1
|
Asafu Adjaye Frimpong G, Asante E, Mahama F, Aboagye E, Asare A. Microwave Thermal Ablation for Breast Cancer in Africa: A Pioneering Case Report Utilizing TATOpro. Cureus 2024; 16:e64029. [PMID: 38983673 PMCID: PMC11233127 DOI: 10.7759/cureus.64029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/11/2024] Open
Abstract
The adoption of minimally invasive treatments for early-stage breast cancer is increasing. Microwave thermal ablation (MWA), a minimally invasive technique, has been studied for treating small breast cancer lesions. However, long-term evidence on its efficacy as a sole treatment is limited, as most studies combine MWA with other therapies and post-treatment surgical excision. This report details the case of an 83-year-old African patient who declined surgery and systemic therapies, opting for MWA using the TATOpro system as the sole treatment for contralateral breast cancer with axillary lymph node metastasis. The report includes a one-year follow-up, assessing disease recurrence with MRI and ultrasound. The findings highlight MWA's potential as an innovative and efficacious breast cancer treatment, emphasizing the need for adaptable strategies in oncology.
Collapse
Affiliation(s)
- George Asafu Adjaye Frimpong
- Radiology, Kwame Nkrumah University of Science and Technology, Kumasi, GHA
- Radiology, Spectra Health Imaging and Interventional Radiology, Kumasi, GHA
| | - Emmanuel Asante
- Research and Development, Spectra Health Imaging and Interventional Radiology, Kumasi, GHA
| | - Fairuuj Mahama
- Radiology, Spectra Health Imaging and Interventional Radiology, Kumasi, GHA
| | - Evans Aboagye
- Research and Development, Spectra Health Imaging and Interventional Radiology, Kumasi, GHA
| | - Adwoa Asare
- Oncology, Komfo Anokye Teaching Hospital, Kumasi, GHA
| |
Collapse
|
2
|
Dai Y, Jiang J, Liang P, Yu X, Han Z, Liu F, Tan S, Bi M, Wu C, Cai Q, Li J, Yu J. Percutaneous microwave ablation: a viable local therapy for breast cancer involving the skin/nipple-areola complex? Curr Probl Surg 2024; 61:101483. [PMID: 38823890 DOI: 10.1016/j.cpsurg.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/03/2024]
Affiliation(s)
- Yuqing Dai
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Jiang
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - XiaoLing Yu
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - ZhiYu Han
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuilian Tan
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingsen Bi
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chong Wu
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Cai
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianming Li
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, 5th Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Li H, Zhang G, Wang H, Chen H, Liu X, Zheng C, Lin L, Li L. Ultrasound-guided microwave ablation for the treatment of idiopathic granulomatous mastitis: comparison with surgical excision. BMC Womens Health 2024; 24:248. [PMID: 38637788 PMCID: PMC11025156 DOI: 10.1186/s12905-024-03070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Idiopathic granulomatous mastitis (IGM) results in notable clinical symptoms and breast deformity. This study aimed to evaluate the clinical feasibility of microwave ablation (MWA) for the treatment of IGM through comparison with surgical excision. METHODS From June 2016 to December 2020, a total of 234 consecutive patients admitted to the hospital were retrospectively included in this study. IGM was pathologically confirmed via breast biopsy in all included patients. These patients were divided into the MWA group (n = 91) and surgical group (n = 143) based on the type of treatment. Patients in both groups received oral prednisone prior to intervention. The clinical remission rate, recurrence rate, operative pain, complications, and BREAST Q score were compared between the two groups. RESULTS There were 340 lesions in the MWA group, and 201 lesions in the surgical group were ultimately included. Significant differences in the complete remission rate (96.7% vs. 86.7%, p = 0.020), recurrence rate (3.3% vs. 13.3%, p = 0.020), operation time (48.7±14.6 min vs. 68.1±36.4 min, p < 0.001), postoperative pain (p < 0.001) and postoperative BREAST Q score (p < 0.001) were observed between the MWA and surgical groups. CONCLUSIONS Microwave ablation is feasible for the treatment of IGM, due to its high curative rate and low recurrence rate. Because of the minimal invasiveness of MWA and sufficient preservation of the gland and contour of the breast, patients are more satisfied with the appearance of the breast. Therefore, for patients with complex conditions requiring surgery, MWA is a good alternative treatment.
Collapse
Affiliation(s)
- Hang Li
- The School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China
- Department of Breast Surgery, Affiliated Hospital of Putian University, Fujian, 351100, China
| | - Guoliang Zhang
- Department of Thyroid Surgery, Affiliated Hospital of Putian University, Fujian, 351100, China
| | - Hongling Wang
- Department of General Surgery, Xiamen Xinkaiyuan Hospital, Fujian, 361000, China
| | - Haiying Chen
- The School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China
| | - Xiaoli Liu
- Department of Pathology, Affiliated Hospital of Putian University, Fujian, 351100, China
| | - Chuansheng Zheng
- The School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China
| | - Lisheng Lin
- Department of Breast Surgery, Affiliated Hospital of Putian University, Fujian, 351100, China
| | - Lihong Li
- The School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China.
