1
|
Yang D, Miao Y, Liu C, Zhang N, Zhang D, Guo Q, Gao S, Li L, Wang J, Liang S, Li P, Bai X, Zhang K. Advances in artificial intelligence applications in the field of lung cancer. Front Oncol 2024; 14:1449068. [PMID: 39309740 PMCID: PMC11412794 DOI: 10.3389/fonc.2024.1449068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths globally, with its incidence steadily rising each year, representing a significant threat to human health. Early detection, diagnosis, and timely treatment play a crucial role in improving survival rates and reducing mortality. In recent years, significant and rapid advancements in artificial intelligence (AI) technology have found successful applications in various clinical areas, especially in the diagnosis and treatment of lung cancer. AI not only improves the efficiency and accuracy of physician diagnosis but also aids in patient treatment and management. This comprehensive review presents an overview of fundamental AI-related algorithms and highlights their clinical applications in lung nodule detection, lung cancer pathology classification, gene mutation prediction, treatment strategies, and prognosis. Additionally, the rapidly advancing field of AI-based three-dimensional (3D) reconstruction in lung cancer surgical resection is discussed. Lastly, the limitations of AI and future prospects are addressed.
Collapse
Affiliation(s)
- Di Yang
- Clinical Medical College of Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Thoracic Surgery Department, Affiliated Hospital of Hebei University, Baoding, China
| | - Yafei Miao
- Clinical Medical College of Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Thoracic Surgery Department, Affiliated Hospital of Hebei University, Baoding, China
| | - Changjiang Liu
- Thoracic Surgery Department, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Zhang
- Thoracic Surgery Department, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Duo Zhang
- Thoracic Surgery Department, Affiliated Hospital of Hebei University, Baoding, China
| | - Qiang Guo
- Thoracic Surgery Department, Affiliated Hospital of Hebei University, Baoding, China
| | - Shuo Gao
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, China
- Information center, Affiliated Hospital of Hebei University, Baoding, China
| | - Linqian Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
- 3D Image and 3D Printing Center, Affiliated Hospital of Hebei University, Baoding, China
| | - Jianing Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Si Liang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Peng Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xuan Bai
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ke Zhang
- Thoracic Surgery Department, Affiliated Hospital of Hebei University, Baoding, China
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
- 3D Image and 3D Printing Center, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
2
|
Shimada Y, Ojima T, Takaoka Y, Sugano A, Someya Y, Hirabayashi K, Homma T, Kitamura N, Akemoto Y, Tanabe K, Sato F, Yoshimura N, Tsuchiya T. Prediction of visceral pleural invasion of clinical stage I lung adenocarcinoma using thoracoscopic images and deep learning. Surg Today 2024; 54:540-550. [PMID: 37864054 DOI: 10.1007/s00595-023-02756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/13/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE To develop deep learning models using thoracoscopic images to identify visceral pleural invasion (VPI) in patients with clinical stage I lung adenocarcinoma, and to verify if these models can be applied clinically. METHODS Two deep learning models, one based on a convolutional neural network (CNN) and the other based on a vision transformer (ViT), were applied and trained via 463 images (VPI negative: 269 images, VPI positive: 194 images) captured from surgical videos of 81 patients. Model performances were validated via an independent test dataset containing 46 images (VPI negative: 28 images, VPI positive: 18 images) from 46 test patients. RESULTS The areas under the receiver operating characteristic curves of the CNN-based and ViT-based models were 0.77 and 0.84 (p = 0.304), respectively. The accuracy, sensitivity, specificity, and positive and negative predictive values were 73.91, 83.33, 67.86, 62.50, and 86.36% for the CNN-based model and 78.26, 77.78, 78.57, 70.00, and 84.62% for the ViT-based model, respectively. These models' diagnostic abilities were comparable to those of board-certified thoracic surgeons and tended to be superior to those of non-board-certified thoracic surgeons. CONCLUSION The deep learning model systems can be utilized in clinical applications via data expansion.
Collapse
Affiliation(s)
- Yoshifumi Shimada
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Toshihiro Ojima
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Yutaka Takaoka
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, 2630 Sugitani, Toyama, Japan
- Center for Data Science and Artificial Intelligence Research Promotion, Toyama University Hospital, 2630 Sugitani, Toyama, Japan
| | - Aki Sugano
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, 2630 Sugitani, Toyama, Japan
- Center for Clinical Research, Toyama University Hospital, 2630 Sugitani, Toyama, Japan
| | - Yoshiaki Someya
- Center for Data Science and Artificial Intelligence Research Promotion, Toyama University Hospital, 2630 Sugitani, Toyama, Japan
| | - Kenichi Hirabayashi
- Department of Diagnostic Pathology, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Takahiro Homma
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Naoya Kitamura
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Yushi Akemoto
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Keitaro Tanabe
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Fumitaka Sato
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Naoki Yoshimura
- Department of Cardiovascular Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, University of Toyama, 2630 Sugitani, Toyama, Japan.
