1
|
Cheng JM, Luo WX, Tan BG, Pan J, Zhou HY, Chen TW. Whole-tumor histogram analysis of apparent diffusion coefficients for predicting lymphovascular space invasion in stage IB-IIA cervical cancer. Front Oncol 2023; 13:1206659. [PMID: 37404753 PMCID: PMC10315646 DOI: 10.3389/fonc.2023.1206659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Objectives To investigate the value of apparent diffusion coefficient (ADC) histogram analysis based on whole tumor volume for the preoperative prediction of lymphovascular space invasion (LVSI) in patients with stage IB-IIA cervical cancer. Methods Fifty consecutive patients with stage IB-IIA cervical cancer were stratified into LVSI-positive (n = 24) and LVSI-negative (n = 26) groups according to the postoperative pathology. All patients underwent pelvic 3.0T diffusion-weighted imaging with b-values of 50 and 800 s/mm2 preoperatively. Whole-tumor ADC histogram analysis was performed. Differences in the clinical characteristics, conventional magnetic resonance imaging (MRI) features, and ADC histogram parameters between the two groups were analyzed. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of ADC histogram parameters in predicting LVSI. Results ADCmax, ADCrange, ADC90, ADC95, and ADC99 were significantly lower in the LVSI-positive group than in the LVSI-negative group (all P-values < 0.05), whereas no significant differences were reported for the remaining ADC parameters, clinical characteristics, and conventional MRI features between the groups (all P-values > 0.05). For predicting LVSI in stage IB-IIA cervical cancer, a cutoff ADCmax of 1.75×10-3 mm2/s achieved the largest area under ROC curve (Az) of 0.750, followed by a cutoff ADCrange of 1.36×10-3 mm2/s and ADC99 of 1.75×10-3 mm2/s (Az = 0.748 and 0.729, respectively), and the cutoff ADC90 and ADC95 achieved an Az of <0.70. Conclusion Whole-tumor ADC histogram analysis has potential value for preoperative prediction of LVSI in patients with stage IB-IIA cervical cancer. ADCmax, ADCrange, and ADC99 are promising prediction parameters.
Collapse
Affiliation(s)
- Jin-mei Cheng
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wei-xiao Luo
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bang-guo Tan
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Jian Pan
- Department of General Practice, Taiping Town Central Health Center, Leshan, Sichuan, China
| | - Hai-ying Zhou
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tian-wu Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Guzene L, Beddok A, Nioche C, Modzelewski R, Loiseau C, Salleron J, Thariat J. Assessing Interobserver Variability in the Delineation of Structures in Radiation Oncology: A Systematic Review. Int J Radiat Oncol Biol Phys 2023; 115:1047-1060. [PMID: 36423741 DOI: 10.1016/j.ijrobp.2022.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE The delineation of target volumes and organs at risk is the main source of uncertainty in radiation therapy. Numerous interobserver variability (IOV) studies have been conducted, often with unclear methodology and nonstandardized reporting. We aimed to identify the parameters chosen in conducting delineation IOV studies and assess their performances and limits. METHODS AND MATERIALS We conducted a systematic literature review to highlight major points of heterogeneity and missing data in IOV studies published between 2018 and 2021. For the main used metrics, we did in silico analyses to assess their limits in specific clinical situations. RESULTS All disease sites were represented in the 66 studies examined. Organs at risk were studied independently of tumor site in 29% of reviewed IOV studies. In 65% of studies, statistical analyses were performed. No gold standard (GS; ie, reference) was defined in 36% of studies. A single expert was considered as the GS in 21% of studies, without testing intraobserver variability. All studies reported both absolute and relative indices, including the Dice similarity coefficient (DSC) in 68% and the Hausdorff distance (HD) in 42%. Limitations were shown in silico for small structures when using the DSC and dependence on irregular shapes when using the HD. Variations in DSC values were large between studies, and their thresholds were inconsistent. Most studies (51%) included 1 to 10 cases. The median number of observers or experts was 7 (range, 2-35). The intraclass correlation coefficient was reported in only 9% of cases. Investigating the feasibility of studying IOV in delineation, a minimum of 8 observers with 3 cases, or 11 observers with 2 cases, was required to demonstrate moderate reproducibility. CONCLUSIONS Implementation of future IOV studies would benefit from a more standardized methodology: clear definitions of the gold standard and metrics and a justification of the tradeoffs made in the choice of the number of observers and number of delineated cases should be provided.
