1
|
Wang G, Guo Q, Shi D, Zhai H, Luo W, Zhang H, Ren Z, Yan G, Ren K. Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases. J Magn Reson Imaging 2024; 60:1178-1189. [PMID: 38006286 DOI: 10.1002/jmri.29150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Previous studies have used different imaging sequences and different enhanced phases for breast lesion calsification in radiomics. The optimal sequence and contrast enhanced phase is unclear. PURPOSE To identify the optimal magnetic resonance imaging (MRI) radiomics model for lesion clarification, and to simulate its incremental value for multiparametric MRI (mpMRI)-guided biopsy. STUDY TYPE Retrospective. POPULATION 329 female patients (138 malignant, 191 benign), divided into a training set (first site, n = 192) and an independent test set (second site, n = 137). FIELD STRENGTH/SEQUENCE 3.0-T, fast spoiled gradient-echo and fast spin-echo T1-weighted imaging (T1WI), fast spin-echo T2-weighted imaging (T2WI), echo-planar diffusion-weighted imaging (DWI), and fast spoiled gradient-echo contrast-enhanced MRI (CE-MRI). ASSESSMENT Two breast radiologists with 3 and 10 years' experience developed radiomics model on CE-MRI, CE-MRI + DWI, CE-MRI + DWI + T2WI, CE-MRI + DWI + T2WI + T1WI at each individual phase (P) and for multiple combinations of phases. The optimal radiomics model (Rad-score) was identified as having the highest area under the receiver operating characteristic curve (AUC) in the test set. Specificity was compared between a traditional mpMRI model and an integrated model (mpMRI + Rad-score) at sensitivity >98%. STATISTICAL TESTS Wilcoxon paired-samples signed rank test, Delong test, McNemar test. Significance level was 0.05 and Bonferroni method was used for multiple comparisons (P = 0.007, 0.05/7). RESULTS For radiomics models, CE-MRI/P3 + DWI + T2WI achieved the highest performance in the test set (AUC = 0.888, 95% confidence interval: 0.833-0.944). The integrated model had significantly higher specificity (55.3%) than the mpMRI model (31.6%) in the test set with a sensitivity of 98.4%. DATA CONCLUSION The CE-MRI/P3 + DWI + T2WI model is the optimized choice for breast lesion classification in radiomics, and has potential to reduce benign biopsies (100%-specificity) from 68.4% to 44.7% while retaining sensitivity >98%. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qiu Guo
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huige Zhai
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Wenbin Luo
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhendong Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen university, Xiamen, Fujian, China
| |
Collapse
|
2
|
Kocak B, Akinci D'Antonoli T, Ates Kus E, Keles A, Kala A, Kose F, Kadioglu M, Solak S, Sunman S, Temiz ZH. Self-reported checklists and quality scoring tools in radiomics: a meta-research. Eur Radiol 2024; 34:5028-5040. [PMID: 38180530 DOI: 10.1007/s00330-023-10487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To evaluate the use of reporting checklists and quality scoring tools for self-reporting purposes in radiomics literature. METHODS Literature search was conducted in PubMed (date, April 23, 2023). The radiomics literature was sampled at random after a sample size calculation with a priori power analysis. A systematic assessment for self-reporting, including the use of documentation such as completed checklists or quality scoring tools, was conducted in original research papers. These eligible papers underwent independent evaluation by a panel of nine readers, with three readers assigned to each paper. Automatic annotation was used to assist in this process. Then, a detailed item-by-item confirmation analysis was carried out on papers with checklist documentation, with independent evaluation of two readers. RESULTS The sample size calculation yielded 117 papers. Most of the included papers were retrospective (94%; 110/117), single-center (68%; 80/117), based on their private data (89%; 104/117), and lacked external validation (79%; 93/117). Only seven papers (6%) had at least one self-reported document (Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), or Checklist for Artificial Intelligence in Medical Imaging (CLAIM)), with a statistically significant binomial test (p < 0.001). Median rate of confirmed items for all three documents was 81% (interquartile range, 6). For quality scoring tools, documented scores were higher than suggested scores, with a mean difference of - 7.2 (standard deviation, 6.8). CONCLUSION Radiomic publications often lack self-reported checklists or quality scoring tools. Even when such documents are provided, it is essential to be cautious, as the accuracy of the reported items or scores may be questionable. CLINICAL RELEVANCE STATEMENT Current state of radiomic literature reveals a notable absence of self-reporting with documentation and inaccurate reporting practices. This critical observation may serve as a catalyst for motivating the radiomics community to adopt and utilize such tools appropriately, thereby fostering rigor, transparency, and reproducibility of their research, moving the field forward. KEY POINTS • In radiomics literature, there has been a notable absence of self-reporting with documentation. • Even if such documents are provided, it is critical to exercise caution because the accuracy of the reported items or scores may be questionable. • Radiomics community needs to be motivated to adopt and appropriately utilize the reporting checklists and quality scoring tools.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Ece Ates Kus
- Department of Neuroradiology, Klinikum Lippe, Lemgo, Germany
| | - Ali Keles
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Ahmet Kala
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Fadime Kose
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Mehmet Kadioglu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Sila Solak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Seyma Sunman
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Zisan Hayriye Temiz
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| |
Collapse
|
3
|