| |
Collapse
|
3
|
Kudo Y, Saito A, Horiuchi T, Murakami K, Kobayashi M, Matsubayashi J, Nagao T, Ohira T, Kuroda M, Ikeda N. Preoperative evaluation of visceral pleural invasion in peripheral lung cancer utilizing deep learning technology. Surg Today 2024:10.1007/s00595-024-02869-z. [PMID: 38782767 DOI: 10.1007/s00595-024-02869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE This study aimed to assess the efficiency of artificial intelligence (AI) in the detection of visceral pleural invasion (VPI) of lung cancer using high-resolution computed tomography (HRCT) images, which is challenging for experts because of its significance in T-classification and lymph node metastasis prediction. METHODS This retrospective analysis was conducted on preoperative HRCT images of 472 patients with stage I non-small cell lung cancer (NSCLC), focusing on lesions adjacent to the pleura to predict VPI. YOLOv4.0 was utilized for tumor localization, and EfficientNetv2 was applied for VPI prediction with HRCT images meticulously annotated for AI model training and validation. RESULTS Of the 472 lung cancer cases (500 CT images) studied, the AI algorithm successfully identified tumors, with YOLOv4.0 accurately localizing tumors in 98% of the test images. In the EfficientNet v2-M analysis, the receiver operating characteristic curve exhibited an area under the curve of 0.78. It demonstrated powerful diagnostic performance with a sensitivity, specificity, and precision of 76.4% in VPI prediction. CONCLUSION AI is a promising tool for improving the diagnostic accuracy of VPI for NSCLC. Furthermore, incorporating AI into the diagnostic workflow is advocated because of its potential to improve the accuracy of preoperative diagnosis and patient outcomes in NSCLC.
Collapse
Affiliation(s)
- Yujin Kudo
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, Japan.
| | - Akira Saito
- Department of AI Applied Quantitative Clinical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, Japan
| | | | - Kotaro Murakami
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | | | - Jun Matsubayashi
- Department of Anatomic Pathology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Tatsuo Ohira
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
4
|
Ma Z, Men Y, Liu Y, Bao Y, Liu Q, Yang X, Wang J, Deng L, Zhai Y, Bi N, Wang L, Hui Z. Preoperative CT-based radiomic prognostic index to predict the benefit of postoperative radiotherapy in patients with non-small cell lung cancer: a multicenter study. Cancer Imaging 2024; 24:61. [PMID: 38741207 PMCID: PMC11089675 DOI: 10.1186/s40644-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The value of postoperative radiotherapy (PORT) for patients with non-small cell lung cancer (NSCLC) remains controversial. A subset of patients may benefit from PORT. We aimed to identify patients with NSCLC who could benefit from PORT. METHODS Patients from cohorts 1 and 2 with pathological Tany N2 M0 NSCLC were included, as well as patients with non-metastatic NSCLC from cohorts 3 to 6. The radiomic prognostic index (RPI) was developed using radiomic texture features extracted from the primary lung nodule in preoperative chest CT scans in cohort 1 and validated in other cohorts. We employed a least absolute shrinkage and selection operator-Cox regularisation model for data dimension reduction, feature selection, and the construction of the RPI. We created a lymph-radiomic prognostic index (LRPI) by combining RPI and positive lymph node number (PLN). We compared the outcomes of patients who received PORT against those who did not in the subgroups determined by the LRPI. RESULTS In total, 228, 1003, 144, 422, 19, and 21 patients were eligible in cohorts 1-6. RPI predicted overall survival (OS) in all six cohorts: cohort 1 (HR = 2.31, 95% CI: 1.18-4.52), cohort 2 (HR = 1.64, 95% CI: 1.26-2.14), cohort 3 (HR = 2.53, 95% CI: 1.45-4.3), cohort 4 (HR = 1.24, 95% CI: 1.01-1.52), cohort 5 (HR = 2.56, 95% CI: 0.73-9.02), cohort 6 (HR = 2.30, 95% CI: 0.53-10.03). LRPI predicted OS (C-index: 0.68, 95% CI: 0.60-0.75) better than the pT stage (C-index: 0.57, 95% CI: 0.50-0.63), pT + PLN (C-index: 0.58, 95% CI: 0.46-0.70), and RPI (C-index: 0.65, 95% CI: 0.54-0.75). The LRPI was used to categorize individuals into three risk groups; patients in the moderate-risk group benefited from PORT (HR = 0.60, 95% CI: 0.40-0.91; p = 0.02), while patients in the low-risk and high-risk groups did not. CONCLUSIONS We developed preoperative CT-based radiomic and lymph-radiomic prognostic indexes capable of predicting OS and the benefits of PORT for patients with NSCLC.
Collapse
Affiliation(s)
- Zeliang Ma
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Men
- Department of VIP Medical Services, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Bao
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Liu
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yirui Zhai
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Bi
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luhua Wang
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Lococo F, Ghaly G, Chiappetta M, Flamini S, Evangelista J, Bria E, Stefani A, Vita E, Martino A, Boldrini L, Sassorossi C, Campanella A, Margaritora S, Mohammed A. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers (Basel) 2024; 16:1832. [PMID: 38791910 PMCID: PMC11119930 DOI: 10.3390/cancers16101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Artificial Intelligence (AI) has revolutionized the management of non-small-cell lung cancer (NSCLC) by enhancing different aspects, including staging, prognosis assessment, treatment prediction, response evaluation, recurrence/prognosis prediction, and personalized prognostic assessment. AI algorithms may accurately classify NSCLC stages using machine learning techniques and deep imaging data analysis. This could potentially improve precision and efficiency in staging, facilitating personalized treatment decisions. Furthermore, there are data suggesting the potential application of AI-based models in predicting prognosis in terms of survival rates and disease progression by integrating clinical, imaging and molecular data. In the present narrative review, we will analyze the preliminary studies reporting on how AI algorithms could predict responses to various treatment modalities, such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. There is robust evidence suggesting that AI also plays a crucial role in predicting the likelihood of tumor recurrence after surgery and the pattern of failure, which has significant implications for tailoring adjuvant treatments. The successful implementation of AI in personalized prognostic assessment requires the integration of different data sources, including clinical, molecular, and imaging data. Machine learning (ML) and deep learning (DL) techniques enable AI models to analyze these data and generate personalized prognostic predictions, allowing for a precise and individualized approach to patient care. However, challenges relating to data quality, interpretability, and the ability of AI models to generalize need to be addressed. Collaboration among clinicians, data scientists, and regulators is critical for the responsible implementation of AI and for maximizing its benefits in providing a more personalized prognostic assessment. Continued research, validation, and collaboration are essential to fully exploit the potential of AI in NSCLC management and improve patient outcomes. Herein, we have summarized the state of the art of applications of AI in lung cancer for predicting staging, prognosis, and pattern of recurrence after treatment in order to provide to the readers a large comprehensive overview of this challenging issue.