- Department of Breast Surgery, Affiliated Hospital of Putian University, Fujian, 351100, China.
| |
Collapse
|
4
|
Zhou Y, Shu G, Luo Y, Wang F, Jing X, Pan J, Sun SK. Achieving Complete Tumor Clearance: A Minimalist Manganese Hydrogel for Magnetic Resonance Imaging-Guided Synergetic Microwave Ablation and Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303268. [PMID: 38140916 DOI: 10.1002/adhm.202303268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The combination of microwave ablation (MWA) and chemodynamic therapy (CDT) presents a promising strategy for complete eradication of residual tumor after MWA. However, it remains challenging and urgent to develop a facile, biocompatible, and imaging-guided platform for the achievement of this goal. Herein, a minimalist manganese hydrogel (ALG-Mn hydrogel) is proposed for synergistic MWA and CDT to completely eradicate tumor in vivo. The ALG-Mn hydrogel is prepared using a simple mixing method and exhibits excellent syringeability, remarkable microwave sensitivity, and potent Fenton-like activity. By assisting in MWA procedures, the ALG-Mn hydrogel enables both elimination of primary tumor mass through enhanced MWA efficacy and eradication of potential residual tumor tissues via robust CDT. This approach achieves complete tumor clearance without additional drug loading. Furthermore, the paramagnetic Mn2+ component allows real-time dynamic visualization of the ALG-Mn hydrogel at the tumor site via magnetic resonance imaging. To the best of knowledge, the proposed ALG-Mn hydrogel represents the minimalist biocompatible platform for imaging-guided synergistic MWA and CDT toward achieving complete tumor clearance.
Collapse
Affiliation(s)
- Yan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Fengmei Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
5
|
Shibamoto Y, Takano S. Non-Surgical Definitive Treatment for Operable Breast Cancer: Current Status and Future Prospects. Cancers (Basel) 2023; 15:cancers15061864. [PMID: 36980750 PMCID: PMC10046665 DOI: 10.3390/cancers15061864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
This article reviews the results of various non-surgical curative treatments for operable breast cancer. Radiotherapy is considered the most important among such treatments, but conventional radiotherapy alone and concurrent chemoradiotherapy do not achieve high cure rates. As a radiosensitization strategy, intratumoral injection of hydrogen peroxide before radiation has been investigated, and high local control rates (75-97%) were reported. The authors treated 45 patients with whole-breast radiotherapy, followed by stereotactic or intensity-modulated radiotherapy boost, with or without a radiosensitization strategy employing either hydrogen peroxide injection or hyperthermia plus oral tegafur-gimeracil-oteracil potassium. Stages were 0-I in 23 patients, II in 19, and III in 3. Clinical and cosmetic outcomes were good, with 5-year overall, progression-free, and local recurrence-free survival rates of 97, 86, and 88%, respectively. Trials of carbon ion radiotherapy are ongoing, with promising interim results. Radiofrequency ablation, focused ultrasound, and other image-guided ablation treatments yielded complete ablation rates of 20-100% (mostly ≥70%), but long-term cure rates remain unclear. In these treatments, combination with radiotherapy seems necessary to treat the extensive intraductal components. Non-surgical treatment of breast cancer is evolving steadily, with radiotherapy playing a major role. In the future, proton therapy with the ultra-high-dose-rate FLASH mode is expected to further improve outcomes.
Collapse
Affiliation(s)
- Yuta Shibamoto
- Department of Radiation Oncology, Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi 441-8021, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita-shi 565-0871, Japan
| | - Seiya Takano
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
6
|
Zhang S, Yang J, Wang L, Li J, He C, Lu M. Comparison of ultrasound-guided microwave ablation and ultrasound-guided vacuum-assisted excision for treating breast lesions of uncertain malignant potential (B3 lesions): A retrospective study. J Obstet Gynaecol Res 2023; 49:1283-1290. [PMID: 36642419 DOI: 10.1111/jog.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/25/2022] [Indexed: 01/17/2023]
Abstract
AIMS To compare the safety and therapeutic effect of ultrasound (US)-guided microwave ablation (MWA) and US-guided vacuum-assisted excision (VAE) for patients with B3 lesions of the breast. METHODS Patients who underwent US-guided MWA or US-guided VAE at Sichuan Tumor Hospital from January 2016 to December 2021 were retrospectively analyzed. The technical success rate and residual rate of the two minimally invasive surgeries were recorded. During follow-up, differences in symptom relief, recurrence or progression, re-intervention, incidence of adverse events, or personal satisfaction were observed between the two groups. RESULTS The follow-up time was comparable between the two groups. The technical success rate was similar between the two groups; no residue was found in the US-guided MWA group, and the residue rate in the US-guided VAE group was 3.4%. The symptoms of the two groups were improved after the operation. The incidence of postoperative adverse events in the US-guided MWA group was significantly lower than that in the US-guided VAE group. Additionally, the MWA group had a lower incidence of adverse events when the tumor diameter was >2.5 cm. Compared to the US-guided VAE group, the US-guided MWA group had a lower rate of tumor recurrence or progression, re-intervention rate, and higher personal satisfaction. CONCLUSIONS The technical success rate of US-guided MWA for B3 lesions was comparable to that of US-guided VAE, but US-guided MWA had a lower incidence of adverse events and a higher degree of personal satisfaction compared with US-guided VAE.
