1
|
Kong W, Long B, Li F, Shang L, Chen X, Chughtai A. Diagnosing myocardial ischemia of obstructive coronary artery disease using dynamic computed tomography myocardial perfusion imaging: optimization of relative myocardial blood flow ratio. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03254-0. [PMID: 39367184 DOI: 10.1007/s10554-024-03254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE To compare the diagnostic efficacy of different relative myocardial blood flow (MBF) ratios in computed tomography perfusion (CTP) for myocardial ischemia in patients with obstructive coronary artery disease (CAD). METHODS Between October 2020 and March 2024, patients with suspected or known obstructive CAD who underwent CTP + coronary computed tomography angiography and invasive coronary angiography/fractional flow reserve were retrospectively selected. Patients and vessels were categorized into ischemia and non-ischemia groups. The diagnostic efficacies of the three relative MBF ratios were compared in patients with obstructive CAD. RESULTS This study included 48 patients (144 vessels). Notably, 34 of the 48 patients (70.83%) and 49 of the 144 vessels (34.03%) were considered to have myocardial ischemia. The area under the curve of Ratio-hi (0.944, 95% confidence interval: 0.893-0.976) was higher than those of Ratio-av, Ratio-Q3, and MBF-lowest; However, no statistical differences were found (P>0.005). The cutoff value for detecting Ratio-hi was 0.667, and the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 91.8%, 83.2%, 75%, 95.24%, and 86.81%, respectively. CONCLUSION Relative MBF ratios, especially Ratio-hi, demonstrated excellent performance and exhibited greater robustness in diagnosing myocardial ischemia in patients with obstructive CAD.
Collapse
Affiliation(s)
- Weifang Kong
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Bingzhu Long
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Li
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Chen
- CT collaboration, Siemens Healthineers, Chengdu, China
| | - Aamer Chughtai
- Department of Radiology, Cleveland Clinic, Cleveland, USA.
| |
Collapse
|
2
|
Kong W, Long B, Huang H, Li F, He Y, Chen X, Pu H, Zhang G, Shang L. Diagnostic efficacy of absolute and relative myocardial blood flow of stress dynamic CT myocardial perfusion for detecting myocardial ischemia in patients with hemodynamically significant coronary artery disease. Front Cardiovasc Med 2024; 11:1398635. [PMID: 39070553 PMCID: PMC11275098 DOI: 10.3389/fcvm.2024.1398635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Stress dynamic computed tomography myocardial perfusion imaging (CT-MPI) is an accurate quantitative method for diagnosing myocardial ischemia in coronary artery disease (CAD). However, its clinical application has been limited, partly due to the varied cutoff values for absolute myocardial blood flow (MBFa) and the uncertain value of the relative myocardial blood flow ratio (MBF-ratio). This study aimed to compare the diagnostic efficacy of and investigate the optimal cutoff values for MBFa and the MBF-ratio in CT-MPI for diagnosing myocardial ischemia in patients with hemodynamically significant CAD. Methods Patients with suspected or known hemodynamically significant CAD who underwent CT-MPI + CT angiography and invasive coronary angiography (ICA)/fractional flow reserve (FFR) between October 2020 and December 2023 were retrospectively evaluated. ICA ≥80% or FFR ≤0.8 were set as the diagnostic standards for functional ischemia. The patients and vessels were categorized into ischemic and non-ischemic groups, and differences in MBFa and the MBF-ratio were compared between the groups. The area under the curve (AUC) and optimal cutoff values were calculated. Diagnostic efficacy parameters, such as sensitivity, specificity, and accuracy, were also compared. In addition, a consistency test was performed. Results A total of 46 patients (mean age: 65.37 ± 8.25 years; 120 vessels) were evaluated. Hemodynamically significant stenosis was detected in 30/46 patients (48%) and 81/120 vessels (67.5%). The MBFa and MBF-ratio values were significantly lower in the ischemic than in the non-ischemic group; in the per-vessel analysis, the MBFa values were 73 vs. 128 (P < 0.001) and the MBF-ratio values were 0.781 vs. 0.856 (P < 0.001), respectively. The optimal cutoff values for MBFa and the MBF-ratio were 117.71 and 0.67, respectively. MBFa demonstrated a sensitivity, specificity, accuracy, AUC, positive predictive value, negative predictive value, and kappa value of 97.44%, 74.07%, 81.66%, 0.936 [95% confidence interval (CI): 0.876-0.973, P < 0.001], 63.33%, 98.36%, and 0.631 (95% CI: 0.500-0.762), respectively. The corresponding values for the MBF-ratio were 92.31%, 85.19%, 87.5%, 0.962 (95% CI: 0.911-0.989, P < 0.001), 75%, 95.83%, and 0.731 (95% CI: 0.606-0.857, P < 0.001), with no significant difference (P = 0.1225). Conclusion Both MBFa and the MBF-ratio exhibit excellent diagnostic performance for myocardial ischemia in patients with hemodynamically significant CAD. The MBF-ratio is more robust than MBFa for interpreting CT-MPI findings in clinical practice, which is useful for radiologists and clinicians implementing CT-MPI.