Collapse
Affiliation(s)
- Filippo Lococo
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Galal Ghaly
- Faculty of Medicine and Surgery, Thoracic Surgery Unit, Cairo University, Giza 12613, Egypt; (G.G.); (A.M.)
| | - Marco Chiappetta
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Sara Flamini
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Jessica Evangelista
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Emilio Bria
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Alessio Stefani
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Emanuele Vita
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Antonella Martino
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Radiotherapy Unit, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Luca Boldrini
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Radiotherapy Unit, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Carolina Sassorossi
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Annalisa Campanella
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Stefano Margaritora
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (J.E.); (E.B.); (A.S.); (E.V.); (A.M.); (L.B.); (C.S.); (S.M.)
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (S.F.); (A.C.)
| | - Abdelrahman Mohammed
- Faculty of Medicine and Surgery, Thoracic Surgery Unit, Cairo University, Giza 12613, Egypt; (G.G.); (A.M.)
| |
Collapse
|
6
|
Nakagawa J, Fujima N, Hirata K, Harada T, Wakabayashi N, Takano Y, Homma A, Kano S, Minowa K, Kudo K. Diagnosis of skull-base invasion by nasopharyngeal tumors on CT with a deep-learning approach. Jpn J Radiol 2024; 42:450-459. [PMID: 38280100 PMCID: PMC11056334 DOI: 10.1007/s11604-023-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/24/2023] [Indexed: 01/29/2024]
Abstract
PURPOSE To develop a convolutional neural network (CNN) model to diagnose skull-base invasion by nasopharyngeal malignancies in CT images and evaluate the model's diagnostic performance. MATERIALS AND METHODS We divided 100 malignant nasopharyngeal tumor lesions into a training (n = 70) and a test (n = 30) dataset. Two head/neck radiologists reviewed CT and MRI images and determined the positive/negative skull-base invasion status of each case (training dataset: 29 invasion-positive and 41 invasion-negative; test dataset: 13 invasion-positive and 17 invasion-negative). Preprocessing involved extracting continuous slices of the nasopharynx and clivus. The preprocessed training dataset was used for transfer learning with Residual Neural Networks 50 to create a diagnostic CNN model, which was then tested on the preprocessed test dataset to determine the invasion status and model performance. Original CT images from the test dataset were reviewed by a radiologist with extensive head/neck imaging experience (senior reader: SR) and another less-experienced radiologist (junior reader: JR). Gradient-weighted class activation maps (Grad-CAMs) were created to visualize the explainability of the invasion status classification. RESULTS The CNN model's diagnostic accuracy was 0.973, significantly higher than those of the two radiologists (SR: 0.838; JR: 0.595). Receiver operating characteristic curve analysis gave an area under the curve of 0.953 for the CNN model (versus 0.832 and 0.617 for SR and JR; both p < 0.05). The Grad-CAMs suggested that the invasion-negative cases were present predominantly in bone marrow, while the invasion-positive cases exhibited osteosclerosis and nasopharyngeal masses. CONCLUSIONS This CNN technique would be useful for CT-based diagnosis of skull-base invasion by nasopharyngeal malignancies.
Collapse
Affiliation(s)
- Junichi Nakagawa
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan.
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
- Medical AI Research and Development Center, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Taisuke Harada
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Naoto Wakabayashi
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Yuki Takano
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita Ku, Sapporo, 060-8638, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita Ku, Sapporo, 060-8638, Japan
| | - Kazuyuki Minowa
- Faculty of Dental Medicine Department of Radiology, Hokkaido University, N13 W7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
- Medical AI Research and Development Center, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| |
Collapse
|
7
|
Peng Y, Liu J, Yao R, Wu J, Li J, Dai L, Gu S, Yao Y, Li Y, Chen S, Wang J. Deep learning-assisted diagnosis of large vessel occlusion in acute ischemic stroke based on four-dimensional computed tomography angiography. Front Neurosci 2024; 18:1329718. [PMID: 38660224 PMCID: PMC11039833 DOI: 10.3389/fnins.2024.1329718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Purpose To develop deep learning models based on four-dimensional computed tomography angiography (4D-CTA) images for automatic detection of large vessel occlusion (LVO) in the anterior circulation that cause acute ischemic stroke. Methods This retrospective study included 104 LVO patients and 105 non-LVO patients for deep learning models development. Another 30 LVO patients and 31 non-LVO patients formed the time-independent validation set. Four phases of 4D-CTA (arterial phase P1, arterial-venous phase P2, venous phase P3 and late venous phase P4) were arranged and combined and two input methods was used: combined input and superimposed input. Totally 26 models were constructed using a modified HRNet network. Assessment metrics included the areas under the curve (AUC), accuracy, sensitivity, specificity and F1 score. Kappa analysis was performed to assess inter-rater agreement between the best model and radiologists of different seniority. Results The P1 + P2 model (combined input) had the best diagnostic performance. In the internal validation set, the AUC was 0.975 (95%CI: 0.878-0.999), accuracy was 0.911, sensitivity was 0.889, specificity was 0.944, and the F1 score was 0.909. In the time-independent validation set, the model demonstrated consistently high performance with an AUC of 0.942 (95%CI: 0.851-0.986), accuracy of 0.902, sensitivity of 0.867, specificity of 0.935, and an F1 score of 0.901. The best model showed strong consistency with the diagnostic efficacy of three radiologists of different seniority (k = 0.84, 0.80, 0.70, respectively). Conclusion The deep learning model, using combined arterial and arterial-venous phase, was highly effective in detecting LVO, alerting radiologists to speed up the diagnosis.
