1
|
Margolis DJA, Chatterjee A, deSouza NM, Fedorov A, Fennessy FM, Maier SE, Obuchowski N, Punwani S, Purysko A, Rakow-Penner R, Shukla-Dave A, Tempany CM, Boss M, Malyarenko D. Quantitative Prostate MRI, From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024. [PMID: 39356481 DOI: 10.2214/ajr.24.31715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.
Collapse
Affiliation(s)
| | | | - Nandita M deSouza
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Andriy Fedorov
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Stephan E Maier
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | - Andrei Purysko
- Department of Radiology, Cleveland Clinic, Cleveland, OH
| | | | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | | |
Collapse
|
2
|
Mir N, Fransen SJ, Wolterink JM, Fütterer JJ, Simonis FFJ. Recent Developments in Speeding up Prostate MRI. J Magn Reson Imaging 2024; 60:813-826. [PMID: 37982353 DOI: 10.1002/jmri.29108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing incidence of prostate cancer cases worldwide has led to a tremendous demand for multiparametric MRI (mpMRI). In order to relieve the pressure on healthcare, reducing mpMRI scan time is necessary. This review focuses on recent techniques proposed for faster mpMRI acquisition, specifically shortening T2W and DWI sequences while adhering to the PI-RADS (Prostate Imaging Reporting and Data System) guidelines. Speeding up techniques in the reviewed studies rely on more efficient sampling of data, ranging from the acquisition of fewer averages or b-values to adjustment of the pulse sequence. Novel acquisition methods based on undersampling techniques are often followed by suitable reconstruction methods typically incorporating synthetic priori information. These reconstruction methods often use artificial intelligence for various tasks such as denoising, artifact correction, improvement of image quality, and in the case of DWI, for the generation of synthetic high b-value images or apparent diffusion coefficient maps. Reduction of mpMRI scan time is possible, but it is crucial to maintain diagnostic quality, confirmed through radiological evaluation, to integrate the proposed methods into the standard mpMRI protocol. Additionally, before clinical integration, prospective studies are recommended to validate undersampling techniques to avoid potentially inaccurate results demonstrated by retrospective analysis. This review provides an overview of recently proposed techniques, discussing their implementation, advantages, disadvantages, and diagnostic performance according to PI-RADS guidelines compared to conventional methods. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nida Mir
- Magnetic Detection and Imaging, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Stefan J Fransen
- Department of Radiology, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer M Wolterink
- Department of Applied Mathematics, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Jurgen J Fütterer
- Robotics and Mechatronics, Technical Medical Centre, University of Twente, Enschede, Netherlands
- Minimally Invasive Image-Guided Interventions Center, Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank F J Simonis
- Magnetic Detection and Imaging, Technical Medical Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
3
|
McTavish S, Van AT, Peeters JM, Weiss K, Harder FN, Makowski MR, Braren RF, Karampinos DC. Partial Fourier in the presence of respiratory motion in prostate diffusion-weighted echo planar imaging. MAGMA (NEW YORK, N.Y.) 2024; 37:621-636. [PMID: 38743376 PMCID: PMC11417066 DOI: 10.1007/s10334-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.
Collapse
Affiliation(s)
- Sean McTavish
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Anh T Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | | | | | - Felix N Harder
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rickmer F Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
4
|
Fennessy FM, Maier SE. Quantitative diffusion MRI in prostate cancer: Image quality, what we can measure and how it improves clinical assessment. Eur J Radiol 2023; 167:111066. [PMID: 37651828 PMCID: PMC10623580 DOI: 10.1016/j.ejrad.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Diffusion-weighted imaging is a dependable method for detection of clinically significant prostate cancer. In prostate tissue, there are several compartments that can be distinguished from each other, based on different water diffusion decay signals observed. Alterations in cell architecture, such as a relative increase in tumor infiltration and decrease in stroma, will influence the observed diffusion signal in a voxel due to impeded random motion of water molecules. The amount of restricted diffusion can be assessed quantitatively by measuring the apparent diffusion coefficient (ADC) value. This is traditionally calculated using a monoexponential decay formula represented by the slope of a line produced between the logarithm of signal intensity decay plotted against selected b-values. However, the choice and number of b-values and their distribution, has a significant effect on the measured ADC values. There have been many models that attempt to use higher-order functions to better describe the observed diffusion signal decay, requiring an increased number and range of b-values. While ADC can probe heterogeneity on a macroscopic level, there is a need to optimize advanced diffusion techniques to better interrogate prostate tissue microstructure. This could be of benefit in clinical challenges such as identifying sparse tumors in normal prostate tissue or better defining tumor margins. This paper reviews the principles of diffusion MRI and novel higher order diffusion signal analysis techniques to improve the detection of prostate cancer.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Stephan E Maier
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Dwivedi DK, Jagannathan NR. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:587-608. [PMID: 35867236 DOI: 10.1007/s10334-022-01031-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Current challenges of using serum prostate-specific antigen (PSA) level-based screening, such as the increased false positive rate, inability to detect clinically significant prostate cancer (PCa) with random biopsy, multifocality in PCa, and the molecular heterogeneity of PCa, can be addressed by integrating advanced multiparametric MR imaging (mpMRI) approaches into the diagnostic workup of PCa. The standard method for diagnosing PCa is a transrectal ultrasonography (TRUS)-guided systematic prostate biopsy, but it suffers from sampling errors and frequently fails to detect clinically significant PCa. mpMRI not only increases the detection of clinically significant PCa, but it also helps to reduce unnecessary biopsies because of its high negative predictive value. Furthermore, non-Cartesian image acquisition and compressed sensing have resulted in faster MR acquisition with improved signal-to-noise ratio, which can be used in quantitative MRI methods such as dynamic contrast-enhanced (DCE)-MRI. With the growing emphasis on the role of pre-biopsy mpMRI in the evaluation of PCa, there is an increased demand for innovative MRI methods that can improve PCa grading, detect clinically significant PCa, and biopsy guidance. To meet these demands, in addition to routine T1-weighted, T2-weighted, DCE-MRI, diffusion MRI, and MR spectroscopy, several new MR methods such as restriction spectrum imaging, vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) method, hybrid multi-dimensional MRI, luminal water imaging, and MR fingerprinting have been developed for a better characterization of the disease. Further, with the increasing interest in combining MR data with clinical and genomic data, there is a growing interest in utilizing radiomics and radiogenomics approaches. These big data can also be utilized in the development of computer-aided diagnostic tools, including automatic segmentation and the detection of clinically significant PCa using machine learning methods.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Radiodiagnosis, King George Medical University, Lucknow, UP, 226 003, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, TN, 603 103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, TN, 600 116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, TN, 600 036, India.