Collapse
Affiliation(s)
- Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bingzhu Long
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Li
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuefeng He
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Chen
- Department of Diagnostic Imaging, CT Collaboration, Siemens Healthineers, Chengdu, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Kawaguchi Y, Kato S, Horita N, Utsunomiya D. Value of Dynamic Computed Tomography Myocardial Perfusion in CAD: A Systematic Review and Meta-analysis. Eur Heart J Cardiovasc Imaging 2024:jeae118. [PMID: 38693883 DOI: 10.1093/ehjci/jeae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
AIMS Dynamic stress computed tomography (CT) perfusion is a non-invasive method for quantifying myocardial ischemia by assessing myocardial blood flow (MBF). In this meta-analysis, we evaluated the diagnostic accuracy of dynamic CT perfusion for the detection of significant coronary artery disease (CAD) across various CT scanners, obese patients, and its prognostic value. METHODS AND RESULTS We systematically searched PubMed, Embase, Web of Science, and Cochrane library for published studies evaluating the accuracy of CT myocardial perfusion in diagnosing functional significant ischemia by invasive fractional flow reserve. The diagnostic performance of dynamic CT perfusion in detecting ischemia was evaluated using a summary receiver operating characteristic (sROC) curve. A total of 23 studies underwent meta- analysis. In myocardial region without ischemia, MBF was measured at 1.44 ml/min/g (95% confidence interval [CI]: 1.13-1.75), while in region with ischemia, it was 0.94 ml/min/g (95% CI: 0.80-1.08) (p<0.001). On the patient-based analysis, the area under the sROC curve of CT-MBF was 0.93, with a sensitivity of 0.84 and specificity of 0.88. Differences in CT type (dual source vs. single source), and body mass index (BMI) did not significantly affect the diagnostic performance. The pooled hazard ratio of dynamic CT perfusion for predicting adverse events was 4.98 (95%CI: 2.08-11.93, p=<0.001, I2=61%, p for heterogeneity = 0.07). CONCLUSIONS Dynamic CT perfusion has high diagnostic performance in the quantitative assessment of ischemia and detection of functional myocardial ischemia as defined by invasive FFR, and may be useful in risk stratification of CAD patients.
Collapse
Affiliation(s)
- Yuma Kawaguchi
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| | - Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| | | | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| |
Collapse
|
4
|
Yang S, Koo BK. Noninvasive Coronary Physiological Assessment Derived From Computed Tomography. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:101304. [PMID: 39131222 PMCID: PMC11308392 DOI: 10.1016/j.jscai.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 08/13/2024]
Abstract
Identifying functional significance using physiological indexes is a standard approach in decision-making for treatment strategies in patients with coronary artery disease. Recently, coronary computed tomography angiography-based physiological assessments, such as computed tomography perfusion and fractional flow reserve derived from coronary computed tomography angiography (FFR-CT), have emerged. These methods have provided incremental diagnostic values for ischemia-causing lesions over anatomical stenosis defined solely by coronary computed tomography angiography. Clinical data have demonstrated their prognostic value in the prediction of adverse cardiovascular events. Several randomized controlled studies have shown that clinical use of FFR-CT can reduce unnecessary invasive procedures compared to usual care. Recent studies have also expanded the role of FFR-CT in defining target lesions for revascularization by acquiring noninvasive lesion-specific hemodynamic indexes like ΔFFR-CT. This review encompasses the current evidence of the diagnostic and prognostic performance of computed tomography-based physiological assessment in defining ischemia-causing lesions and adverse cardiac events, its clinical impact on treatment decision-making, and implications for revascularization.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine, Seoul, South Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Dai X, Lan Z, Ling R, Yu Y, Yu L, Lu Z, Shen C, Kitagawa K, Li Y, Yang W, Zhang J. Financial and clinical outcomes of CT myocardial perfusion imaging and coronary CT angiography-guided versus coronary CT angiography-guided strategy. Eur Radiol 2023; 33:8191-8202. [PMID: 37286790 DOI: 10.1007/s00330-023-09787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To compare the financial and clinical outcomes of CT myocardial perfusion imaging (CT-MPI) + coronary CT angiography (CCTA)-guided versus CCTA-guided strategy in patients suspected of chronic coronary syndrome (CCS). MATERIALS AND METHODS This study retrospectively included consecutive patients suspected of CCS and referred for CT-MPI+CCTA-guided and CCTA-guided treatment. The details of medical costs within 3 months after index imaging, including downstream invasive procedures, hospitalization, and medications, were recorded. All patients were followed up for major adverse cardiac events (MACE) at a median time of 22 months. RESULTS A total