Collapse
Affiliation(s)
- Yuling Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yao
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Jiajing Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linquan Dai
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sirun Gu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunzhuo Yao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Jingjie Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Lim WH, Lee KH, Lee JH, Park H, Nam JG, Hwang EJ, Chung JH, Goo JM, Park S, Kim YT, Kim H. Diagnostic performance and prognostic value of CT-defined visceral pleural invasion in early-stage lung adenocarcinomas. Eur Radiol 2024; 34:1934-1945. [PMID: 37658899 DOI: 10.1007/s00330-023-10204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES To analyze the diagnostic performance and prognostic value of CT-defined visceral pleural invasion (CT-VPI) in early-stage lung adenocarcinomas. METHODS Among patients with clinical stage I lung adenocarcinomas, half of patients were randomly selected for a diagnostic study, in which five thoracic radiologists determined the presence of CT-VPI. Probabilities for CT-VPI were obtained using deep learning (DL). Areas under the receiver operating characteristic curve (AUCs) and binary diagnostic measures were calculated and compared. Inter-rater agreement was assessed. For all patients, the prognostic value of CT-VPI by two radiologists and DL (using high-sensitivity and high-specificity cutoffs) was investigated using Cox regression. RESULTS In 681 patients (median age, 65 years [interquartile range, 58-71]; 382 women), pathologic VPI was positive in 130 patients. For the diagnostic study (n = 339), the pooled AUC of five radiologists was similar to that of DL (0.78 vs. 0.79; p = 0.76). The binary diagnostic performance of radiologists was variable (sensitivity, 45.3-71.9%; specificity, 71.6-88.7%). Inter-rater agreement was moderate (weighted Fleiss κ, 0.51; 95%CI: 0.43-0.55). For overall survival (n = 680), CT-VPI by radiologists (adjusted hazard ratio [HR], 1.27 and 0.99; 95%CI: 0.84-1.92 and 0.63-1.56; p = 0.26 and 0.97) or DL (HR, 1.44 and 1.06; 95%CI: 0.86-2.42 and 0.67-1.68; p = 0.17 and 0.80) was not prognostic. CT-VPI by an attending radiologist was prognostic only in radiologically solid tumors (HR, 1.82; 95%CI: 1.07-3.07; p = 0.03). CONCLUSION The diagnostic performance and prognostic value of CT-VPI are limited in clinical stage I lung adenocarcinomas. This feature may be applied for radiologically solid tumors, but substantial reader variability should be overcome. CLINICAL RELEVANCE STATEMENT Although the diagnostic performance and prognostic value of CT-VPI are limited in clinical stage I lung adenocarcinomas, this parameter may be applied for radiologically solid tumors with appropriate caution regarding inter-reader variability. KEY POINTS • Use of CT-defined visceral pleural invasion in clinical staging should be cautious, because prognostic value of CT-defined visceral pleural invasion remains unexplored. • Diagnostic performance and prognostic value of CT-defined visceral pleural invasion varied among radiologists and deep learning. • Role of CT-defined visceral pleural invasion in clinical staging may be limited to radiologically solid tumors.
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-Do, Korea
| | - Jong Hyuk Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Hyungin Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ju Gang Nam
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Eui Jin Hwang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-Do, Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Samina Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea
| | - Young Tae Kim
- Seoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea
| | - Hyungjin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
| |
Collapse
|
9
|
Arenas-Jiménez JJ. Can radiologists confidently diagnose visceral pleural invasion in small-sized lung cancer? Eur Radiol 2024; 34:1932-1933. [PMID: 37740084 DOI: 10.1007/s00330-023-10232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Juan José Arenas-Jiménez
- Department of Radiology, Dr. Balmis General University Hospital, Alicante, Spain.
- Department of Pathology and Surgery, Miguel Hernandez University, Alicante, Spain.
