1
|
Yang Z, Zamarud A, Marianayagam NJ, Park DJ, Yener U, Soltys SG, Chang SD, Meola A, Jiang H, Lu W, Gu X. Deep learning-based overall survival prediction in patients with glioblastoma: An automatic end-to-end workflow using pre-resection basic structural multiparametric MRIs. Comput Biol Med 2025; 185:109436. [PMID: 39637462 PMCID: PMC11761382 DOI: 10.1016/j.compbiomed.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Accurate and automated early survival prediction is critical for patients with glioblastoma (GBM) as their poor prognosis requires timely treatment decision-making. To address this need, we developed a deep learning (DL)-based end-to-end workflow for GBM overall survival (OS) prediction using pre-resection basic structural multiparametric magnetic resonance images (Bas-mpMRI) with a multi-institutional public dataset and evaluated it with an independent dataset of patients on a prospective institutional clinical trial. MATERIALS AND METHODS The proposed end-to-end workflow includes a skull-stripping model, a GBM sub-region segmentation model and an ensemble learning-based OS prediction model. The segmentation model utilizes skull-stripped Bas-mpMRIs to segment three GBM sub-regions. The segmented GBM is fed into the contrastive learning-based OS prediction model to classify the patients into different survival groups. Our datasets include both a multi-institutional public dataset from Medical Image Computing and Computer Assisted Intervention (MICCAI) Brain Tumor Segmentation (BraTS) challenge 2020 with 235 patients, and an institutional dataset from a 5-fraction SRS clinical trial with 19 GBM patients. Each data entry consists of pre-operative Bas-mpMRIs, survival days and patient ages. Basic clinical characteristics are also available for SRS clinical trial data. The multi-institutional public dataset was used for workflow establishing (90% of data) and initial validation (10% of data). The validated workflow was then evaluated on the institutional clinical trial data. RESULTS Our proposed OS prediction workflow achieved an area under the curve (AUC) of 0.86 on the public dataset and 0.72 on the institutional clinical trial dataset to classify patients into 2 OS classes as long-survivors (>12 months) and short-survivors (<12 months), despite the large variation in Bas-mpMRI protocols. In addition, as part of the intermediate results, the proposed workflow can also provide detailed GBM sub-regions auto-segmentation with a whole tumor Dice score of 0.91. CONCLUSION Our study demonstrates the feasibility of employing this DL-based end-to-end workflow to predict the OS of patients with GBM using only the pre-resection Bas-mpMRIs. This DL-based workflow can be potentially applied to assist timely clinical decision-making.
Collapse
Affiliation(s)
- Zi Yang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aroosa Zamarud
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Neelan J Marianayagam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ulas Yener
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Liu Z, Ren S, Zhang H, Liao Z, Liu Z, An X, Cheng J, Li C, Gong J, Niu H, Jing J, Li Z, Liu T, Tian Y. Multiparametric MRI-based machine learning system of molecular subgroups and prognosis in medulloblastoma. Eur Radiol 2025:10.1007/s00330-025-11385-8. [PMID: 39883158 DOI: 10.1007/s00330-025-11385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
OBJECTIVES We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification. METHODS The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost. Finally, a novel risk stratification system to stratify the patients based on the M2R Score (Machine learning-based Medulloblastoma Risk Score) was proposed. RESULTS A total of 139 MB patients (36 female, average age 7.27 ± 3.62 years) were treated at Beijing Tiantan Hospital. The Bi-ResNet-MB model excelled in molecular subgroup classification, achieving an average AUC of 0.946 (95% CI: 0.899-0.993). For prognostic prediction, our models achieved AUCs of 0.840 (95% CI: 0.792-0.888), 0.949 (95% CI: 0.899-0.999), and 0.960 (95% CI: 0.915-1.000) for OS, and 0.946 (95% CI: 0.905-0.987), 0.932 (95% CI: 0.875-0.989), and 0.964 (95% CI: 0.921-1.000) for PFS at 1, 3, and 5 years. In an independent validation dataset of 108 patients (33 female, average age 7.11 ± 2.92 years), the average AUC of molecular subgroup classification reached 0.894 (95% CI: 0.797-1.000). For PFS prediction at 1, 3, and 5 years, the AUCs were 0.832 (95% CI: 0.724-0.920), 0.875 (95% CI: 0.781-0.967), and 0.907 (95% CI: 0.760-1.000), respectively. CONCLUSIONS Based on machine learning and MRI data, models for MB molecular subgroups and prognosis prediction and the novel risk stratification system may significantly benefit patients. KEY POINTS Question Medulloblastoma exhibits significant heterogeneity, leading to considerable variations in patient prognosis and there is a lack of effective risk assessment strategies. Findings We have constructed a comprehensive machine learning system that excels in subgrouping diagnosis, prognosis assessment, and risk stratification for medulloblastoma patients preoperatively. Clinical relevance The utilization of non-invasive preoperative diagnosis and assessment is advantageous for clinicians in creating personalized treatment plans, particularly for high-risk patients. Additionally, it lays a foundation for the subsequent implementation of neoadjuvant therapy for medulloblastoma.
Collapse
Affiliation(s)
- Ziyang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Sikang Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyi Liao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiming Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xu An
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Chunde Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Gong
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yongji Tian
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zhang M, Li X, Yang Y, Wang X, Li S, Yue Q, Wei Q, Hong J. The prognostic value and biological significance of MRI CE-T1-based radiomics models in CNS5-identified GBM: a multi-center study. Sci Rep 2024; 14:27551. [PMID: 39528608 PMCID: PMC11554799 DOI: 10.1038/s41598-024-78705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Following the publication of the 2021 WHO Classification of Central Nervous System Tumors (CNS5), Following the publication of the 2021 WHO Classification of Central Nervous System Tumors (CNS5), prognostic markers of glioblastoma (GBM) need to be further explored. Radiomics is a non-invasive and reproducible method for the prognostic assessment of multiple solid tumors. This study aimed to explore the prognostic value and biological significance of MRI T1-weighted enhancement (CE-T1) based radiomics in GBM (CNS5). A six-features radiomics prognostic model was created to calculate the radiomics score (RS). High RS (HR = 3.718, 95%CI: 2.222 - 6.220, P < 0.001) was an independent risk factor for overall survival (OS). The correlation between RS and OS was externally verified based on the First Affiliated Hospital of Fujian Medical University cohorts (n = 93; HR = 2.015, 95% CI: 1.079 - 3.762, P = 0.028) and the Second Affiliated Hospital of Zhejiang University School of Medicine cohorts (n = 126; HR = 1.779, 95% CI: 1.023 - 3.091, P = 0.041). Through biological significance exploration, RS was found to be significantly correlated with DNA repair (P = 0.009) and glycolysis (P = 0.001) pathway enrichment scores. RS was associated with γδT cell infiltration and the expression of LAG3. The MRI CE-T1 based radiomics models can predict GBM (CNS5) prognosis noninvasively. RS is relevant to DNA repair, and may guide the screening of radiosensitive populations.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoxia Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shan Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, Fujian, China.
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Zhou Q, Zhang B, Xue C, Ren J, Zhang P, Ke X, Man J, Zhou J. Magnetic resonance imaging-based radiomics for predicting infiltration levels of CD68+ tumor-associated macrophages in glioblastomas. Strahlenther Onkol 2024:10.1007/s00066-024-02289-5. [PMID: 39269469 DOI: 10.1007/s00066-024-02289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) are important biomarkers of tumor invasion and prognosis in patients with glioblastoma. We combined the imaging and radiomics features of preoperative MRI to predict CD68+ macrophage infiltration. METHODS Clinical, MRI image, and pathology data of 188 patients with glioblastoma were analyzed. Overall, 143 patients were included in the training (n = 101) and validation (n = 42) sets, whereas 45 patients were included in an independent test set. The optimal cut-off value (14.8%) was based on the minimum p-value formed by the Kaplan-Meier survival analysis and log-rank tests which divided patients into groups with high CD68+ TAMs (≥ 14.8%) and low CD68+ TAMs (< 14.8%). Regions of interest and radiomics features extraction were based on contrast-enhanced T1-weighted images (CE-T1WI) and T2WI. Multi-parameter stepwise regression was used to create the clinical, radiomics, and combined models, each evaluated using the receiver operating characteristic curve. Decision curve analysis was used to assess the clinical applicability of the nomogram. RESULTS A clinical model based on the minimum apparent diffusion coefficient (ADCmin) revealed an area under the curve (AUC) of 0.768, 0.764, and 0.624 for the training set, validation set, and test set, respectively. The 2D radiomics model, based on two features, revealed an AUC of 0.783, 0.724, and 0.789 for the training, validation, and test sets, respectively. The 3D radiomics model, based on three features, revealed AUCs of 0.823, 0.811, and 0.787 for the training, validation, and test sets, respectively. The combined model, with ADCmin and radiomics features, showed the best performance, with AUCs of 0.865, 0.822, and 0.776 for the training, validation, and test sets, respectively. The calibration curve of the combined model nomogram showed good agreement between the estimated and actual probabilities. CONCLUSION The combined model constructed using ADCmin, a quantitative imaging parameter, combined with five key radiomics features can be used to evaluate the extent of CD68+ macrophages before surgery.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, 730030, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, 730030, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, 730030, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | | | - Peng Zhang
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, 730030, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Jiangwei Man
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Surgical, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, 730030, Lanzhou, Gansu, China.
