1
|
Wang Y, Bai G, Liu Y, Huang M, Chen W, Wang F. Interpretable machine learning model based on CT semantic features and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors. Sci Rep 2024; 14:29336. [PMID: 39592767 PMCID: PMC11599915 DOI: 10.1038/s41598-024-80978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
To develop and validate a machine learning (ML) model which combined computed tomography (CT) semantic and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs) patients. We retrospectively collected the clinical, imaging and pathological data of 149 GISTs patients. We randomly assigned the patients in a ratio of 7:3 to a training set (104 cases) and a validation (45 cases) set. We divided the patients into low and high Ki-67 expression group according to postoperative pathology. CT semantic features were analyzed from preoperative enhancement CT images and radiomics features were extracted from venous phase-enhanced images. We used intraclass correlation coefficient, maximal relevance and minimal redundancy and least absolute shrinkage and selection operator method to screen radiomics features and build radiomics label. 6 ML models were used for model construction. Receiver operating characteristic curves were used to evaluate the predictive efficiency of ML models. SHAP analysis was used to explain the contribution of different variables and their risk threshold. AUC of radscores in predicting Ki-67 expression of GIST patients were 0.749 and 0.729 in training and validation set. Among the 6 ML models, SVM exhibited best prediction accuracy. AUC of SVM model in predicting Ki-67 expression of GIST patients were 0.840, 0.767 and 0.832 in training, validation and test set. SHAP analysis showed that radscores and tumor diameter had highly positive contribution to the model. Therefore, the interpretable SVM model can predict Ki-67 expression of GISTs patients individually before surgery, which can provide reliable imaging biomarkers for clinical treatment decisions.
Collapse
Affiliation(s)
- Yating Wang
- Department of medical imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huang he West Road, Huai'an, 223300, Jiangsu, China
| | - Genji Bai
- Department of medical imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huang he West Road, Huai'an, 223300, Jiangsu, China
| | - Yan Liu
- Department of medical imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huang he West Road, Huai'an, 223300, Jiangsu, China
| | - Min Huang
- Department of medical imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huang he West Road, Huai'an, 223300, Jiangsu, China
| | - Wei Chen
- Department of medical imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huang he West Road, Huai'an, 223300, Jiangsu, China.
| | - First Wang
- Department of medical imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huang he West Road, Huai'an, 223300, Jiangsu, China
| |
Collapse
|
2
|
Yang P, Wu J, Liu M, Zheng Y, Zhao X, Mao Y. Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors. Med Phys 2024; 51:7257-7268. [PMID: 38935330 DOI: 10.1002/mp.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are clinically heterogeneous with various malignant potential in different individuals. It is crucial to explore a reliable method for preoperative risk stratification of gastric GISTs noninvasively. PURPOSE To establish and evaluate a machine learning model using the combination of computed tomography (CT) morphology, radiomics, and deep learning features to predict the risk stratification of primary gastric GISTs preoperatively. METHODS The 193 gastric GISTs lesions were randomly divided into training set, validation set, and test set in a ratio of 6:2:2. The qualitative and quantitative CT morphological features were assessed by two radiologists. The tumors were segmented manually, and then radiomic features were extracted using PyRadiomics and the deep learning features were extracted using pre-trained Resnet50 from arterial phase and venous phase CT images, respectively. Pearson correlation analysis and recursive feature elimination were used for feature selection. Support vector machines were employed to build a classifier for predicting the risk stratification of GISTs. This study compared the performance of models using different pre-trained convolutional neural networks (CNNs) to extract deep features for classification, as well as the performance of modeling features from single-phase and dual-phase images. The arterial phase, venous phase and dual-phase machine learning models were built, respectively, and the morphological features were added to the dual-phase machine learning model to construct a combined model. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of each model. The clinical application value of the combined model was determined through the decision curve analysis (DCA) and the net reclassification index (NRI) was analyzed. RESULTS The area under the curve (AUC) of the dual-phase machine learning model was 0.876, which was higher than that of the arterial phase model or venous phase model (0.813, 0.838, respectively). The combined model had best predictive performance than the above models with an AUC of 0.941 (95% CI: 0.887-0.974) (p = 0.012, Delong test). DCA demonstrated that the combined model had good clinical application value with an NRI of 0.575 (95% CI: 0.357-0.891). CONCLUSION In this study, we established a combined model that incorporated dual-phase morphology, radiomics, and deep learning characteristics, which can be used to predict the preoperative risk stratification of gastric GISTs.
Collapse
Affiliation(s)
- Ping Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiamei Wu
- Department of Radiology, Chongqing Dongnan Hospital, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofang Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Mao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Khouchoua S, Imrani K, Bourekba I, Guelzim Y, Moatassim Billah N, Nassar I. Chronic abdominal pain revealing a gastrointestinal stromal tumor. Radiol Case Rep 2024; 19:961-965. [PMID: 38204938 PMCID: PMC10776905 DOI: 10.1016/j.radcr.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal stromal tumors (GIST) are mesenchymal neoplasms most frequently seen in the stomach and small intestine, arising in the muscularis propria of the intestinal wall. Given its nonspecific clinical presentation, it can represent a diagnostic challenge, especially in abdominopelvic locations. Lesion evaluation of abdominopelvic tumors can be difficult and lead to misinterpretation in assessing their origin. We report the case of an 84-year-old woman with a voluminous small bowel GIST mimicking a uterine neoplasm.