of 1335 patients (559 in the CT-MPI+CCTA group and 776 in the CCTA group) were finally included. In the CT-MPI+CCTA group, 129 patients (23.1%) underwent ICA and 95 patients (17.0%) received revascularization. In the CCTA group, 325 patients (41.9%) underwent ICA whereas 194 patients (25.0%) received revascularization. An addition of CT-MPI in the evaluation strategy remarkably reduced the healthcare expenditure, compared with CCTA-guided strategy (USD 1441.36 vs. USD 232.91, p < 0.001). After adjustment for potential cofounders after inverse probability weighting, the CT-MPI+CCTA strategy was significantly associated with lower medical expenditure [adjusted cost ratio (95% CI) for total costs: 0.77 (0.65-0.91), p < 0.001]. In addition, there was no significant difference regarding the clinical outcome between the two groups (adjusted HR= 0.97; p = 0.878). CONCLUSIONS CT-MPI+CCTA considerably reduced medical expenditures in patients suspected of CCS, compared to the CCTA strategy alone. Moreover, CT-MPI+CCTA led to a lower rate of invasive procedures with a similar long-term prognosis. CLINICAL RELEVANCE STATEMENT CT myocardial perfusion imaging + coronary CT angiography-guided strategy reduced medical expenditure and invasive procedure rate. KEY POINTS • CT-MPI+CCTA strategy yielded significantly lower medical expenditure than did the CCTA strategy alone in patients with suspected CCS. • After adjustment for potential confounders, the CT-MPI+CCTA strategy was significantly associated with lower medical expenditure. • No significant difference was observed regarding the long-term clinical outcome between the two groups.
Collapse
Affiliation(s)
- Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Ziting Lan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Yarong Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Lihua Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Wenyi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China.
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China.
| |
Collapse
|
6
|
Sliwicka O, Sechopoulos I, Baggiano A, Pontone G, Nijveldt R, Habets J. Dynamic myocardial CT perfusion imaging-state of the art. Eur Radiol 2023; 33:5509-5525. [PMID: 36997751 PMCID: PMC10326111 DOI: 10.1007/s00330-023-09550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
In patients with suspected coronary artery disease (CAD), dynamic myocardial computed tomography perfusion (CTP) imaging combined with coronary CT angiography (CTA) has become a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information on myocardial blood flow, and the presence and grading of stenosis. Recently, CTP imaging has been proven to have good diagnostic accuracy for detecting myocardial ischemia, comparable to stress magnetic resonance imaging and positron emission tomography perfusion, while being superior to single photon emission computed tomography. Dynamic CTP accompanied by coronary CTA can serve as a gatekeeper for invasive workup, as it reduces unnecessary diagnostic invasive coronary angiography. Dynamic CTP also has good prognostic value for the prediction of major adverse cardiovascular events. In this article, we will provide an overview of dynamic CTP, including the basics of coronary blood flow physiology, applications and technical aspects including protocols, image acquisition and reconstruction, future perspectives, and scientific challenges. KEY POINTS: • Stress dynamic myocardial CT perfusion combined with coronary CTA is a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information. • Dynamic CTP imaging has good diagnostic accuracy for detecting myocardial ischemia comparable to stress MRI and PET perfusion. • Dynamic CTP accompanied by coronary CTA may serve as a gatekeeper for invasive workup and can guide treatment in obstructive coronary artery disease.
Collapse
Affiliation(s)
- Olga Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrea Baggiano
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
7
|
Patel P, Emrich T, Schoepf UJ, Mehta V, Bayer RR, von Assen M, Giovagnoli V, Jeudy J, Varga-Szemes A, White C. Comprehensive Computed Tomography Imaging of Vessel-specific and Lesion-specific Myocardial Ischemia. J Thorac Imaging 2023; 38:212-225. [PMID: 34029280 DOI: 10.1097/rti.0000000000000592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coronary computed tomographic angiography (CCTA) has emerged as a fast and robust tool with high sensitivity and excellent negative predictive value for the evaluation of coronary artery disease, but is unable to estimate the hemodynamic significance of a lesion. Advances in computed tomography (CT)-based diagnostic techniques, for example, CT-derived fractional flow reserve and CT perfusion, have helped transform CCTA primarily from an anatomic assessment tool to a technique that is able to provide both anatomic and functional information for a stenosis. With the results of the ISCHEMIA trial published in 2019, these advanced techniques can elevate CCTA into the role of a better gatekeeper for decision-making and can help guide referral for invasive management. In this article, we review the principles, limitations, diagnostic performance, and clinical utility of these 2 functional CT-based techniques in the evaluation of vessel-specific and lesion-specific ischemia.