Collapse
Affiliation(s)
- Leslie Guzene
- Department of Radiation Oncology, University Hospital of Amiens, Amiens, France
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Curie, Paris/Saint-Cloud/Orsay, France; Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Christophe Nioche
- Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Romain Modzelewski
- LITIS - EA4108-Quantif, Normastic, University of Rouen, and Nuclear Medicine Department, Henri Becquerel Center, Rouen, France
| | - Cedric Loiseau
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Julia Salleron
- Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Laboratoire de Physique Corpusculaire, Caen, France; Unicaen-Université de Normandie, Caen, France.
| |
Collapse
|
3
|
Chen J, Ma N, Sun M, Chen L, Yao Q, Chen X, Lin C, Lu Y, Lin Y, Lin L, Fan X, Chen Y, Wu J, He H. Prognostic value of apparent diffusion coefficient in neuroendocrine carcinomas of the uterine cervix. PeerJ 2023; 11:e15084. [PMID: 37020850 PMCID: PMC10069420 DOI: 10.7717/peerj.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/25/2023] [Indexed: 04/03/2023] Open
Abstract
Objectives
This research was designed to examine the associations between the apparent diffusion coefficient (ADC) values and clinicopathological parameters, and to explore the prognostic value of ADC values in predicting the International Federation of Gynecology and Obstetrics (FIGO) stage and outcome of patients suffering from neuroendocrine carcinomas of the uterine cervix (NECCs).
Methods
This retrospective study included 83 patients with NECCs, who had undergone pre-treatment magnetic resonance imaging (MRI) between November 2002 and June 2019. The median follow-up period was 50.7 months. Regions of interest (ROIs) were drawn manually by two radiologists. ADC values in the lesions were calculated using the Functool software. These values were compared between different clinicopathological parameters groups. The Kaplan–Meier approach was adopted to forecast survival rates. Prognostic factors were decided by the Cox regression method.
Results
In the cohort of 83 patients, nine, 42, 23, and nine patients were in stage I, II, III, and IV, respectively. ADCmean, ADCmax, and ADCmin were greatly lower in stage IIB–IVB than in stage I–IIA tumours, as well as in tumours measuring ≥ 4 cm than in those < 4 cm. ADCmean, FIGO stage, and age at dianosis were independent prognostic variables for the 5-year overall survival (OS). ADCmin, FIGO stage, age at diagnosis and para-aortic lymph node metastasis were independent prognostic variables for the 5-year progression-free survival (PFS) in multivariate analysis. For surgically treated patients (n = 45), ADCmax was an independent prognostic parameter for both 5-year OS and 5-year PFS.
Conclusions
ADCmean, ADCmin, and ADCmax are independent prognostic factors for NECCs. ADC analysis could be useful in predicting the survival outcomes in patients with NECCs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Ning Ma
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Mingyao Sun
- Department of Clinical Nutrition, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Li Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Qimin Yao
- College of Finance, Fujian Jiangxia University, Fuzhou, Fujian, China
| | - XingFa Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Cuibo Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yongwei Lu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yingtao Lin
- Department of Drug Clinical Trial Institution, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Liang Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xuexiong Fan
- Department of Medical Record, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yiyu Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jingjing Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Haixin He
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Zhang Y, Liu L, Zhang K, Su R, Jia H, Qian L, Dong J. Nomograms Combining Clinical and Imaging Parameters to Predict Recurrence and Disease-free Survival After Concurrent Chemoradiotherapy in Patients With Locally Advanced Cervical Cancer. Acad Radiol 2023; 30:499-508. [PMID: 36050264 DOI: 10.1016/j.acra.2022.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