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
| |
Collapse
|
10
|
Lin X, Liu K, Li K, Chen X, Chen B, Li S, Chen H, Li L. A CT-based deep learning model: visceral pleural invasion and survival prediction in clinical stage IA lung adenocarcinoma. iScience 2024; 27:108712. [PMID: 38205257 PMCID: PMC10776985 DOI: 10.1016/j.isci.2023.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Pathologic visceral pleural invasion (VPI) in patients with early-stage lung cancer can result in the upstaging of T1 to T2, in addition to having implications for surgical resection and prognostic outcomes. This study was designed with the goal of establishing and validating a CT-based deep learning (DL) model capable of predicting VPI status and stratifying patients based on their prognostic outcomes. In total, 2077 patients from three centers with pathologically confirmed clinical stage IA lung adenocarcinoma were enrolled. DL signatures were extracted with a 3D residual neural network. DL model was able to effectively predict VPI status. VPI predicted by the DL models, as well as pathologic VPI, was associated with shorter disease-free survival. The established deep learning signature provides a tool capable of aiding the accurate prediction of VPI in patients with clinical stage IA lung adenocarcinoma, thus enabling prognostic stratification.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Kunfeng Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Kunwei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Xiaojuan Chen
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Biyun Chen
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Sheng Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Huai Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| |
Collapse
|
11
|
Cui N, Li J, Jiang Z, Long Z, Liu W, Yao H, Li M, Li W, Wang K. Development and validation of 18F-FDG PET/CT radiomics-based nomogram to predict visceral pleural invasion in solid lung adenocarcinoma. Ann Nucl Med 2023; 37:605-617. [PMID: 37598412 DOI: 10.1007/s12149-023-01861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES This study aimed to establish a radiomics model based on 18F-FDG PET/CT images to predict visceral pleural invasion (VPI) of solid lung adenocarcinoma preoperatively. METHODS We retrospectively enrolled 165 solid lung adenocarcinoma patients confirmed by histopathology with 18F-FDG PET/CT images. Patients were divided into training and validation at a ratio of 0.7. To find significant VPI predictors, we collected clinicopathological information and metabolic parameters measured from PET/CT images. Three-dimensional (3D) radiomics features were extracted from each PET and CT volume of interest (VOI). Receiver operating characteristic (ROC) curve was performed to determine the performance of the model. Accuracy, sensitivity, specificity and area under curve (AUC) were calculated. Finally, their performance was evaluated by concordance index (C-index) and decision curve analysis (DCA) in training and validation cohorts. RESULTS 165 patients were divided into training cohort (n = 116) and validation cohort (n = 49). Multivariate analysis showed that histology grade, maximum standardized uptake value (SUVmax), distance from the lesion to the pleura (DLP) and the radiomics features had statistically significant differences between patients with and without VPI (P < 0.05). A nomogram was developed based on the logistic regression method. The accuracy of ROC curve analysis of this model was 75.86% in the training cohort (AUC: 0.867; C-index: 0.867; sensitivity: 0.694; specificity: 0.889) and the accuracy rate in validation cohort was 71.55% (AUC: 0.889; C-index: 0.819; sensitivity: 0.654; specificity: 0.739). CONCLUSIONS A PET/CT-based radiomics model was developed with SUVmax, histology grade, DLP, and radiomics features. It can be easily used for individualized VPI prediction.
Collapse
Affiliation(s)
- Nan Cui
- PET-CT/MRI Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Jiatong Li
- PET-CT/MRI Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Zhiyun Jiang
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Wei Liu
- PET-CT/MRI Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Hongyang Yao
- PET-CT/MRI Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Mingshan Li
- PET-CT/MRI Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Wei Li
- Interventional Vascular Surgery Department, The 4th Affiliated Hospital of Harbin Medical University, Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Kezheng Wang
- PET-CT/MRI Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
12
|
Kong L, Xue W, Zhao H, Zhang X, Chen S, Ren D, Duan G. Predicting pleural invasion of invasive lung adenocarcinoma in the adjacent pleura by imaging histology. Oncol Lett 2023; 26:438. [PMID: 37664659 PMCID: PMC10472047 DOI: 10.3892/ol.2023.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
The aim of the present study was to develop a non-invasive method based on histological imaging and clinical features for predicting the preoperative status of visceral pleural invasion (VPI) in patients with lung adenocarcinoma (LUAD) located near the pleura. VPI is associated with a worse prognosis of LUAD; therefore, early and accurate detection is critical for effective treatment planning. A total of 112 patients with preoperative computed tomography presentation of adjacent pleura and postoperative pathological findings confirmed as invasive LUAD were retrospectively enrolled. Clinical and histological imaging features were combined to develop a preoperative VPI prediction model and validate the model's efficacy. Finally, a nomogram for predicting LUAD was established and validated using a logistic regression algorithm. Both the clinical signature and radiomics signature (Rad signature) exhibited a perfect fit in the training cohort. The clinical signature was overfitted in the testing cohort, whereas the Rad signature showed a good fit. To combine clinical and radiomics signatures for optimal performance, a nomogram was created using the logistic regression algorithm. The results indicated that this approach had the highest predictive performance, with an area under the curve of 0.957 for the clinical signature and 0.900 for the Rad signature. In conclusion, histological imaging and clinical features can be combined in columnar maps to predict the preoperative VPI status of patients with adjacent pleural infiltrative lung carcinoma.
Collapse
Affiliation(s)
- Lingxin Kong
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuangqing Chen
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Dahu Ren
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
- Department of Thoracic Surgery, Children's Hospital of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Kim GH, Kim JW, Kim KH, Kang H, Moon JY, Shin YM, Park S. FT-GAT: Graph neural network for predicting spontaneous breathing trial success in patients with mechanical ventilation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107673. [PMID: 37336152 DOI: 10.1016/j.cmpb.2023.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Intensive care unit (ICU) physicians perform weaning procedures considering complex clinical situations and weaning protocols; however, liberating critical patients from mechanical ventilation (MV) remains challenging. Therefore, this study aims to aid physicians in deciding the early liberation of patients from MV by developing an artificial intelligence model that predicts the success of spontaneous breathing trials (SBT). METHODS We retrospectively collected data of 652 critical patients (SBT success: 641, SBT failure: 400) who received MV at the Chungbuk National University Hospital (CBNUH) ICU from July 2020 to July 2022, including mixed and trauma ICUs. Patients underwent SBTs according to the CBNUH weaning protocol or physician's decision, and SBT success was defined as extubation performed by the physician on the SBT day. Additionally, our dataset comprised 11 numerical and 2 categorical features that can be obtained for any ICU patient, such as vital signs and MV setting values. To predict SBT success, we analyzed tabular data using a graph neural network-based approach. Specifically, the graph structure was designed considering feature correlation, and a novel deep learning model, called feature tokenizer graph attention network (FT-GAT), was developed for graph analysis. FT-GAT transforms the input features into high-dimensional embeddings and analyzes the graph via the attention mechanism. RESULTS The quantitative evaluation results indicated that FT-GAT outperformed conventional models and clinical indicators by achieving the following model performance (AUROC): FT-GAT (0.80), conventional models (0.69-0.79), and clinical indicators (0.65-0.66) CONCLUSIONS: Through timely detection critical patients who can succeed in SBTs, FT-GAT can help prevent long-term use of MV and potentially lead to improvement in patient outcomes.
