This review focuses on various MR techniques such as MRCP, quantitative imaging, and dynamic contrast-enhanced imaging and their clinical applicability in the imaging of the pancreas, with an emphasis on pancreatic malignant and premalignant lesions. Level of Evidence 5 Technical Efficacy Stage 3 J. MAGN. RESON. IMAGING 2021;53:347-359.
Collapse
Affiliation(s)
- Kate A Harrington
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramesh Paudyal
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Kulkarni NM, Mannelli L, Zins M, Bhosale PR, Arif-Tiwari H, Brook OR, Hecht EM, Kastrinos F, Wang ZJ, Soloff EV, Tolat PP, Sangster G, Fleming J, Tamm EP, Kambadakone AR. White paper on pancreatic ductal adenocarcinoma from society of abdominal radiology's disease-focused panel for pancreatic ductal adenocarcinoma: Part II, update on imaging techniques and screening of pancreatic cancer in high-risk individuals. Abdom Radiol (NY) 2020; 45:729-742. [PMID: 31768594 DOI: 10.1007/s00261-019-02290-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive gastrointestinal malignancy with a poor 5-year survival rate. Its high mortality rate is attributed to its aggressive biology and frequently late presentation. While surgical resection remains the only potentially curative treatment, only 10-20% of patients will present with surgically resectable disease. Over the past several years, development of vascular bypass graft techniques and introduction of neoadjuvant treatment regimens have increased the number of patients who can undergo resection with a curative intent. While the role of conventional imaging in the detection, characterization, and staging of patients with PDAC is well established, its role in monitoring treatment response, particularly following neoadjuvant therapy remains challenging because of the complex anatomic and histological nature of PDAC. Novel morphologic and functional imaging techniques (such as DECT, DW-MRI, and PET/MRI) are being investigated to improve the diagnostic accuracy and the ability to measure response to therapy. There is also a growing interest to detect PDAC and its precursor lesions at an early stage in asymptomatic patients to increase the likelihood of achieving cure. This has led to the development of pancreatic cancer screening programs. This article will review recent updates in imaging techniques and the current status of screening and surveillance of individuals at a high risk of developing PDAC.
Collapse
Affiliation(s)
- Naveen M Kulkarni
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA.
| | | | - Marc Zins
- Department of Radiology, Groupe Hospitalier Paris Saint-Joseph, 185 rue Raymond Losserand, 75014, Paris, France
| | - Priya R Bhosale
- Abdominal Imaging Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1473, Houston, TX, 77030-400, USA
| | - Hina Arif-Tiwari
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave, P.O. Box 245067, Tucson, AZ, 85724, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Shapiro 4, Boston, MA, 02215-5400, USA
| | - Elizabeth M Hecht
- Department of Radiology, Columbia University Medical Center, 622 W 168th St, PH1-317, New York, NY, 10032, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Cancer, 161 Fort Washington Avenue, Suite: 862, New York, NY, 10032, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Erik V Soloff
- Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Parag P Tolat
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Guillermo Sangster
- Department of Radiology, Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Jason Fleming
- Gastrointestinal Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Eric P Tamm
- Abdominal Imaging Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1473, Houston, TX, 77030-400, USA
| | - Avinash R Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| |
Collapse
|
12
|
Zhang P, Feng Z, Cai W, You H, Fan C, Lv W, Min X, Wang L. T2-Weighted Image-Based Radiomics Signature for Discriminating Between Seminomas and Nonseminoma. Front Oncol 2019; 9:1330. [PMID: 31850216 PMCID: PMC6901122 DOI: 10.3389/fonc.2019.01330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: To evaluate the performance of a T2-weighted image (T2WI)-based radiomics signature for differentiating between seminomas and nonseminomas. Materials and Methods: In this retrospective study, 39 patients with testicular germ-cell tumors (TGCTs) confirmed by radical orchiectomy were enrolled, including 19 cases of seminomas and 20 cases of nonseminomas. All patients underwent 3T magnetic resonance imaging (MRI) before radical orchiectomy. Eight hundred fifty-one radiomics features were extracted from the T2WI of each patient. Intra- and interclass correlation coefficients were used to select the features with excellent stability and repeatability. Then, we used the minimum-redundancy maximum-relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithms for feature selection and radiomics signature development. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of the radiomics signature. Results: Five features were selected to build the radiomics signature. The radiomics signature was significantly different between the seminomas and nonseminomas (p < 0.01). The area under the curve (AUC), sensitivity, and specificity of the radiomics signature for discriminating between seminomas and nonseminomas were 0.979 (95% CI: 0.873–1.000), 90.00 (95% CI: 68.3–98.8), and 100.00 (95% CI: 82.4–100.0), respectively. Conclusion: The T2WI-based radiomics signature has the potential to non-invasively discriminate between seminomas and nonseminomas.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyan Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan You
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanyuan Fan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|