Collapse
Affiliation(s)
- Pratik Patel
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL
| | - Tilman Emrich
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Varun Mehta
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Richard R Bayer
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC
| | - Marly von Assen
- Department of Radiology and Imaging Sciences, Division of Cardiothoracic Imaging, Emory University Hospital, Atlanta, GA
| | - Vincent Giovagnoli
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Jean Jeudy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Charles White
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Ahn Y, Koo HJ, Hyun J, Lee SE, Jung SH, Park DW, Ahn JM, Kang DY, Park SJ, Hwang HS, Kang JW, Yang DH, Kim JJ. CT Coronary Angiography and Dynamic CT Myocardial Perfusion for Detection of Cardiac Allograft Vasculopathy. JACC Cardiovasc Imaging 2023; 16:934-947. [PMID: 37407125 DOI: 10.1016/j.jcmg.2022.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) is a major obstacle limiting long-term graft survival. Effective noninvasive surveillance modalities reflecting both coronary artery and microvascular components of CAV are needed. OBJECTIVES The authors evaluated the diagnostic performance of dynamic computed tomography-myocardial perfusion imaging (CT-MPI) and coronary computed tomography angiography (CCTA) for CAV. METHODS A total of 63 heart transplantation patients underwent combined CT-MPI and CCTA plus invasive coronary angiography (ICA) with intravascular ultrasonography (IVUS) between December 2018 and October 2021. The median interval between CT-MPI and heart transplantation was 4.3 years. Peak myocardial blood flow (MBF) of the whole myocardium (MBFglobal) and minimum MBF (MBFmin) among the 16 segments according to the American Heart Association model, except the left ventricular apex, were calculated from CT-MPI. CCTA was assessed qualitatively, and the degree of coronary artery stenosis was recorded. CAV was diagnosed based on both ICA (ISHLT criteria) and IVUS. Patients were followed up for a median time of 2.3 years after CT-MPI and a median time of 5.7 years after transplantation. RESULTS Among the 63 recipients, 35 (55.6%) had diagnoses of CAV. The median MBFglobal and MBFmin were significantly lower in patients with CAV (128.7 vs 150.4 mL/100 mL/min; P = 0.014; and 96.9 vs 122.8 mL/100 mL/min; P < 0.001, respectively). The combined use of coronary artery stenosis on CCTA and MBFmin showed the highest diagnostic performance with an area under the curve of 0.886 (sensitivity: 74.3%, specificity: 96.4%, positive predictive value: 96.3%, and negative predictive value: 75.0%). CONCLUSIONS The combination of CT-MPI and CCTA demonstrated excellent diagnostic performance for the detection of CAV. One-stop evaluation of the coronary artery and microvascular components involved in CAV using combined CCTA and CT-MPI may be a potent noninvasive screening method for early detection of CAV.
Collapse
Affiliation(s)
- Yura Ahn
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyun Jung Koo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Junho Hyun
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Eun Lee
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sung Ho Jung
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duk-Woo Park
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jung-Min Ahn
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Do-Yoon Kang
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung-Jung Park
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon-Won Kang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae-Joong Kim
- Division of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
9
|
Kouchi T, Tanabe Y, Takemoto T, Yoshida K, Yamamoto Y, Miyazaki S, Fukuyama N, Nishiyama H, Inaba S, Kawaguchi N, Kido T, Yamaguchi O, Kido T. A Novel Quantitative Parameter for Static Myocardial Computed Tomography: Myocardial Perfusion Ratio to the Aorta. J Clin Med 2022; 11:jcm11071816. [PMID: 35407424 PMCID: PMC8999663 DOI: 10.3390/jcm11071816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
We evaluated the feasibility of myocardial perfusion ratio to the aorta (MPR) in static computed tomography perfusion (CTP) for detecting myocardial perfusion abnormalities assessed by single-photon emission computed tomography (SPECT). Twenty-five patients with suspected coronary artery disease who underwent dynamic CTP and SPECT were retrospectively evaluated. CTP images scanned at a sub-optimal phase for detecting myocardial perfusion abnormalities were selected from dynamic CTP images and used as static CTP images in the present study. The diagnostic accuracy of MPR derived from static CTP was compared to those of visual assessment and conventional quantitative parameters such as myocardial CT attenuation (HU) and transmural perfusion ratio (TPR). The area under the curve of MPR (0.84; 95% confidence interval [CI], 0.76−0.90) was significantly higher than those of myocardial CT attenuation (0.73; 95% CI, 0.65−0.79) and TPR (0.76; 95% CI, 0.67−0.83) (p < 0.05). Sensitivity and specificity were 67% (95% CI, 54−77%) and 90% (95% CI, 86−92%) for visual assessment, 51% (95% CI, 39−63%) and 86% (95% CI, 82−89%) for myocardial CT attenuation, 63% (95% CI, 51−74%) and 84% (95% CI, 80−88%) for TPR, and 78% (95% CI, 66−86%) and 84% (95% CI, 80−88%) for MPR, respectively. MPR showed higher diagnostic accuracy for detecting myocardial perfusion abnormality compared with myocardial CT attenuation and TPR.