Collapse
Affiliation(s)
- Selma Khouchoua
- Central Radiology Department, Ibn Sina University Hospital Center, Mohamed V University, Ave Abderrahim Bouabid, 10000, Rabat, Morocco
| | - Kaoutar Imrani
- Central Radiology Department, Ibn Sina University Hospital Center, Mohamed V University, Ave Abderrahim Bouabid, 10000, Rabat, Morocco
| | - Iliass Bourekba
- Central Radiology Department, Ibn Sina University Hospital Center, Mohamed V University, Ave Abderrahim Bouabid, 10000, Rabat, Morocco
| | - Yousra Guelzim
- Central Radiology Department, Ibn Sina University Hospital Center, Mohamed V University, Ave Abderrahim Bouabid, 10000, Rabat, Morocco
| | - Nabil Moatassim Billah
- Central Radiology Department, Ibn Sina University Hospital Center, Mohamed V University, Ave Abderrahim Bouabid, 10000, Rabat, Morocco
| | - Ittimade Nassar
- Central Radiology Department, Ibn Sina University Hospital Center, Mohamed V University, Ave Abderrahim Bouabid, 10000, Rabat, Morocco
| |
Collapse
|
4
|
Guo M, Cao Z, Huang Z, Hu S, Xiao Y, Ding Q, Liu Y, An X, Zheng X, Zhang S, Zhang G. The value of CT shape quantification in predicting pathological classification of lung adenocarcinoma. BMC Cancer 2024; 24:35. [PMID: 38178062 PMCID: PMC10768264 DOI: 10.1186/s12885-023-11802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVE To evaluate whether quantification of lung GGN shape is useful in predicting pathological categorization of lung adenocarcinoma and guiding the clinic. METHODS 98 patients with primary lung adenocarcinoma were pathologically confirmed and CT was performed preoperatively, and all lesions were pathologically ≤ 30 mm in size. On CT images, we measured the maximum area of the lesion's cross-section (MA). The longest diameter of the tumor (LD) was marked with points A and B, and the perpendicular diameter (PD) was marked with points C and D, which was the longest diameter perpendicular to AB. and D, which was the longest diameter perpendicular to AB. We took angles A and B as big angle A (BiA) and small angle A (SmA). We measured the MA, LD, and PD, and for analysis we derived the LD/PD ratio and the BiA/SmA ratio. The data were analysed using the chi-square test, t-test, ROC analysis, and binary logistic regression analysis. RESULTS Precursor glandular lesions (PGL) and microinvasive adenocarcinoma (MIA) were distinguished from invasive adenocarcinoma (IAC) by the BiA/SmA ratio and LD, two independent factors (p = 0.007, p = 0.018). Lung adenocarcinoma pathological categorization was indicated by the BiA/SmA ratio of 1.35 and the LD of 11.56 mm with sensitivity of 81.36% and 71.79%, respectively; specificity of 71.79% and 74.36%, respectively; and AUC of 0.8357 (95% CI: 0.7558-0.9157, p < 0.001), 0.8666 (95% CI: 0.7866-0.9465, p < 0.001), respectively. In predicting the pathological categorization of lung adenocarcinoma, the area under the ROC curve of the BiA/SmA ratio combined with LD was 0.9231 (95% CI: 0.8700-0.9762, p < 0.001), with a sensitivity of 81.36% and a specificity of 89.74%. CONCLUSIONS Quantification of lung GGN morphology by the BiA/SmA ratio combined with LD could be helpful in predicting pathological classification of lung adenocarcinoma.
Collapse
Affiliation(s)
- Mingjie Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Zhan Cao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Zhichao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Shaowen Hu
- Department of Clinical Medicine, Medical School of Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Clinical Medicine, Medical School of Henan University, Kaifeng, China
| | - Qianzhou Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Yalong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Xiaokang An
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Xianjie Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Shuanglin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Guoyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China.
| |
Collapse
|
5
|
Liu JZ, Jia ZW, Sun LL. Factors associated with gastrointestinal stromal tumor rupture and pathological risk: A single-center retrospective study. World J Radiol 2023; 15:350-358. [PMID: 38179203 PMCID: PMC10762522 DOI: 10.4329/wjr.v15.i12.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is a rare gastrointestinal mesenchymal tumor with potential malignancy. Once the tumor ruptures, regardless of tumor size and mitotic number, it can be identified into a high-risk group. It is of great significance for the diagnosis, treatment, and prognosis of GIST if non-invasive examination can be performed before surgery to accurately assess the risk of tumor. AIM To identify the factors associated with GIST rupture and pathological risk. METHODS A cohort of 50 patients with GISTs, as confirmed by postoperative pathology, was selected from our hospital. Clinicopathological and computed tomography data of the patients were collected. Logistic regression analysis was used to evaluate factors associated with GIST rupture and pathological risk grade. RESULTS Pathological risk grade, tumor diameter, tumor morphology, internal necrosis, gas-liquid interface, and Ki-67 index exhibited significant associations with GIST rupture (P < 0.05). Gender, tumor diameter, tumor rupture, and Ki-67 index were found to be correlated with pathological risk grade of GIST (P < 0.05). Multifactorial logistic regression analysis revealed that male gender and tumor diameter ≥ 10 cm were independent predictors of a high pathological risk grade of GIST [odds ratio (OR) = 11.12, 95% confidence interval (95%CI): 1.81-68.52, P = 0.01; OR = 22.96, 95%CI: 2.19-240.93, P = 0.01]. Tumor diameter ≥ 10 cm, irregular shape, internal necrosis, gas-liquid interface, and Ki-67 index ≥ 10 were identified as independent predictors of a high risk of GIST rupture (OR = 9.67, 95%CI: 2.15-43.56, P = 0.01; OR = 35.44, 95%CI: 4.01-313.38, P < 0.01; OR = 18.75, 95%CI: 3.40-103.34, P < 0.01; OR = 27.00, 95%CI: 3.10-235.02, P < 0.01; OR = 4.43, 95%CI: 1.10-17.92, P = 0.04). CONCLUSION Tumor diameter, tumor morphology, internal necrosis, gas-liquid, and Ki-67 index are associated with GIST rupture, while gender and tumor diameter are linked to the pathological risk of GIST. These findings contribute to our understanding of GIST and may inform non-invasive examination strategies and risk assessment for this condition.