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Zhou Q, Ke X, Man J, Jiang J, Ren J, Xue C, Zhang B, Zhang P, Zhao J, Zhou J. Integrated MRI radiomics, tumor microenvironment, and clinical risk factors for improving survival prediction in patients with glioblastomas. Strahlenther Onkol 2024:10.1007/s00066-024-02283-x. [PMID: 39249499 DOI: 10.1007/s00066-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/14/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE To construct a comprehensive model for predicting the prognosis of patients with glioblastoma (GB) using a radiomics method and integrating clinical risk factors, tumor microenvironment (TME), and imaging characteristics. MATERIALS AND METHODS In this retrospective study, we included 148 patients (85 males and 63 females; median age 53 years) with isocitrate dehydrogenase-wildtype GB between January 2016 and April 2022. Patients were randomly divided into the training (n = 104) and test (n = 44) sets. The best feature combination related to GB overall survival (OS) was selected using LASSO Cox regression analyses. Clinical, radiomics, clinical-radiomics, clinical-TME, and clinical-radiomics-TME models were established. The models' concordance index (C-index) was evaluated. The survival curve was drawn using the Kaplan-Meier method, and the prognostic stratification ability of the model was tested. RESULTS LASSO Cox analyses were used to screen the factors related to OS in patients with GB, including MGMT (hazard ratio [HR] = 0.642; 95% CI 0.414-0.997; P = 0.046), TERT (HR = 1.755; 95% CI 1.095-2.813; P = 0.019), peritumoral edema (HR = 1.013; 95% CI 0.999-1.027; P = 0.049), tumor purity (TP; HR = 0.982; 95% CI 0.964-1.000; P = 0.054), CD163 + tumor-associated macrophages (TAMs; HR = 1.049; 95% CI 1.021-1.078; P < 0.001), CD68 + TAMs (HR = 1.055; 95% CI 1.018-1.093; P = 0.004), and the six radiomics features. The clinical-radiomics-TME model had the best survival prediction ability, the C‑index was 0.768 (0.717-0.819). The AUC of 1‑, 2‑, and 3‑year OS prediction in the test set was 0.842, 0.844, and 0.795, respectively. CONCLUSION The clinical-radiomics-TME model is the most effective for predicting the survival of patients with GB. Radiomics features, TP, and TAMs play important roles in the prognostic model.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Jiangwei Man
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Surgical, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jian Jiang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Peng Zhang
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jun Zhao
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China.
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, 730030, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Luan J, Zhang D, Liu B, Yang A, Lv K, Hu P, Yu H, Shmuel A, Zhang C, Ma G. Exploring the prognostic value and biological pathways of transcriptomics and radiomics patterns in glioblastoma multiforme. Heliyon 2024; 10:e33760. [PMID: 39071633 PMCID: PMC11283067 DOI: 10.1016/j.heliyon.2024.e33760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. Materials and methods Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. Results LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. Conclusions The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.
Collapse
Affiliation(s)
- Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Luo Y, Zhuang Y, Zhang S, Wang J, Teng S, Zeng H. Multiparametric MRI-Based Radiomics Signature with Machine Learning for Preoperative Prediction of Prognosis Stratification in Pediatric Medulloblastoma. Acad Radiol 2024; 31:1629-1642. [PMID: 37643930 DOI: 10.1016/j.acra.2023.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023]
Abstract
RATIONALE AND OBJECTIVES Despite advances in risk-stratified treatment strategies for children with medulloblastoma (MB), the prognosis for MB with short-term recurrence is extremely poor, and there is still a lack of evaluation of short-term recurrence risk or short-term survival. This study aimed to construct and validate a radiomics model for predicting the outcome of MB based on preoperative multiparametric magnetic resonance images (MRIs) and to provide an objective for clinical decision-making. MATERIALS AND METHODS The clinical and imaging data of 64 patients with MB admitted to Shenzhen Children's Hospital from December 2012 to December 2021 and confirmed by pathology were retrospectively collected. According to the 18-month progression-free survival, the cases were classified into a good prognosis group and a poor prognosis group, and all cases were divided into training group (70%) and validation group (30%) randomly. Radiomics features were extracted from MRI of each child. The consistency test, t-test, and the least absolute shrinkage and selection operator were used for feature selection. The support vector machine (SVM) and receiver operator characteristic were used to evaluate the distinguishing ability of the selected features to the prognostic groups. RAD score was calculated based on the selected features. The clinical characteristics and RAD score were included in the multivariate logistic regression, and prediction models were constructed by screening out independent influences. The radiomics nomogram was constructed, and its clinical significance was evaluated. RESULTS A total of 1930 radiomic features were extracted from the images of each patient, and 11 features were included in the construction of radiomics score after selected. The area under the curve (AUC) values of the SVM model in the training and validation groups were 0.946 and 0.797, respectively. The radiomics nomogram was constructed based on the training cohort, and the AUC values in the training group and the validation group were 0.926 and 0.835, respectively. The results of clinical decision curve analysis showed that a good net benefit could be obtained from the nomogram. CONCLUSION The radiomics nomogram established based on MRI can be used as a noninvasive predictive tool to evaluate the prognosis of children with MB, which is expected to help neurosurgeons better conduct preoperative planning and patient follow-up management.
Collapse
Affiliation(s)
- Yi Luo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China (Y.L., Y.Z., S.Z., H.Z.); Shantou University Medical College, Shantou 515041, China (Y.L., S.Z.)
| | - Yijiang Zhuang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China (Y.L., Y.Z., S.Z., H.Z.)
| | - Siqi Zhang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China (Y.L., Y.Z., S.Z., H.Z.); Shantou University Medical College, Shantou 515041, China (Y.L., S.Z.)
| | - Jingsheng Wang
- Department of Neurosurgery, Shenzhen Children's Hospital, Shenzhen 518038, China (J.W.)
| | - Songyu Teng
- Shenzhen Children's Hospital of China Medical University, Shenzhen 518038, China (S.T.)
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China (Y.L., Y.Z., S.Z., H.Z.).
| |
Collapse
|
8
|
Zhang W, Yan Z, Peng J, Zhao S, Ran L, Yin H, Zhong D, Yang J, Ye J, Xu S. Magnetic resonance imaging and deoxyribonucleic acid methylation-based radiogenomic models for survival risk stratification of glioblastoma. Med Biol Eng Comput 2024; 62:853-864. [PMID: 38057447 DOI: 10.1007/s11517-023-02971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest tumours. This study aimed to construct radiogenomic prognostic models of glioblastoma overall survival (OS) based on magnetic resonance imaging (MRI) Gd-T1WI images and deoxyribonucleic acid (DNA) methylation-seq and to understand the related biological pathways. The ResNet3D-18 model was used to extract radiomic features, and Lasso-Cox regression analysis was utilized to establish the prognostic models. A nomogram was constructed by combining the radiogenomic features and clinicopathological variables. The DeLong test was performed to compare the area under the curve (AUC) of the models. We screened differentially expressed genes (DEGs) with original ribonucleic acid (RNA)-seq in risk stratification and used Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotations for functional enrichment analysis. For the 1-year OS models, the AUCs of the radiogenomic set, methylation set and deep learning set in the training cohort were 0.864, 0.804 and 0.787, and those in the validation cohort were 0.835, 0.768 and 0.651, respectively. The AUCs of the 0.5-, 1- and 2-year nomograms in the training cohort were 0.943, 0.861 and 0.871, and those in the validation cohort were 0.864, 0.885 and 0.805, respectively. A total of 245 DEGs were screened; functional enrichment analysis showed that these DEGs were associated with cell immunity. The survival risk-stratifying radiogenomic models for glioblastoma OS had high predictability and were associated with biological pathways related to cell immunity.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zikang Yan
- Department of Bioinformatics, the Basic Medical School of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Peng
- The Center for Clinical Molecular Medical Detection, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shan Zhao
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Longke Ran
- Department of Bioinformatics, the Basic Medical School of Chongqing Medical University, Chongqing, 400016, China
| | - Haoyang Yin
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dong Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjun Yang
- Key Laboratory of Optoelectronic Technologyand, Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Junyong Ye
- Key Laboratory of Optoelectronic Technologyand, Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Shengsheng Xu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Luan J, Zhang D, Liu B, Yang A, Lv K, Hu P, Yu H, Shmuel A, Zhang C, Ma G. Immune-related lncRNAs signature and radiomics signature predict the prognosis and immune microenvironment of glioblastoma multiforme. J Transl Med 2024; 22:107. [PMID: 38279111 PMCID: PMC10821572 DOI: 10.1186/s12967-023-04823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.
Collapse
Affiliation(s)
- Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China.
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Wen X, Wang C, Pan Z, Jin Y, Wang H, Zhou J, Sun C, Ye G, Chen M. Integrated analysis reveals the potential of cluster of differentiation 86 as a key biomarker in high-grade glioma. Aging (Albany NY) 2023; 15:15402-15418. [PMID: 38154107 PMCID: PMC10781505 DOI: 10.18632/aging.205359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to evaluate the potential of cluster of differentiation 86 (CD86) as a biomarker in high-grade glioma (HGG). The TCGA and TCIA databases were used to obtain the CD86 expression value, clinical data, and MRI images of HGG patients. Prognostic values were assessed by the Kaplan-Meier method, Receiver operating characteristic curve (ROC), Cox regression, logistic regression, and nomogram analyses. CD86-associated pathways were also explored. We found that CD86 was significantly upregulated in HGG compared with the normal group. Survival analysis showed a significant association between CD86 high expression and shorter overall survival time. Its independent prognostic value was also confirmed. These results suggested the possibility of CD86 as a biomarker in HGG. We also innovatively established 2 radiomics models with Support Vector Machine (SVM) and Logistic regression (LR) algorithms to predict the CD86 expression. The 2 models containing 5 optimal features by SVM and LR methods showed similar favorable performance in predicting CD86 expression in the training set, and their performance were also confirmed in validation set. These results indicated the successful construction of a radiomics model for non-invasively predicting biomarker in HGG. Finally, pathway analysis indicated that CD86 might be involved in the natural killer cell-mediated cytotoxicity in HGG progression.