| |
Collapse
|
6
|
High-Resolution, High b-Value Computed Diffusion-Weighted Imaging Improves Detection of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14030470. [PMID: 35158737 PMCID: PMC8833466 DOI: 10.3390/cancers14030470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Our purpose was to investigate the potential of high-resolution, high b-value computed DWI (cDWI) in pancreatic ductal adenocarcinoma (PDAC) detection. Materials and Methods: We retrospectively enrolled 44 patients with confirmed PDAC. Respiratory-triggered, diffusion-weighted, single-shot echo-planar imaging (ss-EPI) with both conventional (i.e., full field-of-view, 3 × 3 × 4 mm voxel size, b = 0, 50, 300, 600 s/mm2) and high-resolution (i.e., reduced field-of-view, 2.5 × 2.5 × 3 mm voxel size, b = 0, 50, 300, 600, 1000 s/mm2) imaging was performed for suspected PDAC. cDWI datasets at b = 1000 s/mm2 were generated for the conventional and high-resolution datasets. Three radiologists were asked to subjectively rate (on a Likert scale of 1–4) the following metrics: image quality, lesion detection and delineation, and lesion-to-pancreas intensity relation. Furthermore, the following quantitative image parameters were assessed: apparent signal-to-noise ratio (aSNR), contrast-to-noise ratio (aCNR), and lesion-to-pancreas contrast ratio (CR). Results: High-resolution, high b-value computed DWI (r-cDWI1000) enabled significant improvement in lesion detection and a higher incidence of a high lesion-to-pancreas intensity relation (type 1, clear hyperintense) compared to conventional high b-value computed and high-resolution high b-value acquired DWI (f-cDWI1000 and r-aDWI1000, respectively). Image quality was rated inferior in the r-cDWI1000 datasets compared to r-aDWI1000. Furthermore, the aCNR and CR were higher in the r-cDWI1000 datasets than in f-cDWI1000 and r-aDWI1000. Conclusion: High-resolution, high b-value computed DWI provides significantly better visualization of PDAC compared to the conventional high b-value computed and high-resolution high b-value images acquired by DWI.
Collapse
|
7
|
Harder FN, Kamal O, Kaissis GA, Heid I, Lohöfer FK, McTavish S, Van AT, Katemann C, Peeters JM, Karampinos DC, Makowski MR, Braren RF. Qualitative and Quantitative Comparison of Respiratory Triggered Reduced Field-of-View (FOV) Versus Full FOV Diffusion Weighted Imaging (DWI) in Pancreatic Pathologies. Acad Radiol 2021; 28 Suppl 1:S234-S243. [PMID: 33390324 DOI: 10.1016/j.acra.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the effects of a reduced field-of-view (rFOV) acquisition in diffusion-weighted magnetic resonance imaging of the pancreas. MATERIALS AND METHODS We enrolled 153 patients who underwent routine clinical MRI work-up including respiratory-triggered diffusion-weighted single-shot echo-planar imaging (DWI) with full field-of-view (fFOV, 3 × 3 × 4 mm3 voxel size) and reduced field-of-view (rFOV, 2.5 × 2.5 × 3 mm3 voxel size) for suspected pancreatic pathology. Two experienced radiologists were asked to subjectively rate (Likert Scale 1-4) image quality (overall image quality, lesion conspicuity, anatomical detail, artifacts). In addition, quantitative image parameters were assessed (apparent diffusion coefficient, apparent signal to noise ratio, apparent contrast to noise ratio [CNR]). RESULTS All subjective metrics of image quality were rated in favor of rFOV DWI images compared to fFOV DWI images with substantial-to-high inter-rater reliability. Calculated ADC values of normal pancreas, pancreatic pathologies and reference tissues revealed no differences between both sequences. Whereas the apparent signal to noise ratio was higher in fFOV images, apparent CNR was higher in rFOV images. CONCLUSION rFOV DWI provides higher image quality and apparent CNR values, favorable in the analysis of pancreatic pathologies.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Omar Kamal
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine; Department of Radiology, South Egypt Cancer Institute, Assiut University, Egypt
| | - Georgios A Kaissis
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine; Department of Computing, Faculty of Engineering, Imperial College of Science, Technology and Medicine, United Kingdom
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Fabian K Lohöfer
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Sean McTavish
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Anh T Van
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | | | | | - Dimitrios C Karampinos
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Marcus R Makowski
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Rickmer F Braren
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine.
| |
Collapse
|