Collapse
Affiliation(s)
- Jia-Zheng Liu
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, Liaoning Province, China
| | - Zhong-Wen Jia
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, Liaoning Province, China
| | - Ling-Ling Sun
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, Liaoning Province, China
| |
Collapse
|
6
|
Wang P, Yan J, Qiu H, Huang J, Yang Z, Shi Q, Yan C. A radiomics-clinical combined nomogram-based on non-enhanced CT for discriminating the risk stratification in GISTs. J Cancer Res Clin Oncol 2023; 149:12993-13003. [PMID: 37464150 DOI: 10.1007/s00432-023-05170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE To discriminate the risk stratification in gastrointestinal stromal tumors (GISTs) by preoperatively constructing a model of nonenhanced computed tomography (NECT). METHODS A total of 111 GISTs patients (77 in the training group and 34 in the validation Group) from two hospitals between 2015 and 2022 were collected retrospectively. One thousand and thirty-seven radiomics features were extracted from non-contract CT images, and the optimal radiomics signature was determined by univariate analysis and LASSO regression. The radiomics model was developed and validated from the ten optimal radiomics features by three methods. Covariates (clinical features, CT findings, and immunohistochemical characteristics) were collected to establish the clinical model, and both the radiomics features and the covariates were used to build the combined model. The effectiveness of the three models was evaluated by the Delong test. RESULTS The experimental results showed that the clinical models (75.3%, 70.6%), the radiomics models (79.2%, 79.4%) and the combined models (81.8%, 82.4%) all had high accuracy in predicting the pathological risk of GIST in both training and validation groups. The AUC values of the combined models were significantly higher in both the training groups (0.921 vs 0.822, p= 0.032) and the validation groups (0.913 vs 0.792, p= 0.019) than that of the clinical models. According to the calibration curve, the combined model nomogram is clinically useful. CONCLUSIONS The clinical-radiomics combined model and based on NECT performed well in discriminating the risk stratification in GISTs. As a quantitative technique, radiomics is capable of predicting the malignant potential and guiding treatment preoperatively.
Collapse
Affiliation(s)
- Peizhe Wang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Jingrui Yan
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Qiu
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Jingying Huang
- Department of Medical Imaging, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhe Yang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Qiang Shi
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Chengxin Yan
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
7
|
Wang L, Wang Q, Yang L, Ma C, Shi G. Computed tomographic imaging features to differentiate gastric schwannomas from gastrointestinal stromal tumours: a matched case-control study. Sci Rep 2023; 13:17568. [PMID: 37845257 PMCID: PMC10579344 DOI: 10.1038/s41598-023-43902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
To investigate clinical data and computed tomographic (CT) imaging features in differentiating gastric schwannomas (GSs) from gastric stromal tumours (GISTs) in matched patients, 31 patients with GSs were matched with 62 patients with GISTs (1:2) in sex, age, and tumour site. The clinical and imaging data were analysed. A significant (P < 0.05) difference was found in the tumour margin, enhancement pattern, growth pattern, and LD values between the 31 patients with GSs and 62 matched patients with GISTs. The GS lesions were mostly (93.5%) well defined while only 61.3% GIST lesions were well defined.The GS lesions were significantly (P = 0.036) smaller than the GIST lesions, with the LD ranging 1.5-7.4 (mean 3.67 cm) cm for the GSs and 1.0-15.30 (mean 5.09) cm for GIST lesions. The GS lesions were more significantly (P = 0.001) homogeneously enhanced (83.9% vs. 41.9%) than the GIST lesions. The GS lesions were mainly of the mixed growth pattern both within and outside the gastric wall (74.2% vs. 22.6%, P < 0.05) compared with that of GISTs. No metastasis or invasion of adjacent organs was present in any of the GS lesions, however, 1.6% of GISTs experienced metastasis and 3.2% of GISTs presented with invasion of adjacent organs. Heterogeneous enhancement and mixed growth pattern were two significant (P < 0.05) independent factors for distinguishing GS from GIST lesions. In conclusion: GS and GIST lesions may have significantly different features for differentiation in lesion margin, heterogeneous enhancement, mixed growth pattern, and longest lesion diameter, especially heterogeneous enhancement and mixed growth pattern.