Collapse
Affiliation(s)
- Siqi Zhang
- Ultrasound Medical Center, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianquan Yang
- Ultrasound Medical Center, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lu Wang
- Ultrasound Medical Center, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Juan Li
- Ultrasound Medical Center, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuanshi He
- Ultrasound Medical Center, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Man Lu
- Ultrasound Medical Center, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Iezzi R, Gangi A, Posa A, Pua U, Liang P, Santos E, Kurup AN, Tanzilli A, Tenore L, De Leoni D, Filippiadis D, Giuliante F, Valentini V, Gasbarrini A, Goldberg SN, Meijerink M, Manfredi R, Kelekis A, Colosimo C, Madoff DC. Emerging Indications for Interventional Oncology: Expert Discussion on New Locoregional Treatments. Cancers (Basel) 2023; 15:cancers15010308. [PMID: 36612304 PMCID: PMC9818393 DOI: 10.3390/cancers15010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Interventional oncology (IO) employs image-guided techniques to perform minimally invasive procedures, providing lower-risk alternatives to many traditional medical and surgical therapies for cancer patients. Since its advent, due to rapidly evolving research development, its role has expanded to encompass the diagnosis and treatment of diseases across multiple body systems. In detail, interventional oncology is expanding its role across a wide spectrum of disease sites, offering a potential cure, control, or palliative care for many types of cancer patients. Due to its widespread use, a comprehensive review of the new indications for locoregional procedures is mandatory. This article summarizes the expert discussion and report from the "MIOLive Meet SIO" (Society of Interventional Oncology) session during the last MIOLive 2022 (Mediterranean Interventional Oncology Live) congress held in Rome, Italy, integrating evidence-reported literature and experience-based perceptions. The aim of this paper is to provide an updated review of the new techniques and devices available for innovative indications not only to residents and fellows but also to colleagues approaching locoregional treatments.
Collapse
Affiliation(s)
- Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
- Correspondence: (R.I.); (A.P.)
| | - Afshin Gangi
- Department of Interventional Radiology, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (R.I.); (A.P.)
| | - Uei Pua
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Ping Liang
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ernesto Santos
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anil N. Kurup
- Department of Radiology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | - Alessandro Tanzilli
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Lorenzo Tenore
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Davide De Leoni
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Dimitrios Filippiadis
- 2nd Department of Radiology, University General Hospital “ATTIKON” Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece
| | - Felice Giuliante
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
- Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
- Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Shraga N. Goldberg
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Martijn Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Riccardo Manfredi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alexis Kelekis
- 2nd Department of Radiology, University General Hospital “ATTIKON” Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece
| | - Cesare Colosimo
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
| | - David C. Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, 330 Cedar St., TE-2, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Du Y, Liu X, Du K, Zhang W, Li R, Yang L, Cheng L, He W, Zhang W. Decorin inhibits the formation of hard nodules after microwave ablation by inhibiting the TGF-β1/SMAD and MAPK signaling pathways: in a Bama miniature pig model of mammary gland hyperplasia. Int J Hyperthermia 2023; 40:2188151. [PMID: 36919520 DOI: 10.1080/02656736.2023.2188151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Benign breast lesions are often associated with hard nodule formation after microwave ablation (MWA), which persists for a long time and causes problems in patients. The aim of this study was to evaluate the efficacy of decorin in the treatment of hard nodule formation and its potential mechanism of action. METHODS Using a Bama miniature pig model of mammary gland hyperplasia, immunohistochemistry, Masson's trichrome and western blotting were firstly applied to compare the extent of fibrosis and activation of key members of the TGF-β1/SMAD and MAPK signaling pathways of hard nodule in the control and MWA groups, and then the extent of fibrosis and expression of signaling pathways in hard nodule were examined after application of decorin. RESULTS The results showed that the MWA group had increased levels of TGF-β1, p-SMAD2/3, p-ERK1/2, and collagen I proteins and increased fibrosis at 2 weeks, 4 weeks, and 3 months after MWA. After decorin treatment, the expression levels of each protein were significantly downregulated, and the degree of fibrosis was reduced at 2 weeks, 4 weeks, and 3 months after MWA compared with the MWA group. CONCLUSION In conclusion, these results suggest that activation of TGF-β1 may play an important role in hard nodule formation and that decorin may reduce hard nodule formation after MWA in a model of mammary gland hyperplasia by inhibiting the TGF-β1/SMAD and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yue Du