Collapse
Affiliation(s)
- Takanori Kouchi
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Yuki Tanabe
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
- Correspondence:
| | - Takumasa Takemoto
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Kazuki Yoshida
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Yuta Yamamoto
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Shigehiro Miyazaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (S.M.); (S.I.); (O.Y.)
| | - Naoki Fukuyama
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Hikaru Nishiyama
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Shinji Inaba
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (S.M.); (S.I.); (O.Y.)
| | - Naoto Kawaguchi
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Tomoyuki Kido
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (S.M.); (S.I.); (O.Y.)
| | - Teruhito Kido
- Department of Radiology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan; (T.K.); (T.T.); (K.Y.); (Y.Y.); (N.F.); (H.N.); (N.K.); (T.K.); (T.K.)
| |
Collapse
|
10
|
Geng W, Gao Y, Zhao N, Yan H, Ma W, An Y, Jia L, Lu B. Dose Reduction of Dynamic Computed Tomography Myocardial Perfusion Imaging by Tube Voltage Change: Investigation in a Swine Model. Front Cardiovasc Med 2022; 9:823974. [PMID: 35310988 PMCID: PMC8927626 DOI: 10.3389/fcvm.2022.823974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background It is unclear whether tube voltage influences the measurement of perfusion parameters. The present study sought to evaluate the influence of tube voltage change on myocardial blood flow (MBF) measurements in dynamic computed tomography myocardial perfusion imaging (CTP). Methods and Results Seven swine [mean weight 55.8 kg ± 1.6 (standard deviation)] underwent rest and stress dynamic CTP with tube voltages of 100 and 70 kV. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose and MBF value were compared. The 70 kV images had higher CT attenuation and higher image noise (27.9 ± 2.4 vs. 21.5 ± 1.9, P < 0.001) than the 100 kV images, resulting in a higher SNR (20.5 ± 1.6 vs. 15.6 ± 1.8, P < 0.001) and CNR (17.6 ± 1.5 vs. 12.4 ± 1.7, P < 0.001). Compared to the use of conventional 100 kV, 70 kV yielded an approximately 64.6% radiation dose reduction while generating comparable MBF values, both at rest (88.3 ± 14.9 ml/100 g/min vs. 85.6 ± 17.4 ml/100 g/min, P = 0.21) and stress (101.4 ± 21.5 ml/100 g/min vs. 99.6 ± 21.4 ml/100 g/min, P = 0.58) states. Conclusion Dynamic CTP using 70 kV instead of 100 kV does not substantially influence the MBF value but significantly reduces the radiation dose. Additional research is required to investigate the clinical significance of this change.