Collapse
Affiliation(s)
- Lijia Wang
- Department of Radiology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, 12 Jiangkang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Qi Wang
- Department of Radiology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, 12 Jiangkang Road, Shijiazhuang, 050011, Hebei Province, China.
| | - Li Yang
- Department of Radiology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, 12 Jiangkang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Chongfei Ma
- Department of Radiology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, 12 Jiangkang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Gaofeng Shi
- Department of Radiology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, 12 Jiangkang Road, Shijiazhuang, 050011, Hebei Province, China
| |
Collapse
|
8
|
Wang TT, Liu WW, Liu XH, Gao RJ, Zhu CY, Wang Q, Zhao LP, Fan XM, Li J. Relationship between multi-slice computed tomography features and pathological risk stratification assessment in gastric gastrointestinal stromal tumors. World J Gastrointest Oncol 2023; 15:1073-1085. [PMID: 37389110 PMCID: PMC10303000 DOI: 10.4251/wjgo.v15.i6.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Computed tomography (CT) imaging features are associated with risk stratification of gastric gastrointestinal stromal tumors (GISTs).
AIM To determine the multi-slice CT imaging features for predicting risk stratification in patients with primary gastric GISTs.
METHODS The clinicopathological and CT imaging data for 147 patients with histologically confirmed primary gastric GISTs were retrospectively analyzed. All patients had received dynamic contrast-enhanced CT (CECT) followed by surgical resection. According to the modified National Institutes of Health criteria, 147 lesions were classified into the low malignant potential group (very low and low risk; 101 lesions) and high malignant potential group (medium and high-risk; 46 lesions). The association between malignant potential and CT characteristic features (including tumor location, size, growth pattern, contour, ulceration, cystic degeneration or necrosis, calcification within the tumor, lymphadenopathy, enhancement patterns, unenhanced CT and CECT attenuation value, and enhancement degree) was analyzed using univariate analysis. Multivariate logistic regression analysis was performed to identify significant predictors of high malignant potential. The receiver operating curve (ROC) was used to evaluate the predictive value of tumor size and the multinomial logistic regression model for risk classification.
RESULTS There were 46 patients with high malignant potential and 101 with low-malignant potential gastric GISTs. Univariate analysis showed no significant differences in age, gender, tumor location, calcification, unenhanced CT and CECT attenuation values, and enhancement degree between the two groups (P > 0.05). However, a significant difference was observed in tumor size (3.14 ± 0.94 vs 6.63 ± 3.26 cm, P < 0.001) between the low-grade and high-grade groups. The univariate analysis further revealed that CT imaging features, including tumor contours, lesion growth patterns, ulceration, cystic degeneration or necrosis, lymphadenopathy, and contrast enhancement patterns, were associated with risk stratification (P < 0.05). According to binary logistic regression analysis, tumor size [P < 0.001; odds ratio (OR) = 26.448; 95% confidence interval (CI): 4.854-144.099)], contours (P = 0.028; OR = 7.750; 95%CI: 1.253-47.955), and mixed growth pattern (P = 0.046; OR = 4.740; 95%CI: 1.029-21.828) were independent predictors for risk stratification of gastric GISTs. ROC curve analysis for the multinomial logistic regression model and tumor size to differentiate high-malignant potential from low-malignant potential GISTs achieved a maximum area under the curve of 0.919 (95%CI: 0.863-0.975) and 0.940 (95%CI: 0.893-0.986), respectively. The tumor size cutoff value between the low and high malignant potential groups was 4.05 cm, and the sensitivity and specificity were 93.5% and 84.2%, respectively.
CONCLUSION CT features, including tumor size, growth patterns, and lesion contours, were predictors of malignant potential for primary gastric GISTs.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Wei-Wei Liu
- Department of Rheumatology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Xian-Hai Liu
- Department of Network Information Center, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Rong-Ji Gao
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Chun-Yu Zhu
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Qing Wang
- Department of Ultrasound, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Lu-Ping Zhao
- Department of Medical Imaging, The Affiliated Hospital of Ji’ning Medical University, Jining 272000, Shandong Province, China
| | - Xiao-Ming Fan
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Juan Li
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| |
Collapse
|
9
|
Yang D, Ren H, Yang Y, Niu Z, Shao M, Xie Z, Yang T, Wang J. Risk stratification of 2- to 5-cm gastric stromal tumors based on clinical and computed tomography manifestations. Eur J Radiol 2022; 157:110590. [DOI: 10.1016/j.ejrad.2022.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
10
|
Yang L, Ma CF, Li Y, Zhang CR, Ren JL, Shi GF. Application of radiomics in predicting the preoperative risk stratification of gastric stromal tumors. Diagn Interv Radiol 2022; 28:532-539. [PMID: 36550752 PMCID: PMC9885615 DOI: 10.5152/dir.2022.21033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The stomach is the most common site of gastrointestinal stromal tumors (GISTs). In this study, clinical model, radiomics models, and nomogram were constructed to compare and assess the clinical value of each model in predicting the preoperative risk stratification of gastric stromal tumors (GSTs). METHODS In total, 180 patients with GSTs confirmed postoperatively pathologically were included. 70% was randomly selected from each category as the training group (n = 126), and the remaining 30% was stratified as the testing group (n = 54). The image features and texture characteristics of each patient were analyzed, and predictive model were constructed. The image features and the rad-score of the optimal radiomics model were used to establish the nomogram. The clinical application value of these models was assessed by the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). The calibration of each model was evaluated by the calibration curve. RESULTS The Area Under the Curve (AUC) value of the nomogram was 0.930 (95% confidence interval [CI]: 0.886- 0.973) in the training group and 0.931 (95% CI: 0.869-0.993) in the testing group. The AUC values of the training group and the testing group calculated by the radiomics model were 0.874 (95% CI: 0.814-0.935) and 0.863 (95% CI: 0.76 5-0.960), respectively; the AUC values calculated by the clinical model were 0.871 (95% CI: 0.811-0.931) and 0.854 (95% CI: 0.76 0-0.947). CONCLUSION The proposed nomogram can accurately predict the malignant potential of GSTs and can be used as repeatable imaging markers for decision support to predict the risk stratification of GSTs before surgery noninvasively and effectively.