Collapse
Affiliation(s)
- Geun-Hyeong Kim
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Jae-Woo Kim
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Ka Hyun Kim
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Hyeran Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Jae Young Moon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, 35015, Rep. of Korea
| | - Yoon Mi Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea.
| | - Seung Park
- Department of Biomedical Engineering, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea.
| |
Collapse
|
14
|
Shao J, Feng J, Li J, Liang S, Li W, Wang C. Novel tools for early diagnosis and precision treatment based on artificial intelligence. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:148-160. [PMID: 39171128 PMCID: PMC11332840 DOI: 10.1016/j.pccm.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 08/23/2024]
Abstract
Lung cancer has the highest mortality rate among all cancers in the world. Hence, early diagnosis and personalized treatment plans are crucial to improving its 5-year survival rate. Chest computed tomography (CT) serves as an essential tool for lung cancer screening, and pathology images are the gold standard for lung cancer diagnosis. However, medical image evaluation relies on manual labor and suffers from missed diagnosis or misdiagnosis, and physician heterogeneity. The rapid development of artificial intelligence (AI) has brought a whole novel opportunity for medical task processing, demonstrating the potential for clinical application in lung cancer diagnosis and treatment. AI technologies, including machine learning and deep learning, have been deployed extensively for lung nodule detection, benign and malignant classification, and subtype identification based on CT images. Furthermore, AI plays a role in the non-invasive prediction of genetic mutations and molecular status to provide the optimal treatment regimen, and applies to the assessment of therapeutic efficacy and prognosis of lung cancer patients, enabling precision medicine to become a reality. Meanwhile, histology-based AI models assist pathologists in typing, molecular characterization, and prognosis prediction to enhance the efficiency of diagnosis and treatment. However, the leap to extensive clinical application still faces various challenges, such as data sharing, standardized label acquisition, clinical application regulation, and multimodal integration. Nevertheless, AI holds promising potential in the field of lung cancer to improve cancer care.
Collapse
Affiliation(s)
- Jun Shao
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaming Feng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Madani MH, Riess JW, Brown LM, Cooke DT, Guo HH. Imaging of lung cancer. Curr Probl Cancer 2023:100966. [PMID: 37316337 DOI: 10.1016/j.currproblcancer.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality globally. Imaging is essential in the screening, diagnosis, staging, response assessment, and surveillance of patients with lung cancer. Subtypes of lung cancer can have distinguishing imaging appearances. The most frequently used imaging modalities include chest radiography, computed tomography, magnetic resonance imaging, and positron emission tomography. Artificial intelligence algorithms and radiomics are emerging technologies with potential applications in lung cancer imaging.
Collapse
Affiliation(s)
- Mohammad H Madani
- Department of Radiology, University of California, Davis, Sacramento, CA.
| | - Jonathan W Riess
- Division of Hematology/Oncology, Department of Internal Medicine, UC Davis Medical Center, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Lisa M Brown
- Division of General Thoracic Surgery, Department of Surgery, UC Davis Health, Sacramento, CA
| | - David T Cooke
- Division of General Thoracic Surgery, Department of Surgery, UC Davis Health, Sacramento, CA
| | - H Henry Guo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
16
|
Nakagawa J, Fujima N, Hirata K, Tang M, Tsuneta S, Suzuki J, Harada T, Ikebe Y, Homma A, Kano S, Minowa K, Kudo K. Utility of the deep learning technique for the diagnosis of orbital invasion on CT in patients with a nasal or sinonasal tumor. Cancer Imaging 2022; 22:52. [PMID: 36138422 PMCID: PMC9502604 DOI: 10.1186/s40644-022-00492-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background In nasal or sinonasal tumors, orbital invasion beyond periorbita by the tumor is one of the important criteria in the selection of the surgical procedure. We investigated the usefulness of the convolutional neural network (CNN)-based deep learning technique for the diagnosis of orbital invasion, using computed tomography (CT) images. Methods A total of 168 lesions with malignant nasal or sinonasal tumors were divided into a training dataset (n = 119) and a test dataset (n = 49). The final diagnosis (invasion-positive or -negative) was determined by experienced radiologists who carefully reviewed all of the CT images. In a CNN-based deep learning analysis, a slice of the square target region that included the orbital bone wall was extracted and fed into a deep-learning training session to create a diagnostic model using transfer learning with the Visual Geometry Group 16 (VGG16) model. The test dataset was subsequently tested in CNN-based diagnostic models and by two other radiologists who were not specialized in head and neck radiology. At approx. 2 months after the first reading session, two radiologists again reviewed all of the images in the test dataset, referring to the diagnoses provided by the trained CNN-based diagnostic model. Results The diagnostic accuracy was 0.92 by the CNN-based diagnostic models, whereas the diagnostic accuracies by the two radiologists at the first reading session were 0.49 and 0.45, respectively. In the second reading session by two radiologists (diagnosing with the assistance by the CNN-based diagnostic model), marked elevations of the diagnostic accuracy were observed (0.94 and 1.00, respectively). Conclusion The CNN-based deep learning technique can be a useful support tool in assessing the presence of orbital invasion on CT images, especially for non-specialized radiologists.