Collapse
Affiliation(s)
- Xuebin Wen
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Chaochao Wang
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Zhihao Pan
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Yao Jin
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Jiang Zhou
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Chengfeng Sun
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| |
Collapse
|
11
|
Zhang D, Luan J, Liu B, Yang A, Lv K, Hu P, Han X, Yu H, Shmuel A, Ma G, Zhang C. Comparison of MRI radiomics-based machine learning survival models in predicting prognosis of glioblastoma multiforme. Front Med (Lausanne) 2023; 10:1271687. [PMID: 38098850 PMCID: PMC10720716 DOI: 10.3389/fmed.2023.1271687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients. Methods 131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index. Results After the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560). Conclusion This study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Liaocheng People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Jixin Luan
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Aocai Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Kuan Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| |
Collapse
|
12
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Movsas B, Ewing JR, Chetty IJ. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI. Sci Rep 2023; 13:10693. [PMID: 37394559 DOI: 10.1038/s41598-023-37723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
13
|
Zheng J, Dong H, Li M, Lin X, Wang C. Prediction of IDH1 gene mutation by a nomogram based on multiparametric and multiregional MR images. Clinics (Sao Paulo) 2023; 78:100238. [PMID: 37354775 DOI: 10.1016/j.clinsp.2023.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE To investigate the value of a nomogram based on multiparametric and multiregional MR images to predict Isocitrate Dehydrogenase-1 (IDH1) gene mutations in glioma. DATA AND METHODS The authors performed a retrospective analysis of 110 MR images of surgically confirmed pathological gliomas; 33 patients with IDH1 gene Mutation (IDH1-M) and 77 patients with Wild-type IDH1 (IDH1-W) were divided into training and validation sets in a 7:3 ratio. The clinical features were statistically analyzed using SPSS and R software. Three glioma regions (rCET, rE, rNEC) were outlined using ITK-SNAP software and projected to four conventional sequences (T1, T2, Flair, T1C) for feature extraction using AI-Kit software. The extracted features were screened using R software. A logistic regression model was established, and a nomogram was generated using the selected clinical features. Eight models were developed based on different sequences and ROIs, and Receiver Operating Characteristic (ROC) curves were used to evaluate the predictive efficacy. Decision curve analysis was performed to assess the clinical usefulness. RESULTS Age was selected with Radscore to construct the nomogram. The Model 1 AUC values based on four sequences and three ROIs were the highest in these models, at 0.93 and 0.89, respectively. Decision curve analysis indicated that the net benefit of model 1 was higher than that of the other models for most Pt-values. CONCLUSION A nomogram based on multiparametric and multiregional MR images can predict the mutation status of the IDH1 gene accurately.
Collapse
Affiliation(s)
- Jinjing Zheng
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| | - Haibo Dong
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China.
| | - Ming Li
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| | - Xueyao Lin
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| | - Chaochao Wang
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| |
Collapse
|
14
|
Forecasting Molecular Features in IDH-Wildtype Gliomas: The State of the Art of Radiomics Applied to Neurosurgery. Cancers (Basel) 2023; 15:cancers15030940. [PMID: 36765898 PMCID: PMC9913449 DOI: 10.3390/cancers15030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, marks a step forward the future diagnostic approach to these neoplasms. Alongside this, radiomics has experienced rapid evolution over the last several years, allowing us to correlate tumor imaging heterogeneity with a wide range of tumor molecular and subcellular features. Radiomics is a translational field focused on decoding conventional imaging data to extrapolate the molecular and prognostic features of tumors such as gliomas. We herein analyze the state-of-the-art of radiomics applied to glioblastoma, with the goal to estimate its current clinical impact and potential perspectives in relation to well-rounded patient management, including the end-of-life stage. METHODS A literature review was performed on the PubMed, MEDLINE and Scopus databases using the following search items: "radiomics and glioma", "radiomics and glioblastoma", "radiomics and glioma and IDH", "radiomics and glioma and TERT promoter", "radiomics and glioma and EGFR", "radiomics and glioma and chromosome". RESULTS A total of 719 articles were screened. Further quantitative and qualitative analysis allowed us to finally include 11 papers. This analysis shows that radiomics is rapidly evolving towards a reliable tool. CONCLUSIONS Further studies are necessary to adjust radiomics' potential to the newest molecular requirements pointed out by the 2021 WHO classification of CNS tumors. At a glance, its application in the clinical routine could be beneficial to achieve a timely diagnosis, especially for those patients not eligible for surgery and/or adjuvant therapies but still deserving palliative and supportive care.
Collapse
|
15
|
Salome P, Sforazzini F, Grugnara G, Kudak A, Dostal M, Herold-Mende C, Heiland S, Debus J, Abdollahi A, Knoll M. MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma. Cancers (Basel) 2023; 15:cancers15030965. [PMID: 36765922 PMCID: PMC9913466 DOI: 10.3390/cancers15030965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). METHODS MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. RESULTS Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. CONCLUSION The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.
Collapse
Affiliation(s)
- Patrick Salome
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- Heidelberg Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Correspondence: (P.S.); (M.K.)
| | - Francesco Sforazzini
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- Heidelberg Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
| | - Gianluca Grugnara
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Kudak
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- CCU Radiation Therapy, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
| | - Matthias Dostal
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- CCU Radiation Therapy, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, 1200 Brussels, Belgium
- Division of Neurosurgical Research, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Maximilian Knoll
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Correspondence: (P.S.); (M.K.)
| |
Collapse
|
16
|
Li Z, Holzgreve A, Unterrainer LM, Ruf VC, Quach S, Bartos LM, Suchorska B, Niyazi M, Wenter V, Herms J, Bartenstein P, Tonn JC, Unterrainer M, Albert NL, Kaiser L. Combination of pre-treatment dynamic [ 18F]FET PET radiomics and conventional clinical parameters for the survival stratification in patients with IDH-wildtype glioblastoma. Eur J Nucl Med Mol Imaging 2023; 50:535-545. [PMID: 36227357 PMCID: PMC9816231 DOI: 10.1007/s00259-022-05988-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and radiomic features extracted from static as well as dynamic [18F]FET PET for the survival stratification in patients with newly diagnosed IDH-wildtype glioblastoma. METHODS A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic [18F]FET PET prior to surgical intervention were included. Patients with a survival time ≤ 12 months were classified as short-term survivors. First order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for identifying short-term survivors in both the training and testing cohort. RESULTS A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the independent testing cohort. CONCLUSIONS This study successfully built and evaluated prediction models using [18F]FET PET-based radiomic features and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-wildtype glioblastoma. The combination of both clinical parameters and dynamic [18F]FET PET-based radiomic features reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data shows that the integration of dynamic [18F]FET PET radiomic data into clinical prediction models may improve patient stratification beyond established prognostic markers.
Collapse
Affiliation(s)
- Zhicong Li
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
17
|
García-García S, García-Galindo M, Arrese I, Sarabia R, Cepeda S. Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121746. [PMID: 36556948 PMCID: PMC9786785 DOI: 10.3390/medicina58121746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Survival estimation for patients diagnosed with Glioblastoma (GBM) is an important information to consider in patient management and communication. Despite some known risk factors, survival estimation remains a major challenge. Novel non-invasive technologies such as radiomics and artificial intelligence (AI) have been implemented to increase the accuracy of these predictions. In this article, we reviewed and discussed the most significant available research on survival estimation for GBM through advanced non-invasive methods. Materials and Methods: PubMed database was queried for articles reporting on survival prognosis for GBM through advanced image and data management methods. Articles including in their title or abstract the following terms were initially screened: ((glioma) AND (survival)) AND ((artificial intelligence) OR (radiomics)). Exclusively English full-text articles, reporting on humans, published as of 1 September 2022 were considered. Articles not reporting on overall survival, evaluating the effects of new therapies or including other tumors were excluded. Research with a radiomics-based methodology were evaluated using the radiomics quality score (RQS). Results: 382 articles were identified. After applying the inclusion criteria, 46 articles remained for further analysis. These articles were thoroughly assessed, summarized and discussed. The results of the RQS revealed some of the limitations of current radiomics investigation on this field. Limitations of analyzed studies included data availability, patient selection and heterogeneity of methodologies. Future challenges on this field are increasing data availability, improving the general understanding of how AI handles data and establishing solid correlations between image features and tumor's biology. Conclusions: Radiomics and AI methods of data processing offer a new paradigm of possibilities to tackle the question of survival prognosis in GBM.
Collapse
Affiliation(s)
- Sergio García-García
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
- Correspondence:
| | - Manuel García-Galindo
- Faculty of Medicine, University of Valladolid, Avenida Ramón y Cajal 7, 47003 Valladolid, Spain
| | - Ignacio Arrese
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| | - Rosario Sarabia
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| | - Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| |
Collapse
|
18
|
Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma. Eur J Radiol 2022; 154:110423. [DOI: 10.1016/j.ejrad.2022.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
|
19
|
Zheng H, Yan T, Han Y, Wang Q, Zhang G, Zhang L, Zhu W, Xie L, Guo X. Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations. Clin Genet 2022; 102:359-368. [PMID: 35882630 DOI: 10.1111/cge.14200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into numerical estimates for death or recurrence, and are hence widely applied in prognosis prediction. In the past two decades, the application of high-throughput profiling technology and the establishment of TCGA database and other public data deposits have provided opportunities to identify cancer-related molecules and prognostic biomarkers. As a result, both molecular features and clinical characteristics of cancer have been reported to be the key factors in nomogram model construction. This article comprehensively reviewed 35 studies of GBM nomograms, analyzed the present situation of GBM nomograms, and discussed the role and significance of nomograms in personalized risk assessment and clinical treatment decision-making. To facilitate the application of nomograms in the prognostic prediction of GBM patients, a website has been established for the online access of nomograms based on the studies of this review, which is called Consensus Nomogram Spectrum for Glioblastoma (CNSgbm) and is accessible through https://bioinfo.henu.edu.cn/nom/NomList.jsp.
Collapse
Affiliation(s)
- Hong Zheng
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Taoning Yan
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yunsong Han
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Qiang Wang
- School of Software, Institute of Biomedical Informatics, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Guosen Zhang
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Lu Zhang
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, California, USA
| | - Longxiang Xie
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Bailo M, Pecco N, Callea M, Scifo P, Gagliardi F, Presotto L, Bettinardi V, Fallanca F, Mapelli P, Gianolli L, Doglioni C, Anzalone N, Picchio M, Mortini P, Falini A, Castellano A. Decoding the Heterogeneity of Malignant Gliomas by PET and MRI for Spatial Habitat Analysis of Hypoxia, Perfusion, and Diffusion Imaging: A Preliminary Study. Front Neurosci 2022; 16:885291. [PMID: 35911979 PMCID: PMC9326318 DOI: 10.3389/fnins.2022.885291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor heterogeneity poses major clinical challenges in high-grade gliomas (HGGs). Quantitative radiomic analysis with spatial tumor habitat clustering represents an innovative, non-invasive approach to represent and quantify tumor microenvironment heterogeneity. To date, habitat imaging has been applied mainly on conventional magnetic resonance imaging (MRI), although virtually extendible to any imaging modality, including advanced MRI techniques such as perfusion and diffusion MRI as well as positron emission tomography (PET) imaging.ObjectivesThis study aims to evaluate an innovative PET and MRI approach for assessing hypoxia, perfusion, and tissue diffusion in HGGs and derive a combined map for clustering of intra-tumor heterogeneity.Materials and MethodsSeventeen patients harboring HGGs underwent a pre-operative acquisition of MR perfusion (PWI), Diffusion (dMRI) and 18F-labeled fluoroazomycinarabinoside (18F-FAZA) PET imaging to evaluate tumor vascularization, cellularity, and hypoxia, respectively. Tumor volumes were segmented on fluid-attenuated inversion recovery (FLAIR) and T1 post-contrast images, and voxel-wise clustering of each quantitative imaging map identified eight combined PET and physiologic MRI habitats. Habitats’ spatial distribution, quantitative features and histopathological characteristics were analyzed.ResultsA highly reproducible distribution pattern of the clusters was observed among different cases, particularly with respect to morphological landmarks as the necrotic core, contrast-enhancing vital tumor, and peritumoral infiltration and edema, providing valuable supplementary information to conventional imaging. A preliminary analysis, performed on stereotactic bioptic samples where exact intracranial coordinates were available, identified a reliable correlation between the expected microenvironment of the different spatial habitats and the actual histopathological features. A trend toward a higher representation of the most aggressive clusters in WHO (World Health Organization) grade IV compared to WHO III was observed.ConclusionPreliminary findings demonstrated high reproducibility of the PET and MRI hypoxia, perfusion, and tissue diffusion spatial habitat maps and correlation with disease-specific histopathological features.