Collapse
Affiliation(s)
- Li Yang
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Chong-Fei Ma
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Yang Li
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Chun-Ran Zhang
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | | | - Gao-Feng Shi
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| |
Collapse
|
11
|
Zhu MP, Ding QL, Xu JX, Jiang CY, Wang J, Wang C, Yu RS. Building contrast-enhanced CT-based models for preoperatively predicting malignant potential and Ki67 expression of small intestine gastrointestinal stromal tumors (GISTs). ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3161-3173. [PMID: 33765174 DOI: 10.1007/s00261-021-03040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To assess contrast-enhanced computed tomography (CE-CT) features for predicting malignant potential and Ki67 in small intestinal gastrointestinal stromal tumors (GISTs) and the correlation between them. METHODS We retrospectively analyzed the pathological and imaging data for 123 patients (55 male/68 female, mean age: 57.2 years) with a histopathological diagnosis of small intestine GISTs who received CE-CT followed by curative surgery from May 2009 to August 2019. According to postoperatively pathological and immunohistochemical results, patients were categorized by malignant potential and the Ki67 index, respectively. CT features were analyzed to be associated with malignant potential or the Ki67 index using univariate analysis, logistic regression and receiver operating curve analysis. Then, we explored the correlation between the Ki67 index and malignant potential by using the Spearman rank correlation. RESULTS Based on univariate and multivariate analysis, a predictive model of malignant potential of small intestine GISTs, consisting of tumor size (p < 0.001) and presence of necrosis (p = 0.033), was developed with the area under the receiver operating curve (AUC) of 0.965 (95% CI, 0.915-0.990; p < 0.001), with 91.53% sensitivity, 96.87% specificity, 96.43% PPV, 92.54% NPV, 94.31% diagnostic accuracy. For high Ki67 expression, a model made up of tumor size (p = 0.051), presence of ulceration (p = 0.054) and metastasis (p = 0.001) may be the best predictive combination with an AUC of 0.785 (95% CI, 0.702-0.854; p < 0.001), 63.33% sensitivity, 76.34% specificity, 46.34% PPV, 86.59% NPV, 73.17% diagnostic accuracy. Ki67 index showed a moderate positive correlation with mitotic count (r = 0.578, p < 0.001), a weak positive correlation with tumor size (r = 0.339, p < 0.001) and with risk stratification (r = 0.364, p < 0.001). CONCLUSION Features on CE-CT could preoperatively predict malignant potential and high Ki67 expression of small intestine GISTs, and Ki67 index may be a promising prognostic factor in predicting the prognosis of small intestine GISTs, independent of the risk stratification system.
Collapse
Affiliation(s)
- Miao-Ping Zhu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Department of Radiology, Hangzhou Women's Hospital, Hangzhou, China
| | - Qiao-Ling Ding
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun-Yan Jiang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Department of Radiology, People's Hospital of Songyang County, Lishui, China
| | - Jing Wang
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China.
| | - Ri-Sheng Yu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Ki67 for evaluating the prognosis of gastrointestinal stromal tumors: A systematic review and meta‑analysis. Oncol Lett 2022; 23:189. [PMID: 35527778 PMCID: PMC9073573 DOI: 10.3892/ol.2022.13309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Overexpression of Ki67 is observed in tumor cells, and it has been suggested to be a marker for cancer prognosis. However, the relationship between Ki67 expression and the risk of recurrence of gastrointestinal stromal tumors (GISTs) remains poorly defined. In the present study, a meta-analysis was used to examine the associations between Ki67 levels and GIST recurrence. Studies reporting GIST and Ki67 were found by searching Cochrane Library, PubMed and Embase until October 14, 2021. The Newcastle-Ottawa Scale (NOS) was used to verify the quality of the evidence. Totally, 1682 patient cases were included. The odds ratio (OR) estimates and 95% confidence interval (CI) for each publication were determined by a fixed-effects (Mantel-Haenszel) model. A total of 20 studies that fulfilled the inclusion criteria were finally included in the analysis. The average score of quality evaluation was 6.4 points according to NOS. It was found that Ki67 levels were significantly higher in the NIH L group compared with the NIH VL group (OR: 0.51; 95% CI: 0.26-0.99; P=0.04; P heterogeneity=0.44). There was also greater Ki67 overexpression in the NIH I group compared with the NIH L group (OR: 0.45, 95% CI: 0.31-0.65; P<0.0001; P heterogeneity=0.32), while Ki67 levels were greater in the NIH H group than in the NIH I group (OR: 0.20; 95% CI: 0.15-0.28; P<0.00001; P heterogeneity=0.56). In conclusion, Ki67 overexpression may be a useful marker of the risk of recurrent GIST transformation.