Collapse
Affiliation(s)
- Wenlei Geng
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Gao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na Zhao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hankun Yan
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Ma
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunqiang An
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Animal Experimental Center, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Bin Lu,
| |
Collapse
|
11
|
Dai X, Lu Z, Yu Y, Yu L, Xu H, Zhang J. The use of lesion-specific calcium morphology to guide the appropriate use of dynamic CT myocardial perfusion imaging and CT fractional flow reserve. Quant Imaging Med Surg 2022; 12:1257-1269. [PMID: 35111621 DOI: 10.21037/qims-21-491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/18/2021] [Indexed: 12/28/2022]
Abstract
Background We aimed to optimize the diagnostic strategy for dynamic computed tomography myocardial perfusion imaging (CT-MPI) and CT fractional flow reserve (CT-FFR) in the evaluation of coronary artery disease (CAD). Methods Patients who had undergone coronary CT angiography (CCTA) + dynamic CT-MPI and invasive coronary angiography (ICA)/FFR within a 4-week period were retrospectively included. Lesion-specific characteristics were recorded, and multivariate logistic regression was performed to determine the predictors of mismatched CT findings with ICA results. An optimized diagnostic strategy was proposed based on the diagnostic performance of dynamic CT-MPI and CT-FFR compared with ICA/FFR. A net reclassification index (NRI) was calculated to determine the incremental discriminatory power of optimized CT-FFR + dynamic CT-MPI strategy compared to CT-FFR alone. Results The study included 180 patients with 229 diseased vessels. For CT-FFR, a calcified lesion with a calcium arc >180° was the only independent predictor for misdiagnosis of ischemic coronary stenosis (odds ratio =2.367; P=0.002). For noncalcified lesions and calcified lesions with a calcium arc ≤180°, the sensitivity and negative predictive value (NPV) of CT-FFR were similar to those of CT-MPI (all P values >0.05), whereas the specificity and positive predictive value (PPV) of CT-FFR were significantly lower (all P values <0.05). For calcified lesions with a calcium arc >180°, the specificity, NPV, and PPV of CT-FFR were inferior to those of CT-MPI (21.2% vs. 100%, 58.3% vs. 86.8%, and 62.9% vs. 100%, respectively; all P values <0.05). As guided by lesion-specific calcium morphology, an optimized CT-FFR + dynamic CT-MPI strategy (NRI =0.2; P=0.004) would have resulted in a 27.0% and 33.9% reduction of radiation dose and contrast medium consumption, respectively, and 25.3% of patients would have avoided unnecessary invasive tests. Conclusions The diagnostic performance of CT-FFR was significantly inferior in lesions with a calcium arc >180°. Lesion-specific calcium morphology is the preferred parameter to guide the appropriate use of CT-based functional assessment.
Collapse
Affiliation(s)
- Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yarong Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Lyu L, Pan J, Li D, Li X, Yang W, Dong M, Guo C, Lin P, Han Y, Liang Y, Sun J, Yu D, Zhang P, Zhang M. Knowledge of Hyperemic Myocardial Blood Flow in Healthy Subjects Helps Identify Myocardial Ischemia in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:817911. [PMID: 35187130 PMCID: PMC8850642 DOI: 10.3389/fcvm.2022.817911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022] Open
Abstract
Backgrounds Dynamic CT myocardial perfusion imaging (CT-MPI) allows absolute quantification of myocardial blood flow (MBF). Although appealing, CT-MPI has not yet been widely applied in clinical practice, partly due to our relatively limited knowledge of CT-MPI. Knowledge of distribution and variability of MBF in healthy subjects helps in recognition of physiological and pathological states of coronary artery disease (CAD). Objectives To describe the distribution and normal range of hyperemic MBF in healthy subjects obtained by dynamic CT-MPI and validate whether it can accurately identify functional myocardial ischemia when the cut-off value of hyperemia MBF is set to the lower limit of the normal range. Materials and Methods Fifty-one healthy volunteers (age, 38 ± 12 years; 15 men) were prospectively recruited. Eighty patients (age, 58 ± 10 years; 55 men) with suspected or known CAD who underwent interventional coronary angiography (ICA) examinations were retrospectively recruited. Comprehensive CCTA + dynamic CT-MPI protocol was performed by the third – generation dual-source CT scanner. Invasive fractional flow reserve (FFR) measurements were performed in vessels with 30–90% diameter reduction. ICA/FFR was used as the reference standard for diagnosing functional ischemia. The normal range for the hyperemic MBF were defined as the mean ± 1.96 SD. The cut-off value of hyperemic MBF was set to the lower limit of the normal range. Results The global hyperemic MBF were 164 ± 24 ml/100 ml/min and 123 ± 26 ml/100 ml/min for healthy participants and patients. The normal range of the hyperemic MBF was 116–211 ml/100 ml/min. Of vessels with an ICA/FFR result (n = 198), 67 (34%) were functionally significant. In the per-vessel analysis, an MBF cutoff value of <116 ml/100 ml/min can identify myocardial ischemia with a diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 85.9% (170/198), 91.0% (61/67), 83.2 % (109/131), 73.5% (61/83), and 94.8% (109/115). CT-MPI showed good consistency with ICA/FFR in diagnosing functional ischemia, with a Cohen's kappa statistic of 0.7016 (95%CI, 0.6009 – 0.8023). Conclusion Recognizing hyperemic MBF in healthy subjects helps better understand myocardial ischemia in CAD patients.