Collapse
Affiliation(s)
- Michele Bailo
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicolò Pecco
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Paola Scifo
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Presotto
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Federico Fallanca
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Gianolli
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Nicoletta Anzalone
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Antonella Castellano,
| |
Collapse
|
21
|
Jian A, Liu S, Di Ieva A. Artificial Intelligence for Survival Prediction in Brain Tumors on Neuroimaging. Neurosurgery 2022; 91:8-26. [PMID: 35348129 DOI: 10.1227/neu.0000000000001938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Survival prediction of patients affected by brain tumors provides essential information to guide surgical planning, adjuvant treatment selection, and patient counseling. Current reliance on clinical factors, such as Karnofsky Performance Status Scale, and simplistic radiological characteristics are, however, inadequate for survival prediction in tumors such as glioma that demonstrate molecular and clinical heterogeneity with variable survival outcomes. Advances in the domain of artificial intelligence have afforded powerful tools to capture a large number of hidden high-dimensional imaging features that reflect abundant information about tumor structure and physiology. Here, we provide an overview of current literature that apply computational analysis tools such as radiomics and machine learning methods to the pipeline of image preprocessing, tumor segmentation, feature extraction, and construction of classifiers to establish survival prediction models based on neuroimaging. We also discuss challenges relating to the development and evaluation of such models and explore ethical issues surrounding the future use of machine learning predictions.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Royal Melbourne Hospital, Melbourne, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
22
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
23
|
A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients. J Comput Assist Tomogr 2022; 46:470-479. [PMID: 35405713 DOI: 10.1097/rct.0000000000001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to assess different machine learning models based on radiomic features, Visually Accessible Rembrandt Images features and clinical characteristics in overall survival prediction of glioblastoma and to identify the reproducible features. MATERIALS AND METHODS Patients with preoperative magnetic resonance scans were allocated into 3 data sets. The Least Absolute Shrinkage and Selection Operator was used for feature selection. The prediction models were built by random survival forest (RSF) and Cox regression. C-index and integrated Brier scores were calculated to compare model performances. RESULTS Patients with cortical involvement had shorter survival times in the training set (P = 0.006). Random survival forest showed higher C-index than Cox, and the RSF model based on the radiomic features was the best one (testing set: C-index = 0.935 ± 0.023). Ten reproducible radiomic features were summarized. CONCLUSIONS The RSF model based on radiomic features had promising potential in predicting overall survival of glioblastoma. Ten reproducible features were identified.
Collapse
|
24
|
Jia X, Zhai Y, Song D, Wang Y, Wei S, Yang F, Wei X. A Multiparametric MRI-Based Radiomics Nomogram for Preoperative Prediction of Survival Stratification in Glioblastoma Patients With Standard Treatment. Front Oncol 2022; 12:758622. [PMID: 35251957 PMCID: PMC8888684 DOI: 10.3389/fonc.2022.758622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To construct and validate a radiomics nomogram for preoperative prediction of survival stratification in glioblastoma (GBM) patients with standard treatment according to radiomics features extracted from multiparameter magnetic resonance imaging (MRI), which could facilitate clinical decision-making. METHODS A total of 125 eligible GBM patients (53 in the short and 72 in the long survival group, separated by an overall survival of 12 months) were randomly divided into a training cohort (n = 87) and a validation cohort (n = 38). Radiomics features were extracted from the MRI of each patient. The T-test and the least absolute shrinkage and selection operator algorithm (LASSO) were used for feature selection. Next, three feature classifier models were established based on the selected features and evaluated by the area under curve (AUC). A radiomics score (Radscore) was then constructed by these features for each patient. Combined with clinical features, a radiomics nomogram was constructed with independent risk factors selected by the logistic regression model. The performance of the nomogram was assessed by AUC, calibration, discrimination, and clinical usefulness. RESULTS There were 5,216 radiomics features extracted from each patient, and 5,060 of them were stable features judged by the intraclass correlation coefficients (ICCs). 21 features were included in the construction of the radiomics score. Of three feature classifier models, support vector machines (SVM) had the best classification effect. The radiomics nomogram was constructed in the training cohort and exhibited promising calibration and discrimination with AUCs of 0.877 and 0.919 in the training and validation cohorts, respectively. The favorable decision curve analysis (DCA) indicated the clinical usefulness of the radiomics nomogram. CONCLUSIONS The presented radiomics nomogram, as a non-invasive tool, achieved satisfactory preoperative prediction of the individualized survival stratification of GBM patients.
Collapse
Affiliation(s)
- Xin Jia
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixuan Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dixiang Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxin Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengdong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Rao C, Jin J, Lu J, Wang C, Wu Z, Zhu Z, Tu M, Su Z, Li Q. A Multielement Prognostic Nomogram Based on a Peripheral Blood Test, Conventional MRI and Clinical Factors for Glioblastoma. Front Neurol 2022; 13:822735. [PMID: 35250826 PMCID: PMC8893080 DOI: 10.3389/fneur.2022.822735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is one of the most malignant types of tumors in the central nervous system, and the 5-year survival remains low. Several studies have shown that preoperative peripheral blood tests and preoperative conventional Magnetic Resonance Imaging (MRI) examinations affect the prognosis of GBM patients. Therefore, it is necessary to construct a risk score based on a preoperative peripheral blood test and conventional MRI and develop a multielement prognostic nomogram for GBM.MethodsThis study retrospectively analyzed 131 GBM patients. Determination of the association between peripheral blood test variables and conventional MRI variables and prognosis was performed by univariate Cox regression. The nomogram model, which was internally validated using a cohort of 56 GBM patients, was constructed by multivariate Cox regression. RNA sequencing data from Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA datasets were used to determine peripheral blood test-related genes based on GBM prognosis.ResultsThe constructed risk score included the neutrophil/lymphocyte ratio (NLR), lymphocyte/monocyte ratio (LMR), albumin/fibrinogen (AFR), platelet/lymphocyte ratio (PLR), and center point–to-ventricle distance (CPVD). A final nomogram was developed using factors associated with prognosis, including age, sex, the extent of tumor resection, IDH mutation status, radiotherapy status, chemotherapy status, and risk. The Area Under Curve (AUC) values of the receiver operating characteristic curve (ROC) curve were 0.876 (12-month ROC), 0.834 (24-month ROC) and 0.803 (36-month ROC) in the training set and 0.906 (12-month ROC), 0.800 (18-month ROC) and 0.776 (24-month ROC) in the validation set. In addition, vascular endothelial growth factor A (VEGFA) was closely associated with NLR and LMR and identified as the most central negative gene related to the immune microenvironment and influencing immune activities.ConclusionThe risk score was established as an independent predictor of GBM prognosis, and the nomogram model exhibit appropriate predictive power. In addition, VEGFA is the key peripheral blood test-related gene that is significantly associated with poor prognosis.
Collapse
|
26
|
Wu S, Zhang X, Rui W, Sheng Y, Yu Y, Zhang Y, Yao Z, Qiu T, Ren Y. A nomogram strategy for identifying the subclassification of IDH mutation and ATRX expression loss in lower-grade gliomas. Eur Radiol 2022; 32:3187-3198. [PMID: 35133485 DOI: 10.1007/s00330-021-08444-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To construct a radiomics nomogram based on multiparametric MRI data for predicting isocitrate dehydrogenase 1 mutation (IDH +) and loss of nuclear alpha thalassemia/mental retardation syndrome X-linked expression (ATRX -) in patients with lower-grade gliomas (LrGG; World Health Organization [WHO] 2016 grades II and III). METHODS A total of 111 LrGG patients (76 mutated IDH and 35 wild-type IDH) were enrolled, divided into a training set (n = 78) and a validation set (n = 33) for predicting IDH mutation. IDH + LrGG patients were further stratified into the ATRX - (n = 38) and ATRX + (n = 38) subtypes. A total of 250 radiomics features were extracted from the region of interest of each tumor, including that from T2 fluid-attenuated inversion recovery (T2 FLAIR), contrast-enhanced T1 WI, ASL-derived cerebral blood flow (CBF), DWI-derived ADC, and exponential ADC (eADC). A radiomics signature was selected using the Elastic Net regression model, and a radiomics nomogram was finally constructed using the age, gender information, and above features. RESULTS The radiomics nomogram identified LrGG patients for IDH mutation (C-index: training sets = 0.881, validation sets = 0.900) and ATRX loss (C-index: training sets = 0.863, validation sets = 0.840) with good calibration. Decision curve analysis further confirmed the clinical usefulness of the two nomograms for predicting IDH and ATRX status. CONCLUSIONS The nomogram incorporating age, gender, and the radiomics signature provided a clinically useful approach in noninvasively predicting IDH and ATRX mutation status for LrGG patients. The proposed method could facilitate MRI-based clinical decision-making for the LrGG patients. KEY POINTS • Non-invasive determination of IDH and ATRX gene status of LrGG patients can be obtained with a radiomics nomogram. • The proposed nomogram is constructed by radiomics signature selected from 250 radiomics features, combined with age and gender. • The proposed radiomics nomogram exhibited good calibration and discrimination for IDH and ATRX gene mutation stratification of LrGG patients in both training and validation sets.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Xi Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Yaru Sheng
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Yang Yu
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Yong Zhang
- GE Healthcare, Shanghai, People's Republic of China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China.