PURPOSES To investigate the value of nomograms based on clinical prognostic factors (CPF), intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and MRI-derived radiomics in predicting recurrence and disease-free survival (DFS) after concurrent chemoradiotherapy (CCRT) for locally advanced cervical cancer (LACC). METHODS Retrospective analysis of data from 115 patients with ⅠB-ⅣA cervical cancer who underwent CCRT and had been followed up consistently. All patients were randomized 2:1 into training and validation groups. Pre-treatment IVIM-DWI parameters (ADC-value, D-value, D*-value and f-value) and pre- and post-treatment three-dimensional radiomics parameters (from axial T2WI) of primary lesions were measured. The LASSO algorithm and Logistic regression analysis were used to filter texture features and calculate radiomics score (Rad-score). Multivariate Logistic and Cox regression analysis was used to construct nomograms to predict recurrence and DFS for patients with LACC after CCRT respectively, with internal and external validation. RESULTS External beam radiotherapy dose, f-value, pre-treatment and post-treatment Rad-score were independent prognostic factors for recurrence and DFS in patients with cervical cancer, forming Model1 and Model2, with OR values of 0.480, 1.318, 3.071, 3.200 and HR values of 0.322, 3.372, 5.138, 7.204. The area under the curve (AUC) of Model1 for predicting recurrence of cervical cancer was 0.977, with internal and external validation C-indexes of 0.977 and 0.962. The AUC for Model2 predicting disease-free survival (DFS) at 1, 3, and 5 years was 0.895, 0.888 and 0.916 respectively, with internal and external C-indexes of 0.860 and 0.892. The decision curves analysis and clinical impact curves further indicate the high predictive efficiency and stability of nomograms. CONCLUSION The nomograms based on clinical, IVIM-DWI and radiomics parameters have high clinical value in predicting recurrence and DFS of patients with LACC after CCRT and can provide a reference for prognostic assessment and individualized treatment of cervical cancer patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang University, Taizhou, Zhejiang, China
| | - Kaiyue Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Rixin Su
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Haodong Jia
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China; Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Jiangning Dong
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China; Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Bao D, Zhao Y, Wu W, Zhong H, Yuan M, Li L, Lin M, Zhao X, Luo D. Added value of histogram analysis of ADC in predicting radiation-induced temporal lobe injury of patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy. Insights Imaging 2022; 13:197. [PMID: 36528686 PMCID: PMC9759610 DOI: 10.1186/s13244-022-01338-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study evaluated the predictive potential of histogram analysis derived from apparent diffusion coefficient (ADC) maps in radiation-induced temporal lobe injury (RTLI) of nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). RESULTS Pretreatment diffusion-weighted imaging (DWI) of the temporal lobes of 214 patients with NPC was retrospectively analyzed to obtain ADC histogram parameters. Of the 18 histogram parameters derived from ADC maps, 7 statistically significant variables in the univariate analysis were included in the multivariate logistic regression analysis. The final best prediction model selected by backward stepwise elimination with Akaike information criteria as the stopping rule included kurtosis, maximum energy, range, and total energy. A Rad-score was established by combining the four variables, and it provided areas under the curve (AUCs) of 0.95 (95% confidence interval [CI] 0.91-0.98) and 0.89 (95% CI 0.81-0.97) in the training and validation cohorts, respectively. The combined model, integrating the Rad-score with the T stage (p = 0.02), showed a favorable prediction performance in the training and validation cohorts (AUC = 0.96 and 0.87, respectively). The calibration curves showed a good agreement between the predicted and actual RTLI occurrences. CONCLUSIONS Pretreatment histogram analysis of ADC maps and their combination with the T stage showed a satisfactory ability to predict RTLI in NPC after IMRT.