Collapse
Affiliation(s)
- Junichi Nakagawa
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan.
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Nuclear Medicine, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan.,Clinical AI Human Resources Development Program, Faculty of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Minghui Tang
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Clinical AI Human Resources Development Program, Faculty of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Jun Suzuki
- Department of Radiology, Teine Keijinkai Hospital, 1-40, Maeda 1-12, Teine-ku, Sapporo, Hokkaido, 006-8555, Japan
| | - Taisuke Harada
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Yohei Ikebe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan.,Center for Cause of Death investigation, Faculty of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita ku, Sapporo, 060-8638, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita ku, Sapporo, 060-8638, Japan
| | - Kazuyuki Minowa
- Faculty of Dental Medicine, Department of Radiology, Hokkaido University, N13 W7, Kita-ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan.,Clinical AI Human Resources Development Program, Faculty of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N14 W5, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
17
|
Lee JH, Hwang EJ, Kim H, Park CM. A narrative review of deep learning applications in lung cancer research: from screening to prognostication. Transl Lung Cancer Res 2022; 11:1217-1229. [PMID: 35832457 PMCID: PMC9271435 DOI: 10.21037/tlcr-21-1012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/16/2022] [Indexed: 01/17/2023]
Abstract
Background and Objective Deep learning (DL) algorithms have been developed for various tasks, including lung nodule detection on chest radiographs or lung cancer computed tomography screening, potential candidate selection in lung cancer screening, malignancy prediction for indeterminate pulmonary nodules, lung cancer staging, treatment response prediction, prognostication, and prediction of genetic mutations in lung cancer. Furthermore, these DL algorithms have been applied in various clinical settings in order for them to be generalized in real-world clinical practice. Multiple DL algorithms have been corroborated to be on par with experts or current clinical prediction models for several specific tasks. However, no article has yet comprehensively reviewed DL algorithms dedicated to lung cancer research. This narrative review presents an overview of the literature dealing with DL techniques applied in lung cancer research and briefly summarizes the results according to the DL algorithms’ clinical use cases. Methods we performed a narrative review by searching the Embase and OVID-MEDLINE databases for articles published in English from October, 2016 until September, 2021 and reviewing the bibliographies of key references to identify important literature related to DL in lung cancer research. The background, development, results, and clinical implications of each DL algorithm are briefly discussed. Lastly, we end this review article by highlighting future directions in lung cancer research using DL techniques. Key Content and Findings DL algorithms have been introduced to show comparable or higher performance than human experts in various clinical settings. Specifically, they have been actively applied to detect lung nodules in chest radiographs or computed tomography (CT) examinations, optimize candidate selection for lung cancer screening (LCS), predict the malignancy of lung nodules, stage lung cancer, and predict treatment response, patients’ prognoses, and genetic mutations in lung cancers. Conclusions DL algorithms have corroborated their potential value for various tasks, ranging from lung cancer screening to prognostication of lung cancer patients. Future research is warranted for the clinical application of these algorithms in daily clinical practice and verification of their real-world clinical usefulness.
Collapse
Affiliation(s)
- Jong Hyuk Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Eui Jin Hwang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Hyungjin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Chang Min Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Chiu HY, Chao HS, Chen YM. Application of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2022; 14:1370. [PMID: 35326521 PMCID: PMC8946647 DOI: 10.3390/cancers14061370] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of malignancy-related mortality worldwide due to its heterogeneous features and diagnosis at a late stage. Artificial intelligence (AI) is good at handling a large volume of computational and repeated labor work and is suitable for assisting doctors in analyzing image-dominant diseases like lung cancer. Scientists have shown long-standing efforts to apply AI in lung cancer screening via CXR and chest CT since the 1960s. Several grand challenges were held to find the best AI model. Currently, the FDA have approved several AI programs in CXR and chest CT reading, which enables AI systems to take part in lung cancer detection. Following the success of AI application in the radiology field, AI was applied to digitalized whole slide imaging (WSI) annotation. Integrating with more information, like demographics and clinical data, the AI systems could play a role in decision-making by classifying EGFR mutations and PD-L1 expression. AI systems also help clinicians to estimate the patient's prognosis by predicting drug response, the tumor recurrence rate after surgery, radiotherapy response, and side effects. Though there are still some obstacles, deploying AI systems in the clinical workflow is vital for the foreseeable future.