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
27
|
Zhou Q, Xue C, Ke X, Zhou J. Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI. J Magn Reson Imaging 2022; 56:325-340. [PMID: 35129845 DOI: 10.1002/jmri.28103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, the development of advanced magnetic resonance imaging (MRI) technology and machine learning (ML) have created new tools for evaluating treatment response and prognosis of patients with high-grade gliomas (HGG); however, patient prognosis has not improved significantly. This is mainly due to the heterogeneity between and within HGG tumors, resulting in standard treatment methods not benefitting all patients. Moreover, the survival of patients with HGG is not only related to tumor cells, but also to noncancer cells in the tumor microenvironment (TME). Therefore, during preoperative diagnosis and follow-up treatment of patients with HGG, noninvasive imaging markers are needed to characterize intratumoral heterogeneity, and then to evaluate treatment response and predict prognosis, timeously adjust treatment strategies, and achieve individualized diagnosis and treatment. In this review, we summarize the research progress of conventional MRI, advanced MRI technology, and ML in evaluation of treatment response and prognosis of patients with HGG. We further discuss the significance of the TME in the prognosis of HGG patients, associate imaging features with the TME, indirectly reflecting the heterogeneity within the tumor, and shifting treatment strategies from tumor cells alone to systemic therapy of the TME, which may be a major development direction in the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Wang S, Xiao F, Sun W, Yang C, Ma C, Huang Y, Xu D, Li L, Chen J, Li H, Xu H. Radiomics Analysis Based on Magnetic Resonance Imaging for Preoperative Overall Survival Prediction in Isocitrate Dehydrogenase Wild-Type Glioblastoma. Front Neurosci 2022; 15:791776. [PMID: 35153659 PMCID: PMC8833841 DOI: 10.3389/fnins.2021.791776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 01/24/2023] Open
Abstract
PurposeThis study aimed to develop a radiomics signature for the preoperative prognosis prediction of isocitrate dehydrogenase (IDH)-wild-type glioblastoma (GBM) patients and to provide personalized assistance in the clinical decision-making for different patients.Materials and MethodsA total of 142 IDH-wild-type GBM patients classified using the new classification criteria of WHO 2021 from two centers were included in the study and randomly divided into a training set and a test set. Firstly, their clinical characteristics were screened using univariate Cox regression. Then, the radiomics features were extracted from the tumor and peritumoral edema areas on their contrast-enhanced T1-weighted image (CE-T1WI), T2-weighted image (T2WI), and T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) magnetic resonance imaging (MRI) images. Subsequently, inter- and intra-class correlation coefficient (ICC) analysis, Spearman’s correlation analysis, univariate Cox, and the least absolute shrinkage and selection operator (LASSO) Cox regression were used step by step for feature selection and the construction of a radiomics signature. The combined model was established by integrating the selected clinical factors. Kaplan–Meier analysis was performed for the validation of the discrimination ability of the model, and the C-index was used to evaluate consistency in the prediction. Finally, a Radiomics + Clinical nomogram was generated for personalized prognosis analysis and then validated using the calibration curve.ResultsAnalysis of the clinical characteristics resulted in the screening of four risk factors. The combination of ICC, Spearman’s correlation, and univariate and LASSO Cox resulted in the selection of eight radiomics features, which made up the radiomics signature. Both the radiomics and combined models can significantly stratify high- and low-risk patients (p < 0.001 and p < 0.05 for the training and test sets, respectively) and obtained good prediction consistency (C-index = 0.74–0.86). The calibration plots exhibited good agreement in both 1- and 2-year survival between the prediction of the model and the actual observation.ConclusionRadiomics is an independent preoperative non-invasive prognostic tool for patients who were newly classified as having IDH-wild-type GBM. The constructed nomogram, which combined radiomics features with clinical factors, can predict the overall survival (OS) of IDH-wild-type GBM patients and could be a new supplement to treatment guidelines.
Collapse
Affiliation(s)
- Shouchao Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanqing Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Precision Health Institute, GE Healthcare, Shanghai, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Huan Li,
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Haibo Xu,
| |
Collapse
|
29
|
Li Z, Feng N, Pu H, Dong Q, Liu Y, Liu Y, Xu X. PIxel-Level Segmentation of Bladder Tumors on MR Images Using a Random Forest Classifier. Technol Cancer Res Treat 2022; 21:15330338221086395. [PMID: 35296195 PMCID: PMC9123929 DOI: 10.1177/15330338221086395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives: Regional bladder wall thickening on noninvasive magnetic
resonance (MR) images is an important sign of developing urinary bladder cancer
(BCa), and precise segmentation of the tumor mass is an essential step toward
noninvasive identification of the pathological stage and grade, which is of
critical importance for the clinical management of patients with BCa.
Methods: In this paper, we proposed a new method based on the
high-throughput pixel-level features and a random forest (RF) classifier for the
BCa segmentation. First, regions of interest (ROIs) including tumor and wall
ROIs were used in the training set for feature extraction and segmentation model
development. Then, candidate regions containing both bladder tumor and its
neighboring wall tissue in the testing set were segmented. Results:
Experimental results were evaluated on a retrospective database containing 56
patients postoperatively confirmed with BCa from the affiliated hospital. The
Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD)
of the tumor regions were adopted to quantitatively assess the overall
performance of this approach. The results showed that the mean DSC was 0.906
(95% confidential interval [CI]: 0.852-0.959), and the mean ASSD was 1.190 mm
(95% CI: 1.727-2.449), which were higher than those of the state-of-the-art
methods for tumor region separation. Conclusion: The proposed
Pixel-level BCa segmentation method can achieve good performance for the
accurate segmentation of BCa lesion on MR images.
Collapse
Affiliation(s)
- Ziqi Li
- School of Biomedical Engineering, 12644Air Force Medical University, Xi'an, PR China
| | - Na Feng
- Basic Medical Science Academy, 12644Air Force Medical University, Xi'an, PR China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, 58294National University of Defense Technology, Changsha, PR China
| | - Qi Dong
- School of Biomedical Engineering, 12644Air Force Medical University, Xi'an, PR China
| | - Yan Liu
- School of Biomedical Engineering, 12644Air Force Medical University, Xi'an, PR China
| | - Yang Liu
- School of Biomedical Engineering, 12644Air Force Medical University, Xi'an, PR China
| | - Xiaopan Xu
- School of Biomedical Engineering, 12644Air Force Medical University, Xi'an, PR China
| |
Collapse
|
30
|
Ge C, Chen Z, Lin Y, Zheng Y, Cao P, Chen X. Preoperative prediction of residual back pain after vertebral augmentation for osteoporotic vertebral compression fractures: Initial application of a radiomics score based nomogram. Front Endocrinol (Lausanne) 2022; 13:1093508. [PMID: 36619583 PMCID: PMC9816386 DOI: 10.3389/fendo.2022.1093508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most patients with osteoporotic vertebral compression fracture (OVCF) obtain pain relief after vertebral augmentation, but some will experience residual back pain (RBP) after surgery. Although several risk factors of RBP have been reported, it is still difficult to estimate the risk of RBP preoperatively. Radiomics is helpful for disease diagnosis and outcome prediction by establishing complementary relationships between human-recognizable and computer-extracted features. However, musculoskeletal radiomics investigations are less frequently reported. OBJECTIVE This study aims to establish a radiomics score (rad-score) based nomogram for the preoperative prediction of RBP in OVCF patients. METHODS The training cohort of 731 OVCF patients was used for nomogram development, and the validation cohort was utilized for performance test. RBP was determined as the score of visual analogue scale ≥ 4 at both 3 and 30 days following surgery. After normalization, the RBP-related radiomics features were selected to create rad-scores. These rad-scores, along with the RBP predictors initially identified by univariate analyses, were included in the multivariate analysis to establish a nomogram for the assessment of the RBP risk in OVCF patients preoperatively. RESULTS A total of 81 patients (11.2%) developed RBP postoperatively. We finally selected 8 radiomics features from 1316 features extracted from each segmented image to determine the rad-score. Multivariate analysis revealed that the rad-score plus bone mineral density, intravertebral cleft, and thoracolumbar fascia injury were independent factors of RBP. Our nomograms based on these factors demonstrated good discrimination, calibration, and clinical utility in both training and validation cohorts. Furthermore, it achieved better performance than the rad-score itself, as well as the nomogram only incorporating regular features. CONCLUSION We developed and validated a nomogram incorporating the rad-score and regular features for preoperative prediction of the RBP risk in OVCF patients, which contributed to improved surgical outcomes and patient satisfaction.
Collapse
Affiliation(s)
- Chen Ge
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chen Ge,
| | - Zhe Chen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yazhou Lin
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehuan Zheng
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cao
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Zhao R, Zeng J, DeVries K, Proulx R, Krauze AV. Optimizing management of the elderly patient with glioblastoma: Survival prediction online tool based on BC Cancer Registry real-world data. Neurooncol Adv 2022; 4:vdac052. [PMID: 35733517 PMCID: PMC9209750 DOI: 10.1093/noajnl/vdac052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is associated with fatal outcomes and devastating neurological presentations especially impacting the elderly. Management remains controversial and representation in clinical trials poor. We generated 2 nomograms and a clinical decision making web tool using real-world data. METHODS Patients ≥60 years of age with histologically confirmed GBM (ICD-O-3 histology codes 9440/3, 9441/3, and 9442/3) diagnosed 2005-2015 were identified from the BC Cancer Registry (n = 822). Seven hundred and twenty-nine patients for which performance status was captured were included in the analysis. Age, performance and resection status, administration of radiation therapy (RT), and chemotherapy were reviewed. Nomograms predicting 6- and 12-month overall survival (OS) probability were developed using Cox proportional hazards regression internally validated by c-index. A web tool powered by JavaScript was developed to calculate the survival probability. RESULTS Median OS was 6.6 months (95% confidence interval [CI] 6-7.2 months). Management involved concurrent chemoradiation (34%), RT alone (42%), and chemo alone (2.3%). Twenty-one percent of patients did not receive treatment beyond surgical intervention. Age, performance status, extent of resection, chemotherapy, and RT administration were all significant independent predictors of OS. Patients <80 years old who received RT had a significant survival advantage, regardless of extent of resection (hazard ratio range from 0.22 to 0.60, CI 0.15-0.95). A nomogram was constructed from all 729 patients (Harrell's Concordance Index = 0.78 [CI 0.71-0.84]) with a second nomogram based on subgroup analysis of the 452 patients who underwent RT (Harrell's Concordance Index = 0.81 [CI 0.70-0.90]). An online calculator based on both nomograms was generated for clinical use. CONCLUSIONS Two nomograms and accompanying web tool incorporating commonly captured clinical features were generated based on real-world data to optimize decision making in the clinic.