Collapse
|
13
|
Comparison of Computed Tomography Features of Gastric and Small Bowel Gastrointestinal Stromal Tumors With Different Risk Grades. J Comput Assist Tomogr 2022; 46:175-182. [PMID: 35297574 DOI: 10.1097/rct.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to compare the computed tomography (CT) features of gastric and small bowel gastrointestinal stromal tumors (GISTs) and further identify the predictors for risk stratification of them, respectively. METHODS According to the modified National Institutes of Health criteria, patients were classified into low-malignant potential group and high-malignant potential group. Two experienced radiologists reviewed the CT features including the difference of CT values between arterial phase and portal venous phase (PVPMAP) by consensus. The CT features of gastric and small bowel GISTs were compared, and the association of CT features with risk grades was analyzed, respectively. Determinant CT features were used to construct corresponding models. RESULTS Univariate analysis showed that small bowel GISTs tended to present with irregular contour, mixed growth pattern, ill-defined margin, severe necrosis, ulceration, tumor vessels, heterogeneous enhancement, larger size, and marked enhancement compared with gastric GISTs. According to multivariate analysis, tumor size (P < 0.001; odds ratio [OR], 3.279), necrosis (P = 0.008; OR, 2.104) and PVPMAP (P = 0.045; OR, 0.958) were the independent influencing factors for risk stratification of gastric GISTs. In terms of small bowel GISTs, the independent predictors were tumor size (P < 0.001; OR, 3.797) and ulceration (P = 0.031; OR, 4.027). Receiver operating characteristic curve indicated that the CT models for risk stratification of gastric and small bowel GISTs both achieved the best predictive performance. CONCLUSIONS Computed tomography features of gastric and small bowel GISTs are different. Furthermore, the qualitative and quantitative CT features of GISTs may be favorable for preoperative risk stratification.
Collapse
|
14
|
Microvascular invasion of small hepatocellular carcinoma can be preoperatively predicted by the 3D quantification of MRI. Eur Radiol 2022; 32:4198-4209. [DOI: 10.1007/s00330-021-08495-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
|
15
|
Palatresi D, Fedeli F, Danti G, Pasqualini E, Castiglione F, Messerini L, Massi D, Bettarini S, Tortoli P, Busoni S, Pradella S, Miele V. Correlation of CT radiomic features for GISTs with pathological classification and molecular subtypes: preliminary and monocentric experience. Radiol Med 2022; 127:117-128. [PMID: 35022956 DOI: 10.1007/s11547-021-01446-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Our primary purpose was to search for computed tomography (CT) radiomic features of gastrointestinal stromal tumors (GISTs) that could potentially correlate with the risk class according to the Miettinen classification. Subsequently, assess the existence of features with possible predictive value in differentiating responder from non-responder patients to first-line therapy with Imatinib. METHODS A retrospective study design was carried out using data from June 2009 to December 2020. We analyzed all the preoperative CTs of patients undergoing surgery for GISTs. We segmented non-contrast-enhanced CT (NCECT) and contrast-enhanced venous CT (CECT) images obtained either on three different CT scans (heterogeneous cohort) or on a single CT scan (homogeneous cohort). We then divided the patients into two groups according to Miettinen classification criteria and based on the predictive value of response to first-line therapy with Imatinib. RESULTS We examined 54 patients with pathological confirmation of GISTs. For the heterogeneous cohort, we found a statistically significant relationship between 57 radiomic features for NCECT and 56 radiomic features for CECT using the Miettinen risk classification. In the homogeneous cohort, we found the same relationship between 8 features for the NCECT and 5 features for CECT, all included in the heterogeneous cohort. The various radiomic features are distributed with different values in the two risk stratification groups according to the Miettinen classification. We also found some features for groups predictive of response to first-line therapy with Imatinib. CONCLUSIONS We found radiomic features that correlate with statistical significance for both the Miettinen risk classification and the molecular subtypes of response. All features found in the homogeneous study cohort were also found in the heterogeneous cohort. CT radiomic features may be useful in assessing the risk class and prognosis of GISTs.