Collapse
Affiliation(s)
- Dan Bao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Yanfeng Zhao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Wenli Wu
- Medical Imaging Center, Liaocheng Tumor Hospital, Shandong, 252000 China
| | - Hongxia Zhong
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Meng Yuan
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Lin Li
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Meng Lin
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Dehong Luo
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China ,grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116 China
| |
Collapse
|
6
|
Zhang J, Yu X, Zhang X, Chen S, Song Y, Xie L, Chen Y, Ouyang H. Whole-lesion apparent diffusion coefficient (ADC) histogram as a quantitative biomarker to preoperatively differentiate stage IA endometrial carcinoma from benign endometrial lesions. BMC Med Imaging 2022; 22:139. [PMID: 35941559 PMCID: PMC9358891 DOI: 10.1186/s12880-022-00864-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To assess the value of whole-lesion apparent diffusion coefficient (ADC) histogram analysis in differentiating stage IA endometrial carcinoma (EC) from benign endometrial lesions (BELs) and characterizing histopathologic features of stage IA EC preoperatively. METHODS One hundred and six BEL and 126 stage IA EC patients were retrospectively enrolled. Eighteen volumetric histogram parameters were extracted from the ADC map of each lesion. The Mann-Whitney U or Student's t-test was used to compare the differences between the two groups. Models based on clinical parameters and histogram features were established using multivariate logistic regression. Receiver operating characteristic (ROC) analysis and calibration curves were used to assess the models. RESULTS Stage IA EC showed lower ADC10th, ADC90th, ADCmin, ADCmax, ADCmean, ADCmedian, interquartile range, mean absolute deviation, robust mean absolute deviation (rMAD), root mean squared, energy, total energy, entropy, variance, and higher skewness, kurtosis and uniformity than BELs (all p < 0.05). ADCmedian yielded the highest area under the ROC curve (AUC) of 0.928 (95% confidence interval [CI] 0.895-0.960; cut-off value = 1.161 × 10-3 mm2/s) for differentiating stage IA EC from BELs. Moreover, multivariate analysis demonstrated that ADC-score (ADC10th + skewness + rMAD + total energy) was the only significant independent predictor (OR = 2.641, 95% CI 2.045-3.411; p < 0.001) for stage IA EC when considering clinical parameters. This ADC histogram model (ADC-score) achieved an AUC of 0.941 and a bias-corrected AUC of 0.937 after bootstrap resampling. The model performed well for both premenopausal (accuracy = 0.871) and postmenopausal (accuracy = 0.905) patients. Besides, ADCmin and ADC10th were significantly lower in Grade 3 than in Grade 1/2 stage IA EC (p = 0.022 and 0.047). At the same time, no correlation was found between ADC histogram parameters and the expression of Ki-67 in stage IA EC (all p > 0.05). CONCLUSIONS Whole-lesion ADC histogram analysis could serve as an imaging biomarker for differentiating stage IA EC from BELs and assisting in tumor grading of stage IA EC, thus facilitating personalized clinical management for premenopausal and postmenopausal patients.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoduo Yu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaomiao Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuang Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lizhi Xie
- MR Research China, GE Healthcare, Beijing, 100176, China
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Ouyang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
7
|
Wang M, Perucho JA, Vardhanabhuti V, Ip P, Ngan HY, Lee EY. Radiomic Features of T2-weighted Imaging and Diffusion Kurtosis Imaging in Differentiating Clinicopathological Characteristics of Cervical Carcinoma. Acad Radiol 2021; 29:1133-1140. [PMID: 34583867 DOI: 10.1016/j.acra.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023]
Abstract
RATIONALE AND OBJECTIVES Clinicopathological characteristics including histological subtypes, tumour grades and International Federation of Gynecology and Obstetrics (FIGO) stages are crucial factors in the clinical decision for cervical carcinoma (CC). The purpose of this study was to evaluate the ability of T2-weighted imaging (T2WI) and diffusion kurtosis imaging (DKI) radiomics in differentiating clinicopathological characteristics of CC. MATERIALS AND METHODS One hundred and seventeen histologically confirmed CC patients (mean age 56.5 ± 14.0 years) with pre-treatment magnetic resonance imaging were retrospectively reviewed. DKI was acquired with 4 b-values (0-1500 s/mm2). Volumes of interest were contoured around the tumours on T2WI and DKI. Radiomic features including shape, first-order and grey-level co-occurrence matrix with wavelet transforms were extracted. Intraclass correlation coeffient between 2 radiologists was used for features reduction. Feature selection was achieved by elastic net and minimum redundancy maximum relevance. Selected features were used to build random forest (RF) models. The performances for differentiating histological subtypes, tumour grades and FIGO stages were assessed by receiver operating characteristic analysis. RESULTS Area under the curves (AUCs) for T2WI-only RF models for discriminating histological subtypes, tumour grades and FIGO stages were 0.762, 0.686, and 0.719. AUCs for DWI-only models were 0.663, 0.645, and 0.868, respectively. AUCs of the combined T2WI and DKI models were 0.823, 0.790, and 0.850, respectively. CONCLUSION T2WI and DKI radiomic features could differentiate the clinicopathological characteristics of CC. A combined model showed excellent diagnostic discrimination for histological subtypes, while a DKI-only model presented the best performance in differentiating FIGO stages.
Collapse
|
8
|
Hernando D, Zhang Y, Pirasteh A. Quantitative diffusion MRI of the abdomen and pelvis. Med Phys 2021; 49:2774-2793. [PMID: 34554579 DOI: 10.1002/mp.15246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.
Collapse
Affiliation(s)
- Diego Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuxin Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|