Collapse
Affiliation(s)
- Rachel Zhao
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Jonathan Zeng
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Kimberly DeVries
- Cancer Surveillance & Outcomes, BC Cancer, Vancouver, British Columbia, Canada
| | - Ryan Proulx
- Safe Software, Surrey, British Columbia, Canada
| | - Andra Valentina Krauze
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Zheng RR, Cai MT, Lan L, Huang XW, Yang YJ, Powell M, Lin F. An MRI-based radiomics signature and clinical characteristics for survival prediction in early-stage cervical cancer. Br J Radiol 2022; 95:20210838. [PMID: 34797703 PMCID: PMC8722251 DOI: 10.1259/bjr.20210838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To investigate the prognostic role of magnetic resonance imaging (MRI)-based radiomics signature and clinical characteristics for overall survival (OS) and disease-free survival (DFS) in the early-stage cervical cancer. METHODS A total of 207 cervical cancer patients (training cohort: n = 144; validation cohort: n = 63) were enrolled. 792 radiomics features were extracted from T2W and diffusion-weighted imaging (DWI). 19 clinicopathological parameters were collected from the electronic medical record system. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to select significant features to construct prognostic model for OS and DFS. Kaplan-Meier (KM) analysis and log-rank test were applied to identify the association between the radiomics score (Rad-score) and survival time. Nomogram discrimination and calibration were evaluated as well. Associations between radiomics features and clinical parameters were investigated by heatmaps. RESULTS A radiomics signature derived from joint T2W and DWI images showed better prognostic performance than that from either T2W or DWI image alone. Higher Rad-score was associated with worse OS (p < 0.05) and DFS (p < 0.05) in the training and validation set. The joint models outperformed both radiomics model and clinicopathological model alone for 3-year OS and DFS estimation. The calibration curves reached an agreement. Heatmap analysis demonstrated significant associations between radiomics features and clinical characteristics. CONCLUSIONS The MRI-based radiomics nomogram showed a good performance on survival prediction for the OS and DFS in the early-stage cervical cancer. The prediction of the prognostic models could be improved by combining with clinical characteristics, suggesting its potential for clinical application. ADVANCES IN KNOWLEDGE This is the first study to build the radiomics-derived models based on T2W and DWI images for the prediction of survival outcomes on the early-stage cervical cancer patients, and further construct a combined risk scoring system incorporating the clinical features.
Collapse
Affiliation(s)
- Ru-ru Zheng
- Department of Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Meng-ting Cai
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Li Lan
- Department of Ultrasound Imaging, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xiao Wan Huang
- Department of Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yun Jun Yang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Martin Powell
- Nottingham University Affiliated Hospital, Nottingham Treatment Centre, Nottingham, UK
| | - Feng Lin
- Department of Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
33
|
Zander E, Ardeleanu A, Singleton R, Bede B, Wu Y, Zheng S. A functional artificial neural network for noninvasive pretreatment evaluation of glioblastoma patients. Neurooncol Adv 2021; 4:vdab167. [PMID: 35059640 PMCID: PMC8765794 DOI: 10.1093/noajnl/vdab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pretreatment assessments for glioblastoma (GBM) patients, especially elderly or frail patients, are critical for treatment planning. However, genetic profiling with intracranial biopsy carries a significant risk of permanent morbidity. We previously demonstrated that the CUL2 gene, encoding the scaffold cullin2 protein in the cullin2-RING E3 ligase (CRL2), can predict GBM radiosensitivity and prognosis. CUL2 expression levels are closely regulated with its copy number variations (CNVs). This study aims to develop artificial neural networks (ANNs) for pretreatment evaluation of GBM patients with inputs obtainable without intracranial surgical biopsies.
Methods
Public datasets including Ivy-GAP, The Cancer Genome Atlas Glioblastoma (TCGA-GBM), and the Chinese Glioma Genome Atlas (CGGA) were used for training and testing of the ANNs. T1 images from corresponding cases were studied using automated segmentation for features of heterogeneity and tumor edge contouring. A ratio comparing the surface area of tumor borders versus the total volume (SvV) was derived from the DICOM-SEG conversions of segmented tumors. The edges of these borders were detected using the canny edge detector. Packages including Keras, Pytorch, and TensorFlow were tested to build the ANNs. A 4-layered ANN (8-8-8-2) with a binary output was built with optimal performance after extensive testing.
Results
The 4-layered deep learning ANN can identify a GBM patient’s overall survival (OS) cohort with 80%–85% accuracy. The ANN requires 4 inputs, including CUL2 copy number, patients’ age at GBM diagnosis, Karnofsky Performance Scale (KPS), and SvV ratio.
Conclusion
Quantifiable image features can significantly improve the ability of ANNs to identify a GBM patients’ survival cohort. Features such as clinical measures, genetic data, and image data, can be integrated into a single ANN for GBM pretreatment evaluation.
Collapse
Affiliation(s)
- Eric Zander
- Department of Mathematics, DigiPen Institute of Technology, Redmond, Washington, USA
| | - Andrew Ardeleanu
- Department of Mathematics, DigiPen Institute of Technology, Redmond, Washington, USA
| | - Ryan Singleton
- Department of Mathematics, DigiPen Institute of Technology, Redmond, Washington, USA
| | - Barnabas Bede
- Department of Mathematics, DigiPen Institute of Technology, Redmond, Washington, USA
| | - Yilin Wu
- Department of Mathematics, DigiPen Institute of Technology, Redmond, Washington, USA
| | - Shuhua Zheng
- Department of General Surgery, San Joaquin General Hospital, French Camp, California, USA
| |
Collapse
|
34
|
Yin L, Liu Y, Zhang X, Lu H, Liu Y. The Effect of Heterogenous Subregions in Glioblastomas on Survival Stratification: A Radiomics Analysis Using the Multimodality MRI. Technol Cancer Res Treat 2021; 20:15330338211033059. [PMID: 34318731 PMCID: PMC8323415 DOI: 10.1177/15330338211033059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intratumor heterogeneity is partly responsible for the poor prognosis of
glioblastoma (GBM) patients. In this study, we aimed to assess the effect of
different heterogeneous subregions of GBM on overall survival (OS)
stratification. A total of 105 GBM patients were retrospectively enrolled and
divided into long-term and short-term OS groups. Four MRI sequences, including
contrast-enhanced T1-weighted imaging (T1C), T1, T2, and FLAIR, were collected
for each patient. Then, 4 heterogeneous subregions, i.e. the region of entire
abnormality (rEA), the regions of contrast-enhanced tumor (rCET), necrosis
(rNec) and edema/non-contrast-enhanced tumor (rE/nCET), were manually drawn from
the 4 MRI sequences. For each subregion, 50 radiomics features were extracted.
The stratification performance of 4 heterogeneous subregions, as well as the
performances of 4 MRI sequences, was evaluated both alone and in combination.
Our results showed that rEA was superior in stratifying long-and short-term OS.
For the 4 MRI sequences used in this study, the FLAIR sequence demonstrated the
best performance of survival stratification based on the manual delineation of
heterogeneous subregions. Our results suggest that heterogeneous subregions of
GBMs contain different prognostic information, which should be considered when
investigating survival stratification in patients with GBM.
Collapse
Affiliation(s)
- Lulu Yin
- School of Biomedical Engineering, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Basic Medical Science Academy, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Liu
- School of Biomedical Engineering, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xi Zhang
- School of Biomedical Engineering, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hongbing Lu
- School of Biomedical Engineering, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yang Liu
- School of Biomedical Engineering, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
35
|
Lin M, Wynne JF, Zhou B, Wang T, Lei Y, Curran WJ, Liu T, Yang X. Artificial intelligence in tumor subregion analysis based on medical imaging: A review. J Appl Clin Med Phys 2021; 22:10-26. [PMID: 34164913 PMCID: PMC8292694 DOI: 10.1002/acm2.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/17/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Medical imaging is widely used in the diagnosis and treatment of cancer, and artificial intelligence (AI) has achieved tremendous success in medical image analysis. This paper reviews AI-based tumor subregion analysis in medical imaging. We summarize the latest AI-based methods for tumor subregion analysis and their applications. Specifically, we categorize the AI-based methods by training strategy: supervised and unsupervised. A detailed review of each category is presented, highlighting important contributions and achievements. Specific challenges and potential applications of AI in tumor subregion analysis are discussed.
Collapse
Affiliation(s)
- Mingquan Lin
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jacob F. Wynne
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Boran Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
36
|
Chen B, Chen C, Wang J, Teng Y, Ma X, Xu J. Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques. Front Oncol 2021; 11:521313. [PMID: 34141605 PMCID: PMC8204041 DOI: 10.3389/fonc.2021.521313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose To investigate the diagnostic ability of radiomics-based machine learning in differentiating atypical low-grade astrocytoma (LGA) from anaplastic astrocytoma (AA). Methods The current study involved 175 patients diagnosed with LGA (n = 95) or AA (n = 80) and treated in the Neurosurgery Department of West China Hospital from April 2010 to December 2019. Radiomics features were extracted from pre-treatment contrast-enhanced T1 weighted imaging (T1C). Nine diagnostic models were established with three selection methods [Distance Correlation, least absolute shrinkage, and selection operator (LASSO), and Gradient Boosting Decision Tree (GBDT)] and three classification algorithms [Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and random forest (RF)]. The sensitivity, specificity, accuracy, and areas under receiver operating characteristic curve (AUC) of each model were calculated. Diagnostic ability of each model was evaluated based on these indexes. Results Nine radiomics-based machine learning models with promising diagnostic performances were established. For LDA-based models, the optimal one was the combination of LASSO + LDA with AUC of 0.825. For SVM-based modes, Distance Correlation + SVM represented the most promising diagnostic performance with AUC of 0.808. And for RF-based models, Distance Correlation + RF were observed to be the optimal model with AUC of 0.821. Conclusion Radiomic-based machine-learning has the potential to be utilized in differentiating atypical LGA from AA with reliable diagnostic performance.