Collapse
Affiliation(s)
- Lijuan Lyu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jichen Pan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dumin Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinhao Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenghu Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peixin Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yeming Han
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongfeng Liang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junyan Sun
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengfei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Pengfei Zhang
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Mei Zhang
| |
Collapse
|
13
|
Kamphuis ME, de Vries GJ, Kuipers H, Saaltink M, Verschoor J, Greuter MJW, Slart RHJA, Slump CH. Development of a dedicated 3D printed myocardial perfusion phantom: proof-of-concept in dynamic SPECT. Med Biol Eng Comput 2022; 60:1541-1550. [PMID: 35048275 PMCID: PMC9079041 DOI: 10.1007/s11517-021-02490-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
We aim to facilitate phantom-based (ground truth) evaluation of dynamic, quantitative myocardial perfusion imaging (MPI) applications. Current MPI phantoms are static representations or lack clinical hard- and software evaluation capabilities. This proof-of-concept study demonstrates the design, realisation and testing of a dedicated cardiac flow phantom. The 3D printed phantom mimics flow through a left ventricular cavity (LVC) and three myocardial segments. In the accompanying fluid circuit, tap water is pumped through the LVC and thereafter partially directed to the segments using adjustable resistances. Regulation hereof mimics perfusion deficit, whereby flow sensors serve as reference standard. Seven phantom measurements were performed while varying injected activity of 99mTc-tetrofosmin (330–550 MBq), cardiac output (1.5–3.0 L/min) and myocardial segmental flows (50–150 mL/min). Image data from dynamic single photon emission computed tomography was analysed with clinical software. Derived time activity curves were reproducible, showing logical trends regarding selected input variables. A promising correlation was found between software computed myocardial flows and its reference (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ= − 0.98; p = 0.003). This proof-of-concept paper demonstrates we have successfully measured first-pass LV flow and myocardial perfusion in SPECT-MPI using a novel, dedicated, myocardial perfusion phantom.
Collapse
Affiliation(s)
- Marije E Kamphuis
- Multi-Modality Medical Imaging (M3i) Group, Faculty of Science and Technology, Technical Medical Centre 2386, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands. .,Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | - Gijs J de Vries
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Henny Kuipers
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Marloes Saaltink
- Department of Nuclear Medicine, Ziekenhuis Groep Twente, Hengelo, The Netherlands
| | - Jacqueline Verschoor
- Department of Nuclear Medicine, Ziekenhuis Groep Twente, Hengelo, The Netherlands
| | - Marcel J W Greuter
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics (RaM) Group, Faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
14
|
Yu Y, Yu L, Dai X, Zhang J. CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard. Korean J Radiol 2021; 22:1964-1973. [PMID: 34668350 PMCID: PMC8628161 DOI: 10.3348/kjr.2021.0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/27/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
Objective To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08–0.17] vs. 0.04 [0.01–0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81–0.89] vs. 0.91 [0.88–0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717–0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.
Collapse
Affiliation(s)
- Yarong Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Ling R, Yu L, Lu Z, Li Y, Zhang J. A Novel Computed Tomography-Based Imaging Approach for Etiology Evaluation in Patients With Acute Coronary Syndrome and Non-obstructive Coronary Angiography. Front Cardiovasc Med 2021; 8:735118. [PMID: 34504882 PMCID: PMC8421729 DOI: 10.3389/fcvm.2021.735118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study sought to investigate the diagnostic value of dynamic CT myocardial perfusion imaging (CT-MPI) combined with coronary CT angiography (CCTA) in acute coronary syndrome (ACS) patients without obstructive coronary angiography. Methods: Consecutive ACS patients with normal or non-obstructive coronary angiography findings who had cardiac magnetic resonance (CMR) contraindications or inability to cooperate with CMR examinations were prospectively enrolled and referred for dynamic CT-MPI + CCTA + late iodine enhancement (LIE). ACS etiology was determined according to combined assessment of coronary vasculature by CCTA, quantified myocardial blood flow (MBF) and presence of LIE. Results: Twenty two patients were included in the final analysis. CCTA revealed two cases of side branch occlusion and one case of intramural hematoma which were overlooked by invasive angiography. High risk plaques were observed in 6 (27.3%) patients whereas myocardial ischemia was presented in 19 (86.4%) patients with varied extent and severity. LIE was positive in 13 (59.1%) patients and microvascular obstruction was presented in three cases with side branch occlusion or spontaneous intramural hematoma. The specific etiology was identified in 20 (90.9%) patients, of which the most common cause was cardiomyopathies (41%), followed by microvascular dysfunction (14%) and plaque disruption (14%). Conclusion: Dynamic CT-MPI + CCTA was able to reveal the potential etiologies in majority of patients with ACS and non-obstructive coronary angiography. It may be a useful alternative to CMR for accurate etiology evaluation.