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyao Liu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Du
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenkai Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lizhi Yang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linggang Cheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Roknsharifi S, Wattamwar K, Fishman MDC, Ward RC, Ford K, Faintuch S, Joshi S, Dialani V. Image-guided Microinvasive Percutaneous Treatment of Breast Lesions: Where Do We Stand? Radiographics 2021; 41:945-966. [PMID: 34197250 DOI: 10.1148/rg.2021200156] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Treatment of breast lesions has evolved toward the use of less-invasive or minimally invasive techniques. Minimally invasive treatments destroy focal groups of cells without surgery; hence, less anesthesia is required, better cosmetic outcomes are achieved because of minimal (if any) scarring, and recovery times are shorter. These techniques include cryoablation, radiofrequency ablation, microwave ablation, high-intensity focused US, laser therapy, vacuum-assisted excision, and irreversible electroporation. Each modality involves the use of different mechanisms and requires specific considerations for application. To date, only cryoablation and vacuum-assisted excision have received U.S. Food and Drug Administration approval for treatment of fibroadenomas and have been implemented as part of the treatment algorithm by the American Society of Breast Surgeons. Several clinical studies on this topic have been performed on outcomes in patients with breast cancer who were treated with these techniques. The results are promising, with more data for radiofrequency ablation and cryoablation available than for other minimally invasive methods for treatment of early-stage breast cancer. Clinical decisions should be made on a case-by-case basis, according to the availability of the technique. MRI is the most effective imaging modality for postprocedural follow-up, with the pattern of enhancement differentiating residual or recurrent disease from postprocedural changes. ©RSNA, 2021.
Collapse
Affiliation(s)
- Shima Roknsharifi
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Kapil Wattamwar
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Michael D C Fishman
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Robert C Ward
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Kelly Ford
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Salomao Faintuch
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Surekha Joshi
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| | - Vandana Dialani
- From the Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467 (S.R., K.W.); Department of Radiology, Boston Medical Center/Boston University School of Medicine, Boston, Mass (M.D.C.F.); Department of Diagnostic Imaging, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, RI (R.C.W.); Department of Radiology, Memphis Radiological PC, University of Tennessee Health Science Center, Memphis, Tenn (K.F., S.J.); and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.F., V.D.)
| |
Collapse
|
10
|
Zhang J, Li H, Lin L, Lu J, Wang H. Ultrasound-guided microwave ablation for multiple benign breast lesions: A prospective study. J Obstet Gynaecol Res 2021; 47:3362-3369. [PMID: 34110061 DOI: 10.1111/jog.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022]
Abstract
AIM To provide medical evidence for the feasibility and clinical efficacy of microwave ablation (MWA) in the treatment of benign breast lesions, especially multiple benign breast lesions. METHODS We included patients with multiple benign breast lesions who were seen at our hospital during the period from June 2016 to December 2017. After signed informed consent had been obtained and core breast biopsy, all included patients who underwent MWA at 2450 MHz with 30 W power adjustment. Postoperative follow-up was performed for 1 year, at 3-month intervals. Ablation time, complications, volume-reduction ratio (VRR), and lesion residuals after ablation were analyzed. RESULTS We ultimately included 1274 lesions from 164 cases in the study with a median follow-up time of 13.6 months. For a single lesion, the median ablation time was 36 s. Pain, fat liquefaction, and skin scalding were the most common complications. The overall complete disappearance rate was 92.1% (1173/1274), with the highest complete disappearance rate observed among those patients with lesions <10 mm in diameter (942/968, 97.3%). For lesions that persisted at 12 months after MWA, the average the volume-reduction ratio (VRR) was 87.5%. CONCLUSIONS For multiple benign lesions of the breast, especially lesions with the longest diameter <10 mm, ultrasound guided MWA is a minimally invasive, relatively quick therapeutic strategy associated with accuracy in treatment and few complications.
Collapse
Affiliation(s)
- Jinfan Zhang
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Hang Li
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Lisheng Lin
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Jingyu Lu
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Hongling Wang
- Department of General Surgery, Hebei Province Traditional Chinese Medical Hospital, Shijiazhuang, China
| |
Collapse
|