Collapse
Affiliation(s)
- Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Wang
- School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
| | - Yuen Teng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Zhai Y, Song D, Yang F, Wang Y, Jia X, Wei S, Mao W, Xue Y, Wei X. Preoperative Prediction of Meningioma Consistency via Machine Learning-Based Radiomics. Front Oncol 2021; 11:657288. [PMID: 34123812 PMCID: PMC8187861 DOI: 10.3389/fonc.2021.657288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives The aim of this study was to establish and validate a radiomics nomogram for predicting meningiomas consistency, which could facilitate individualized operation schemes-making. Methods A total of 172 patients was enrolled in the study (train cohort: 120 cases, test cohort: 52 cases). Tumor consistency was classified as soft or firm according to Zada’s consistency grading system. Radiomics features were extracted from multiparametric MRI. Variance selection and LASSO regression were used for feature selection. Then, radiomics models were constructed by five classifiers, and the area under curve (AUC) was used to evaluate the performance of each classifiers. A radiomics nomogram was developed using the best classifier. The performance of this nomogram was assessed by AUC, calibration and discrimination. Results A total of 3840 radiomics features were extracted from each patient, of which 3719 radiomics features were stable features. 28 features were selected to construct the radiomics nomogram. Logistic regression classifier had the highest prediction efficacy. Radiomics nomogram was constructed using logistic regression in the train cohort. The nomogram showed a good sensitivity and specificity with AUCs of 0.861 and 0.960 in train and test cohorts, respectively. Moreover, the calibration graph of the nomogram showed a favorable calibration in both train and test cohorts. Conclusions The presented radiomics nomogram, as a non-invasive prediction tool, could predict meningiomas consistency preoperatively with favorable accuracy, and facilitated the determination of individualized operation schemes.
Collapse
Affiliation(s)
- Yixuan Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dixiang Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengdong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Jia
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxin Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Mao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yake Xue
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Yang Y, Han Y, Hu X, Wang W, Cui G, Guo L, Zhang X. An Improvement of Survival Stratification in Glioblastoma Patients via Combining Subregional Radiomics Signatures. Front Neurosci 2021; 15:683452. [PMID: 34054424 PMCID: PMC8161502 DOI: 10.3389/fnins.2021.683452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose To investigate whether combining multiple radiomics signatures derived from the subregions of glioblastoma (GBM) can improve survival prediction of patients with GBM. Methods In total, 129 patients were included in this study and split into training (n = 99) and test (n = 30) cohorts. Radiomics features were extracted from each tumor region then radiomics scores were obtained separately using least absolute shrinkage and selection operator (LASSO) COX regression. A clinical nomogram was also constructed using various clinical risk factors. Radiomics nomograms were constructed by combing a single radiomics signature from the whole tumor region with clinical risk factors or combining three radiomics signatures from three tumor subregions with clinical risk factors. The performance of these models was assessed by the discrimination, calibration and clinical usefulness metrics, and was compared with that of the clinical nomogram. Results Incorporating the three radiomics signatures, i.e., Radscores for ET, NET, and ED, into the radiomics-based nomogram improved the performance in estimating survival (C-index: training/test cohort: 0.717/0.655) compared with that of the clinical nomogram (C-index: training/test cohort: 0.633/0.560) and that of the radiomics nomogram based on single region radiomics signatures (C-index: training/test cohort: 0.656/0.535). Conclusion The multiregional radiomics nomogram exhibited a favorable survival stratification accuracy.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
39
|
A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning. J Clin Med 2021; 10:jcm10092030. [PMID: 34068528 PMCID: PMC8126019 DOI: 10.3390/jcm10092030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM.
Collapse
|
40
|
Wang L, Gao Z, Li C, Sun L, Li J, Yu J, Meng X. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:443-455. [PMID: 33974887 DOI: 10.1016/j.ijrobp.2021.04.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Our purpose was to construct a computed tomography (CT)-based delta-radiomics nomogram and corresponding risk classification system for individualized and accurate estimation of severe acute radiation pneumonitis (SARP) in patients with esophageal cancer (EC) after radiation therapy. METHODS AND MATERIALS Four hundred patients with EC were enrolled from 2 independent institutions and were divided into the training (n = 200) and validation (n = 200) cohorts. Eight hundred fifty radiomics features of lung were extracted from treatment planning images, including the positioning CT before radiation therapy (CT1) and the resetting CT after receiving 40 to 45 Gy (CT2). The longitudinal net changes in radiomics features from CT1 to CT2 were calculated and defined as delta-radiomics features. Least absolute shrinkage and selection operator algorithm was performed to features selection and delta-radiomics signature building. Integrating the signature with multidimensional clinicopathologic, dosimetric, and hematological predictors of SARP, a novel CT-based delta-radiomics nomogram was established according to multivariate analysis. The clinical application values of nomogram were both evaluated in the training and validation cohorts by concordance index, calibration curves, and decision curve analysis. Recursive partitioning analysis was used to generate a risk classification system. RESULTS The delta-radiomics signature consisting of 24 features was significantly associated with SARP status (P < .001). Incorporating it with other high-risk factors, Subjective Global Assessment score, pulmonary fibrosis score, mean lung dose, and systemic immune inflammation index, the developed delta-radiomics nomogram showed increased improvement in SARP discrimination accuracy with concordance index of 0.975 and 0.921 in the training and validation cohorts, respectively. Calibration curves and decision curve analysis confirmed the satisfactory clinical feasibility and utility of nomogram. The risk classification system displayed excellent performance on identifying SARP occurrence (P < .001). CONCLUSIONS The delta-radiomics nomogram and risk classification system as low-cost and noninvasive means exhibited superior predictive accuracy and provided individualized probability of SARP stratification for patients with EC.
Collapse
Affiliation(s)
- Lu Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
41
|
Jiang X, Li J, Kan Y, Yu T, Chang S, Sha X, Zheng H, Luo Y, Wang S. MRI Based Radiomics Approach With Deep Learning for Prediction of Vessel Invasion in Early-Stage Cervical Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:995-1002. [PMID: 31905143 DOI: 10.1109/tcbb.2019.2963867] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article aims to build deep learning-based radiomic methods in differentiating vessel invasion from non-vessel invasion in cervical cancer with multi-parametric MRI data. A set of 1,070 dynamic T1 contrast-enhanced (DCE-T1) and 986 T2 weighted imaging (T2WI) MRI images from 167 early-stage cervical cancer patients (January 2014 - August 2018) were used to train and validate deep learning models. Predictive performances were evaluated using receiver operating characteristic (ROC) curve and confusion matrix analysis, with the DCE-T1 showing more discriminative results than T2WI MRI. By adopting an attention ensemble learning strategy that integrates both MRI sequences, the highest average area was obtained under the ROC curve (AUC) of 0.911 (Sensitivity = 0.881 and Specificity = 0.752). The superior performances in this article, when compared to existing radiomic methods, indicate that a wealth of deep learning-based radiomics could be developed to aid radiologists in preoperatively predicting vessel invasion in cervical cancer patients.
Collapse
|
42
|
Priya S, Agarwal A, Ward C, Locke T, Monga V, Bathla G. Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models. Neuroradiol J 2021; 34:355-362. [PMID: 33533273 DOI: 10.1177/1971400921990766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Magnetic resonance texture analysis (MRTA) is a relatively new technique that can be a valuable addition to clinical and imaging parameters in predicting prognosis. In the present study, we investigated the efficacy of MRTA for glioblastoma survival using T1 contrast-enhanced (CE) images for texture analysis. METHODS We evaluated the diagnostic performance of multiple machine learning models based on first-order histogram statistical parameters derived from T1-weighted CE images in the survival stratification of glioblastoma multiforme (GBM). Retrospective evaluation of 85 patients with GBM was performed. Thirty-six first-order texture parameters at six spatial scale filters (SSF) were extracted on the T1 CE axial images for the whole tumor using commercially available research software. Several machine learning classification models (in four broad categories: linear, penalized linear, non-linear, and ensemble classifiers) were evaluated to assess the survival prediction performance using optimal features. Principal component analysis was used prior to fitting the linear classifiers in order to reduce the dimensionality of the feature inputs. Fivefold cross-validation was used to partition the data iteratively into training and testing sets. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. RESULTS The neural network model was the highest performing model with the highest observed AUC (0.811) and cross-validated AUC (0.71). The most important variable was the age at diagnosis, with mean and mean of positive pixels (MPP) for SSF = 0 being the second and third most important, followed by skewness for SSF = 0 and SSF = 4. CONCLUSIONS First-order texture features, when combined with age at presentation, show good accuracy in predicting GBM survival.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | - Amit Agarwal
- Department of Radiology, UT Southwestern Medical Center, USA
| | - Caitlin Ward
- Department of Biostatistics, College of Public Health, University of Iowa Hospitals and Clinics, USA
| | - Thomas Locke
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | - Varun Monga
- Division of Hematology, Oncology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
43
|
Qiu X, Gao J, Yang J, Hu J, Hu W, Kong L, Lu JJ. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy. Front Oncol 2020; 10:551420. [PMID: 33194609 PMCID: PMC7662123 DOI: 10.3389/fonc.2020.551420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background Machine learning (ML) algorithms are increasingly explored in glioma prognostication. Random survival forest (RSF) is a common ML approach in analyzing time-to-event survival data. However, it is controversial which method between RSF and traditional cornerstone method Cox proportional hazards (CPH) is better fitted. The purpose of this study was to compare RSF and CPH in predicting tumor progression of high-grade glioma (HGG) after particle beam radiotherapy (PBRT). Methods The study enrolled 82 consecutive HGG patients who were treated with PBRT at Shanghai Proton and Heavy Ion Center between 6/2015 and 11/2019. The entire cohort was split into the training and testing set in an 80/20 ratio. Ten variables from patient-related, tumor-related and treatment-related information were utilized for developing CPH and RSF for predicting progression-free survival (PFS). The model performance was compared in concordance index (C-index) for discrimination (accuracy), brier score (BS) for calibration (precision) and variable importance for interpretability. Results The CPH model demonstrated a better performance in terms of integrated C-index (62.9%) and BS (0.159) compared to RSF model (C-index = 61.1%, BS = 0.174). In the context of variable importance, CPH model indicated that age (P = 0.024), WHO grade (P = 0.020), IDH gene (P = 0.019), and MGMT promoter status (P = 0.040) were significantly correlated with PFS in the univariate analysis; multivariate analysis showed that age (P = 0.041), surgical completeness (P = 0.084), IDH gene (P = 0.057), and MGMT promoter (P = 0.092) had a significant or trend toward the relation with PFS. RSF showed that merely IDH and age were of positive importance for predicting PFS. A final nomogram was developed to predict tumor progression at the individual level based on CPH model. Conclusions In a relatively small dataset with HGG patients treated with PBRT, CPH outperformed RSF for predicting tumor progression. A comprehensive criterion with accuracy, precision, and interpretability is recommended in evaluating ML prognostication approaches for clinical deployment.