Collapse
Affiliation(s)
- Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Yun CH, Hung CL, Wen MS, Wan YL, So A. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments. Korean J Radiol 2021; 22:1749-1763. [PMID: 34431244 PMCID: PMC8546143 DOI: 10.3348/kjr.2020.1277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022] Open
Abstract
Coronary computed tomography angiography (CCTA) is routinely used for anatomical assessment of coronary artery disease (CAD). However, invasive measurement of fractional flow reserve (FFR) is the current gold standard for the diagnosis of hemodynamically significant CAD. CT-derived FFRCT and CT perfusion are two emerging techniques that can provide a functional assessment of CAD for risk stratification and clinical decision making. Several clinical studies have shown that the diagnostic performance of concomitant CCTA and functional CT assessment for detecting hemodynamically significant CAD is at least non-inferior to that of other routinely used imaging modalities. This article aims to review the current clinical evidence and recent developments in functional CT techniques.
Collapse
Affiliation(s)
- Chun-Ho Yun
- Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Liang Wan
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Aaron So
- Department of Medical Biophysics, University of Western Ontario, Imaging Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
17
|
Vattay B, Boussoussou M, Borzsák S, Vecsey-Nagy M, Simon J, Kolossváry M, Merkely B, Szilveszter B. Myocardial perfusion imaging using computed tomography: Current status, clinical value and prognostic implications. IMAGING 2021. [DOI: 10.1556/1647.2020.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractCombined anatomical and functional evaluation of coronary artery disease (CAD) using computed tomography (CT) has recently emerged as an accurate, robust, and non-invasive tool for the evaluation of ischemic heart disease. Cardiac CT has become a one-stop-shop imaging modality that allows the simultaneous depiction, characterization, and quantification of coronary atherosclerosis and the assessment of myocardial ischemia. Advancements in scanner technology (improvements in spatial and temporal resolution, dual-energy imaging, wide detector panels) and the implementation of iterative reconstruction algorithms enables the detection of myocardial ischemia in both qualitative and quantitative fashion using low-dose scanning protocols. The addition of CT perfusion (CTP) to standard coronary CT angiography is a reliable tool to improve diagnostic accuracy. CTP using static first-pass imaging enables qualitative assessment of the myocardial tissue, whereas dynamic perfusion imaging can also provide quantitative information on myocardial blood flow. Myocardial tissue assessment by CTP holds the potential to refine risk in stable chest pain or microvascular dysfunction. CTP can aid the detection of residual ischemia after coronary intervention. Comprehensive evaluation of CAD using CTP might therefore improve the selection of patients for aggressive secondary prevention therapy or coronary revascularization with high diagnostic certainty. In addition, prognostic information provided by perfusion CT imaging could improve patient outcomes by quantifying the ischemic burden of the left ventricle. The current review focuses on the clinical value of myocardial perfusion imaging by CT, current status of CTP imaging and the use of myocardial CTP in various patient populations for the diagnosis of ischemic heart disease.
Collapse
Affiliation(s)
- Borbála Vattay
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Melinda Boussoussou
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sarolta Borzsák
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Milán Vecsey-Nagy
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Prevalence and disease features of myocardial ischemia with non-obstructive coronary arteries: Insights from a dynamic CT myocardial perfusion imaging study. Int J Cardiol 2021; 334:142-147. [PMID: 33932431 DOI: 10.1016/j.ijcard.2021.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ischemia with non-obstructive coronary arteries (INOCA) is not uncommon in clinical practice. However, the incidence and imaging characteristics of INOCA on dynamic CT myocardial perfusion imaging (CT-MPI) remains unclear. We aimed to investigate the prevalence and disease features of INOCA as evaluated by dynamic CT-MPI + coronary CT angiography (CCTA). METHODS Patients with suspected chronic coronary syndrome and intermediate-to-high pre-test probability of obstructive CAD (according to updated Diamond and Forrester Chest Pain Prediction Rule) were referred for dynamic CT-MPI + CCTA and retrospectively included. Various parameters, including myocardial blood flow (MBF) and high-risk plaque (HRP) features, were measured. INOCA was diagnosed if patients were revealed to have myocardial ischemia and absence of obstructive stenosis. RESULTS 314 patients were finally included. 20 patients (6.4%) were observed to have myocardial ischemia without obstructive stenosis. In addition, 138 patients (43.9%) had normal or near normal findings, 101 patients (32.2%) had obstructive stenosis without myocardial ischemia and 55 patients (17.5%) had obstructive stenosis with myocardial ischemia. Compared with patients with normal/near normal findings, patients with INOCA showed a higher prevalence of positive remodeling (40.0% vs. 17.4%, p = 0.04). In patients with obstructive stenosis, the mean age, calcium score and incidence of spotty calcification, positive remodeling as well as HRPs were significantly higher than those in patients with INOCA (p < 0.05 for all). CONCLUSIONS The overall prevalence of INOCA was low in patients with suspected chronic coronary syndrome. HRPs were less frequently presented in patients with INOCA, compared with patients having obstructive coronary stenosis.
Collapse
|