Collapse
Affiliation(s)
- Daniele Palatresi
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Filippo Fedeli
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| | - Elisa Pasqualini
- Pathology Unit, Department of Health Sciences, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Daniela Massi
- Pathology Unit, Department of Health Sciences, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Silvia Bettarini
- Medical Physics Department, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Paolo Tortoli
- Medical Physics Department, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Simone Busoni
- Medical Physics Department, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
16
|
A CT-based nomogram for predicting the malignant potential of primary gastric gastrointestinal stromal tumors preoperatively. Abdom Radiol (NY) 2021; 46:3075-3085. [PMID: 33713161 DOI: 10.1007/s00261-021-03026-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To develop and validate a computerized tomography (CT)-based nomogram for predicting the malignant potential of primary gastric gastrointestinal stromal tumors (GISTs). METHODS The primary and validation cohorts consisted of 167 and 39 patients (single center, different time periods) with histologically confirmed primary gastric GISTs. Clinical data and preoperative CT images were reviewed. The association of CT characteristics with malignant potential was analyzed using univariate and stepwise logistic regression analyses. A nomogram based on significant CT findings was developed for predicting malignant potential. The predictive accuracy of the nomogram was determined by the concordance index (C-index) and calibration curves. External validation was performed with the validation cohort. RESULTS CT imaging features including tumor size, tumor location, tumor necrosis, growth pattern, ulceration, enlarged vessels feeding or draining the mass (EVFDM), tumor contour, mesenteric fat infiltration, and direct organ invasion showed significant differences between the low- and high-grade malignant potential groups in univariate analysis (P < 0.05). Only tumor size (> 5 cm vs ≤ 5 cm), location (cardiac/pericardial region vs other), EVFDM, and mesenteric fat infiltration (present vs absent) were significantly associated with high malignant potential in multivariate logistic regression analysis. Incorporating these four independent factors into the nomogram model achieved good C-indexes of 0.946 (95% confidence interval [CI] 0.899-0.975) and 0.952 (95% CI 0.913-0.977) in the primary and validation cohorts, respectively. The cutoff point was 0.33, with sensitivity, specificity, and diagnostic accuracy of 0.865, 0.915, and 0.780, respectively. DISCUSSION Primary gastric GISTs originating in the cardiac/pericardial region appear to be associated with higher malignant potential. The nomogram consisting of CT features, including size, location, EVFDM, and mesenteric fat infiltration, could be used to accurately predict the high malignant potential of primary gastric GISTs.
Collapse
|
17
|
Chen XS, Shan YC, Dong SY, Wang WT, Yang YT, Liu LH, Xu ZH, Zeng MS, Rao SX. Utility of preoperative computed tomography features in predicting the Ki-67 labeling index of gastric gastrointestinal stromal tumors. Eur J Radiol 2021; 142:109840. [PMID: 34237492 DOI: 10.1016/j.ejrad.2021.109840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the value of preoperative computed tomography (CT) features including morphologic and quantitative features for predicting the Ki-67 labeling index (Ki-67LI) of gastric gastrointestinal stromal tumors (GISTs). METHODS We retrospectively included 167 patients with gastric GISTs who underwent preoperative contrast-enhanced CT. We assessed the morphologic features of preoperative CT images and the quantitative features including the maximum diameter of tumor, total tumor volume, mean total tumor CT value, necrosis volume, necrosis volume ratio, enhanced tissue volume, and mean CT value of enhanced tissue. Potential predictive parameters to distinguish the high-level Ki-67LI group (>4%, n = 125) from the low-level Ki-67LI group (≤4%, n = 42) were compared and subsequently determined in multivariable logistic regression analysis. RESULTS Growth pattern (p = 0.036), shape (p = 0.000), maximum diameter (p = 0.018), total tumor volume (p = 0.021), mean total tumor CT value (p = 0.009), necrosis volume (p = 0.006), necrosis volume ratio (p = 0.000), enhanced tissue volume (p = 0.027), and mean CT value of enhanced tissue (p = 0.004) were significantly different between the two groups. Multivariate logistic regression analysis indicated that lobulated/irregular shape (odds ratio [OR] = 3.817; p = 0.000) and high necrosis volume ratio (OR = 1.935; p = 0.024) were independent factors of high-level Ki-67LI. CONCLUSIONS Higher necrosis volume ratio in combination with lobulated/irregular shape could potentially predict high expression of Ki-67LI for gastric GISTs.
Collapse
Affiliation(s)
- Xiao-Shan Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - Ying-Chan Shan
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - San-Yuan Dong
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - Wen-Tao Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - Yu-Tao Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - Li-Heng Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - Zhi-Han Xu
- Department of CT Collaboration, Siemens Healthineers, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China
| | - Sheng-Xiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
18
|
Ao W, Cheng G, Lin B, Yang R, Liu X, Zhou S, Wang W, Fang Z, Tian F, Yang G, Wang J. A novel CT-based radiomic nomogram for predicting the recurrence and metastasis of gastric stromal tumors. Am J Cancer Res 2021; 11:3123-3134. [PMID: 34249449 PMCID: PMC8263673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/17/2021] [Indexed: 06/13/2023] Open
Abstract
Our study aimed to explore the value of applying the CT-based radiomic nomogram for predicting recurrence and/or metastasis (RM) of gastric stromal tumors (GSTs). During the past ten years, a total of 236 patients with GST were analyzed retrospectively. According to the postoperative follow-up classification, the patients were divided into two groups, namely non-recurrence/metastasis group (non-RM) and RM group. All the cases were randomly divided into primary cohort and validation cohort according to the ratio of 7:3. Standardized CT images were segmented by radiologists using ITK-SNAP software manually. Texture features were extracted from all segmented lesions, then radiomic features were selected and the radiomic nomogram was built using least absolute shrinkage and selection operator (LASSO) method. The clinical features with the greatest correlation with RM of GST were selected by univariate analysis, and used as parameters to build the clinical feature model. Eventually, model of radiomic and clinical features were fitted to construct the clinical + radiomic feature model. The performance of each model was evaluated by the area under receiver operating characteristic (ROC) curve (AUC). A total of 1223 features were extracted from all the segmentation regions of each case, and features were selected via the least absolute shrinkage and LASSO binary logistic regression model. After deletion of redundant features, four key features were obtained, which were used as the parameters to build a radiomic signature. The AUCs of radiomic nomogram in primary cohort and validation cohort were 0.816 and 0.946, respectively. The AUCs of clinical + radiomic feature model in primary cohort and validation cohort were 0.833 and 0.937, respectively. Using DeLong test, the differences of AUC values between radiomic nomogram and clinical + radiomic feature model in primary cohort (P = 0.840) and validation cohort (P = 0.857) were not statistically significant. To sum up, CT-based radiomic nomogram is of great potential in predicting the RM of GST non-invasively before operation.