Collapse
Affiliation(s)
- Xianxin Qiu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jing Gao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jing Yang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiyi Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weixu Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Center, Shanghai, China
| | - Jiade J Lu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
44
|
Forghani R. Precision Digital Oncology: Emerging Role of Radiomics-based Biomarkers and Artificial Intelligence for Advanced Imaging and Characterization of Brain Tumors. Radiol Imaging Cancer 2020; 2:e190047. [PMID: 33778721 DOI: 10.1148/rycan.2020190047] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Abstract
Advances in computerized image analysis and the use of artificial intelligence-based approaches for image-based analysis and construction of prediction algorithms represent a new era for noninvasive biomarker discovery. In recent literature, it has become apparent that radiologic images can serve as mineable databases that contain large amounts of quantitative features with potential clinical significance. Extraction and analysis of these quantitative features is commonly referred to as texture or radiomic analysis. Numerous studies have demonstrated applications for texture and radiomic characterization methods for assessing brain tumors to improve noninvasive predictions of tumor histologic characteristics, molecular profile, distinction of treatment-related changes, and prediction of patient survival. In this review, the current use and future potential of texture or radiomic-based approaches with machine learning for brain tumor image analysis and prediction algorithm construction will be discussed. This technology has the potential to advance the value of diagnostic imaging by extracting currently unused information on medical scans that enables more precise, personalized therapy; however, significant barriers must be overcome if this technology is to be successfully implemented on a wide scale for routine use in the clinical setting. Keywords: Adults and Pediatrics, Brain/Brain Stem, CNS, Computer Aided Diagnosis (CAD), Computer Applications-General (Informatics), Image Postprocessing, Informatics, Neural Networks, Neuro-Oncology, Oncology, Treatment Effects, Tumor Response Supplemental material is available for this article. © RSNA, 2020.
Collapse
Affiliation(s)
- Reza Forghani
- Department of Radiology, McGill University Health Centre, 1001 Decarie Blvd, Room C02.5821, Montreal, QC, Canada H4A 3J1; Augmented Intelligence & Precision Health Laboratory (AIPHL), Research Institute of the McGill University Health Centre, Montreal, Canada; Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada; and Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada
| |
Collapse
|
45
|
Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach. Eur Radiol 2020; 30:5602-5610. [DOI: 10.1007/s00330-020-06912-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
|
46
|
Elaboration of a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer: a double-center study. Eur Radiol 2020; 30:4816-4827. [PMID: 32318846 DOI: 10.1007/s00330-020-06796-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To develop a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer (BCa). METHODS This retrospective study involved 106 eligible patients from two independent clinical centers. All patients underwent a preoperative 3.0 T MRI scan with T2-weighted image (T2WI) and multi-b-value diffusion-weighted image (DWI) sequences. In total, 1404 radiomics features were extracted from the largest region of the reported tumor locations on the T2WI, DWI, and corresponding apparent diffusion coefficient map (ADC) of each patient. A radiomics signature, namely the Radscore, was then generated using the recursive feature elimination approach and a logistic regression algorithm in a training cohort (n = 64). Its performance was then validated in an independent validation cohort (n = 42). The primary imaging and clinical factors in conjunction with the Radscore were used to determine whether the performance could be further improved. RESULTS The Radscore, generated by 36 selected radiomics features, demonstrated a favorable ability to predict muscle-invasive BCa status in both the training (AUC 0.880) and validation (AUC 0.813) cohorts. Subsequently, integrating the two independent predictors (including the Radscore and MRI-determined tumor stalk) into a nomogram exhibited more favorable discriminatory performance, with the AUC improved to 0.924 and 0.877 in both cohorts, respectively. CONCLUSIONS The proposed multisequence MRI-based radiomics signature alone could be an effective tool for quantitative prediction of muscle-invasive status of BCa. Integrating the Radscore with MRI-determined tumor stalk could further improve the discriminatory power, realizing more accurate prediction of nonmuscle-invasive and muscle-invasive BCa. KEY POINTS • DWI is superior to T2WI sequence in reflecting the heterogeneous differences between NMIBC and MIBC, and multisequence MRI helps in the preoperative prediction of muscle-invasive status of BCa. • Co-occurrence (CM), run-length matrix (RLM), and gray-level size zone matrix (GLSZM) features were the favorable feature categories for the prediction of muscle-invasive status of BCa. • The Radscore (proposed multisequence MRI-based radiomics signature) helps predict preoperatively muscle invasion. Combination with the MRI-determined tumor stalk further improves prediction.
Collapse
|
47
|
Tang X, Xu X, Han Z, Bai G, Wang H, Liu Y, Du P, Liang Z, Zhang J, Lu H, Yin H. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer. Biomed Eng Online 2020; 19:5. [PMID: 31964407 PMCID: PMC6975040 DOI: 10.1186/s12938-019-0744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-invasive discrimination between lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes of non-small-cell lung cancer (NSCLC) could be very beneficial to the patients unfit for the invasive diagnostic procedures. The aim of this study was to investigate the feasibility of utilizing the multimodal magnetic resonance imaging (MRI) radiomics and clinical features in classifying NSCLC. This retrospective study involved 148 eligible patients with postoperative pathologically confirmed NSCLC. The study was conducted in three steps: (1) feature extraction was performed using the online freely available package with the multimodal MRI data; (2) feature selection was performed using the Student's t test and support vector machine (SVM)-based recursive feature elimination method with the training cohort (n = 100), and the performance of these selected features was evaluated using both the training and the validation cohorts (n = 48) with a non-linear SVM classifier; (3) a Radscore model was then generated using logistic regression algorithm; (4) Integrating the Radscore with the semantic clinical features, a radiomics-clinical nomogram was developed, and its overall performance was evaluated with both cohorts. RESULTS Thirteen optimal features achieved favorable discrimination performance with both cohorts, with area under the curve (AUC) of 0.819 and 0.824, respectively. The radiomics-clinical nomogram integrating the Radscore with the independent clinical predictors exhibited more favorable discriminative power, with AUC improved to 0.901 and 0.872 in both cohorts, respectively. The Hosmer-Lemeshow test and decision curve analysis results furtherly showed good predictive precision and clinical usefulness of the nomogram. CONCLUSION Non-invasive histological subtype stratification of NSCLC can be done favorably using multimodal MRI radiomics features. Integrating the radiomics features with the clinical features could further improve the performance of the histological subtype stratification in patients with NSCLC.
Collapse
Affiliation(s)
- Xing Tang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiaopan Xu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhiping Han
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Guoyan Bai
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yang Liu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Peng Du
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhengrong Liang
- Departments of Radiology, School of Computer Science and Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
48
|
Moradmand H, Aghamiri SMR, Ghaderi R. Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys 2019; 21:179-190. [PMID: 31880401 PMCID: PMC6964771 DOI: 10.1002/acm2.12795] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect of image preprocessing, in respect to intensity inhomogeneity correction and noise filtering, on the robustness and reproducibility of the radiomics features extracted from the Glioblastoma (GBM) tumor in multimodal MR images (mMRI). In this study, for each patient 1461 radiomics features were extracted from GBM subregions (i.e., edema, necrosis, enhancement, and tumor) of mMRI (i.e., FLAIR, T1, T1C, and T2) volumes for five preprocessing combinations (in total 116 880 radiomics features). The robustness and reproducibility of the radiomics features were assessed under four comparisons: (a) Baseline versus modified bias field; (b) Baseline versus modified bias field followed by noise filtering; (c) Baseline versus modified noise, and (d) Baseline versus modified noise followed bias field correction. The concordance correlation coefficient (CCC), dynamic range (DR), and interclass correlation coefficient (ICC) were used as metrics. Shape features and subsequently, local binary pattern (LBP) filtered images were highly stable and reproducible against bias field correction and noise filtering in all measurements. In all MRI modalities, necrosis regions (NC: n ® ~449/1461, 30%) had the highest number of highly robust features, with CCC and DR >= 0.9, in comparison with edema (ED: n ® ~296/1461, 20%), enhanced (EN: n ® ~ 281/1461, 19%) and active‐tumor regions (TM: n ® ~254/1461, 17%). The necrosis regions (NC: n¯ ~ 449/1461, 30%) had a higher number of highly robust features (CCC and DR >= 0.9) than edema (ED: n¯ ~ 296/1461, 20%), enhanced (EN: n¯ ~ 281/1461, 19%) and active‐tumor (TM: n¯ ~ 254/1461, 17%) regions across all modalities. Furthermore, our results identified that the percentage of high reproducible features with ICC >= 0.9 after bias field correction (23.2%), and bias field correction followed by noise filtering (22.4%) were higher in contrast with noise smoothing and also noise smoothing follow by bias correction. These preliminary findings imply that preprocessing sequences can also have a significant impact on the robustness and reproducibility of mMRI‐based radiomics features and identification of generalizable and consistent preprocessing algorithms is a pivotal step before imposing radiomics biomarkers into the clinic for GBM patients.
Collapse
Affiliation(s)
- Hajar Moradmand
- Medical Radiation Enginearing, Shahid Beheshti University, Tehran, Iran
| | | | - Reza Ghaderi
- Medical Radiation Enginearing, Shahid Beheshti University, Tehran, Iran.,Eletrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
49
|
Fan Y, Feng M, Wang R. Application of Radiomics in Central Nervous System Diseases: a Systematic literature review. Clin Neurol Neurosurg 2019; 187:105565. [DOI: 10.1016/j.clineuro.2019.105565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023]
|