Collapse
Affiliation(s)
- Hwa-Yen Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Internal Medicine, Hsinchu Branch, Taipei Veterans General Hospital, Hsinchu 310, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
19
|
Shi J, Li F, Yang F, Dong Z, Jiang Y, Nachira D, Chalubinska-Fendler J, Sio TT, Kawaguchi Y, Takizawa H, Song X, Hu Y, Duan L. The combination of computed tomography features and circulating tumor cells increases the surgical prediction of visceral pleural invasion in clinical T1N0M0 lung adenocarcinoma. Transl Lung Cancer Res 2022; 10:4266-4280. [PMID: 35004255 PMCID: PMC8674597 DOI: 10.21037/tlcr-21-896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Background Visceral pleural invasion (VPI) is a clinical manifestation associated with a poor prognosis, and diagnosing it preoperatively is highly imperative for successful sublobar resection of these peripheral tumors. We evaluated the roles of computed tomography (CT) features and circulating tumor cells (CTCs) for improving VPI detection in patients with clinical T1N0M0 invasive lung adenocarcinoma. Methods Three hundred and ninety-one patients were reviewed retrospectively in this study, of which 234 presented with a pleural tag or pleural contact on CT images. CTCs positive for the foliate receptors were enriched and analyzed prior to surgery. Logistic regression analyses were performed to assess the association of CT features and CTCs with VPI, and the receiver operating characteristic (ROC) curve was generated to compare the predictive power of these variables. Results Patients mostly underwent either segmentectomies (18.9%) or lobectomies (79.0%). Only 49 of the 234 patients with pleural involvement on CT showed pathologically confirmed VPI. Multivariate logistic regression analysis revealed that CTC level ≥10.42 FU/3 mL was a significant VPI risk factor for invasive adenocarcinoma cases ≤30 mm [adjusted odds ratio (OR) =4.62, 95% confidence interval (CI): 2.05–10.44, P<0.001]. Based on CT features, subgroup analyses showed that the solid portion size was a statistically significant independent predictor of VPI for these peripheral nodules with pleural tag, while the solid portion length of the interface was an independent predictor of pleural contact. The receiver operating curve analyses showed that the combination of CTC and CT features were highly predictive of VPI [area under the curve (AUC) =0.921 for pleural contact and 0.862 for the pleural tag, respectively]. Conclusions CTC, combined with CT features of pleural tag or pleural contact, could significantly improve VPI detection in invasive lung adenocarcinomas at clinical T1N0M0 stage prior to the patient’s surgery.
Collapse
Affiliation(s)
- Jinghan Shi
- Department of Endoscopy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengwei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A.Gemelli", IRCCS, Rome, Italy
| | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Yo Kawaguchi
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Hu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Zuo Z, Li Y, Peng K, Li X, Tan Q, Mo Y, Lan Y, Zeng W, Qi W. CT texture analysis-based nomogram for the preoperative prediction of visceral pleural invasion in cT1N0M0 lung adenocarcinoma: an external validation cohort study. Clin Radiol 2021; 77:e215-e221. [PMID: 34916048 DOI: 10.1016/j.crad.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
AIM To develop a nomogram based on computed tomography (CT) texture analysis for the preoperative prediction of visceral pleural invasion in patients with cT1N0M0 lung adenocarcinoma. MATERIALS AND METHODS A dataset of chest CT containing lung nodules was collected from two institutions, and all surgically resected nodules were classified pathologically based on the presence of visceral pleural invasion. Each nodule on the CT image was segmented automatically by artificial-intelligence software and its CT texture features were extracted. The dataset was divided into training and external validation cohorts according to the institution, and a nomogram for predicting visceral pleural invasion was developed and validated. RESULTS Of a total of 313 patients enrolled from two independent institutions, 63 were diagnosed with visceral pleural invasion. Three-dimensional (3D) CT long diameter, skewness, and sphericity, and chronic obstructive pulmonary disease were identified as independent predictors for visceral pleural invasion by multivariable logistic regression. The nomogram based on multivariable logistic regression showed great discriminative ability, as indicated by a C-index of 0.890 (95% confidence interval [CI]: 0.867-0.914) and 0.864 (95% CI: 0.817-0.911) for the training and external validation cohorts, respectively. Additionally, calibration of the nomogram revealed good predictive ability, as indicated by the Brier score (0.108 and 0.100 for the training and external validation cohorts, respectively). CONCLUSIONS A nomogram was developed that could compute the probability of visceral pleural invasion in patients with cT1N0M0 lung adenocarcinoma with good calibration and discrimination. The nomogram has potential as a reliable tool for clinical evaluation and decision-making.
Collapse
Affiliation(s)
- Z Zuo
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Y Li
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - K Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - X Li
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Q Tan
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Y Mo
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Y Lan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - W Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - W Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
21
|
Kim Y, Park JY, Hwang EJ, Lee SM, Park CM. Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology. J Thorac Dis 2021; 13:6943-6962. [PMID: 35070379 PMCID: PMC8743417 DOI: 10.21037/jtd-21-1342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This review will focus on how AI-and, specifically, deep learning-can be applied to complement aspects of the current healthcare system. We describe how AI-based tools can augment existing clinical workflows by discussing the applications of AI to worklist prioritization and patient triage, the performance-boosting effects of AI as a second reader, and the use of AI to facilitate complex quantifications. We also introduce prominent examples of recent AI applications, such as tuberculosis screening in resource-constrained environments, the detection of lung cancer with screening CT, and the diagnosis of COVID-19. We also provide examples of prognostic predictions and new discoveries beyond existing clinical practices. BACKGROUND Artificial intelligence (AI) has shown promising performance for thoracic diseases, particularly in the field of thoracic radiology. However, it has not yet been established how AI-based image analysis systems can help physicians in clinical practice. METHODS This review included peer-reviewed research articles on AI in the thorax published in English between 2015 and 2021. CONCLUSIONS With advances in technology and appropriate preparation of physicians, AI could address various clinical problems that have not been solved due to a lack of clinical resources or technological limitations. KEYWORDS Artificial intelligence (AI); deep learning (DL); computer aided diagnosis (CAD); thoracic radiology; pulmonary medicine.
Collapse
Affiliation(s)
- Yisak Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
| | - Ji Yoon Park
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Jin Hwang
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Min Park
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|