Collapse
Affiliation(s)
- Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang ProvinceHangzhou, Zhejiang, China
| | | | - Bin Lin
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Rong Yang
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Xuebin Liu
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Sheng Zhou
- Department of Radiology, Gansu Provincial Hospital of Traditional Chinese MedicineLanzhou, Gansu, China
| | - Wenqi Wang
- Department of Radiology, Gansu Provincial Hospital of Traditional Chinese MedicineLanzhou, Gansu, China
| | | | - Fengjuan Tian
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Guangzhao Yang
- Department of Radiology, Tongde Hospital of Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Jian Wang
- Department of Radiology, Tongde Hospital of Zhejiang ProvinceHangzhou, Zhejiang, China
| |
Collapse
|
19
|
Assessment of morphological CT imaging features for the prediction of risk stratification, mutations, and prognosis of gastrointestinal stromal tumors. Eur Radiol 2021; 31:8554-8564. [PMID: 33881567 DOI: 10.1007/s00330-021-07961-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the correlation between CT imaging features and risk stratification of gastrointestinal stromal tumors (GISTs), prediction of mutation status, and prognosis. METHODS This retrospective dual-institution study included patients with pathologically proven GISTs meeting the following criteria: (i) preoperative contrast-enhanced CT performed between 2008 and 2019; (ii) no treatments before imaging; (iii) available pathological analysis. Tumor risk stratification was determined according to the National Institutes of Health (NIH) 2008 criteria. Two readers evaluated the CT features, including enhancement patterns and tumor characteristics in a blinded fashion. The differences in distribution of CT features were assessed using univariate and multivariate analyses. Survival analyses were performed by using the Cox proportional hazard model, Kaplan-Meier method, and log-rank test. RESULTS The final population included 88 patients (59 men and 29 women, mean age 60.5 ± 11.1 years) with 45 high-risk and 43 low-to-intermediate-risk GISTs (median size 6.3 cm). At multivariate analysis, lesion size ≥ 5 cm (OR: 10.52, p = 0.009) and enlarged feeding vessels (OR: 12.08, p = 0.040) were independently associated with the high-risk GISTs. Hyperenhancement was significantly more frequent in PDGFRα-mutated/wild-type GISTs compared to GISTs with KIT mutations (59.3% vs 23.0%, p = 0.004). Ill-defined margins were associated with shorter progression-free survival (HR 9.66) at multivariate analysis, while ill-defined margins and hemorrhage remained independently associated with shorter overall survival (HR 44.41 and HR 30.22). Inter-reader agreement ranged from fair to almost perfect (k: 0.32-0.93). CONCLUSIONS Morphologic contrast-enhanced CT features are significantly different depending on the risk status or mutations and may help to predict prognosis. KEY POINTS • Lesions size ≥ 5 cm (OR: 10.52, p = 0.009) and enlarged feeding vessels (OR: 12.08, p = 0.040) are independent predictors of high-risk GISTs. • PDGFRα-mutated/wild-type GISTs demonstrate more frequently hyperenhancement compared to GISTs with KIT mutations (59.3% vs 23.0%, p = 0.004). • Ill-defined margins (hazard ratio 9.66) were associated with shorter progression-free survival at multivariate analysis, while ill-defined margins (hazard ratio 44.41) and intralesional hemorrhage (hazard ratio 30.22) were independently associated with shorter overall survival.
Collapse
|
20
|
Fudalej MM, Badowska-Kozakiewicz AM. Improved understanding of gastrointestinal stromal tumors biology as a step for developing new diagnostic and therapeutic schemes. Oncol Lett 2021; 21:417. [PMID: 33841578 DOI: 10.3892/ol.2021.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
A gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract, with an estimated incidence of 10-15 per 1 million per year. While preparing holistic care for patients with GIST diagnosis, scientists might face several difficulties - insufficient risk stratification, acquired or secondary resistance to imatinib, or the need for an exceptional therapy method associated with wild-type tumors. This review summarizes recent advances associated with GIST biology that might enhance diagnostic and therapeutic strategies. New molecules might be incorporated into risk stratification schemes due to their proven association with outcomes; however, further research is required. Therapies based on the significant role of angiogenesis, immunology, and neural origin in the GIST biology could become a valuable enhancement of currently implemented treatment schemes. Generating miRNA networks that would predict miRNA regulatory functions is a promising approach that might help in better selection of potential biomarkers and therapeutical targets in cancer, including GISTs.
Collapse
Affiliation(s)
- Marta Magdalena Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|