Du W, Kang W, Lai S, Cai Z, Chen Y, Zhang X, Lin Y. Deep learning in computed tomography to predict endotype in chronic rhinosinusitis with nasal polyps. BMC Med Imaging 2024; 24:25. [PMID: 38267881 PMCID: PMC10809429 DOI: 10.1186/s12880-024-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND As treatment strategies differ according to endotype, rhinologists must accurately determine the endotype in patients affected by chronic rhinosinusitis with nasal polyps (CRSwNP) for the appropriate management. In this study, we aim to construct a novel deep learning model using paranasal sinus computed tomography (CT) to predict the endotype in patients with CRSwNP. METHODS We included patients diagnosed with CRSwNP between January 1, 2020, and April 31, 2023. The endotype of patients with CRSwNP in this study was classified as eosinophilic or non-eosinophilic. Sinus CT images (29,993 images) were retrospectively collected, including the axial, coronal, and sagittal planes, and randomly divided into training, validation, and testing sets. A residual network-18 was used to construct the deep learning model based on these images. Loss functions, accuracy functions, confusion matrices, and receiver operating characteristic curves were used to assess the predictive performance of the model. Gradient-weighted class activation mapping was performed to visualize and interpret the operating principles of the model. RESULTS Among 251 included patients, 86 and 165 had eosinophilic or non-eosinophilic CRSwNP, respectively. The median (interquartile range) patient age was 49 years (37-58 years), and 153 (61.0%) were male. The deep learning model showed good discriminative performance in the training and validation sets, with areas under the curves of 0.993 and 0.966, respectively. To confirm the model generalizability, the receiver operating characteristic curve in the testing set showed good discriminative performance, with an area under the curve of 0.963. The Kappa scores of the confusion matrices in the training, validation, and testing sets were 0.985, 0.928, and 0.922, respectively. Finally, the constructed deep learning model was used to predict the endotype of all patients, resulting in an area under the curve of 0.962. CONCLUSIONS The deep learning model developed in this study may provide a novel noninvasive method for rhinologists to evaluate endotypes in patients with CRSwNP and help develop precise treatment strategies.
Collapse
Affiliation(s)
- Weidong Du
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Shantou University Medical College, 69 North Dongxia Road, 515041, Shantou, Guangdong, China
| | - Weipiao Kang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Shantou University Medical College, 69 North Dongxia Road, 515041, Shantou, Guangdong, China
| | - Shixin Lai
- College of Engineering, Shantou University, 515063, Shantou, China
| | - Zehong Cai
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Shantou University Medical College, 69 North Dongxia Road, 515041, Shantou, Guangdong, China
| | - Yaowen Chen
- College of Engineering, Shantou University, 515063, Shantou, China
| | - Xiaolei Zhang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, 69 North Dongxia Road, 515041, Shantou, Guangdong, China.
| | - Yu Lin
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Shantou University Medical College, 69 North Dongxia Road, 515041, Shantou, Guangdong, China.
| |
Collapse
|
4
|
Debbi K, Habert P, Grob A, Loundou A, Siles P, Bartoli A, Jacquier A. Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance. Insights Imaging 2023; 14:64. [PMID: 37052738 PMCID: PMC10102264 DOI: 10.1186/s13244-023-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/29/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Recent advanced in radiomics analysis could help to identify breast cancer among benign mammary masses. The aim was to create a radiomics signature using breast DCE-MRI extracted features to classify tumors and to compare the performances with the BI-RADS classification. MATERIAL AND METHODS From September 2017 to December 2019 images, exams and records from consecutive patients with mammary masses on breast DCE-MRI and available histology from one center were retrospectively reviewed (79 patients, 97 masses). Exclusion criterion was malignant uncertainty. The tumors were split in a train-set (70%) and a test-set (30%). From 14 kinetics maps, 89 radiomics features were extracted, for a total of 1246 features per tumor. Feature selection was made using Boruta algorithm, to train a random forest algorithm on the train-set. BI-RADS classification was recorded from two radiologists. RESULTS Seventy-seven patients were analyzed with 94 tumors, (71 malignant, 23 benign). Over 1246 features, 17 were selected from eight kinetic maps. On the test-set, the model reaches an AUC = 0.94 95 CI [0.85-1.00] and a specificity of 33% 95 CI [10-70]. There were 43/94 (46%) lesions BI-RADS4 (4a = 12/94 (13%); 4b = 9/94 (10%); and 4c = 22/94 (23%)). The BI-RADS score reached an AUC = 0.84 95 CI [0.73-0.95] and a specificity of 17% 95 CI [3-56]. There was no significant difference between the ROC curves for the model or the BI-RADS score (p = 0.19). CONCLUSION A radiomics signature from features extracted using breast DCE-MRI can reach an AUC of 0.94 on a test-set and could provide as good results as BI-RADS to classify mammary masses.
Collapse
Affiliation(s)
- Kawtar Debbi
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Paul Habert
- Service de Radiologie, Hôpital Nord, Chemin des Bourrely, 13015, Marseille, France.
- LIIE, Aix Marseille Université, Marseille, France.
- CERIMED, Aix Marseille Université, Marseille, France.
| | - Anaïs Grob
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Anderson Loundou
- CEReSS UR3279-Health Service Research and Quality of Life Center, Aix-Marseille Université, Marseille, France
- Department of Public Health, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Pascale Siles
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Axel Bartoli
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
- UMR 7339, CNRS, CRMBM-CEMEREM (Centre de Résonance Magnétique Biologique et Médicale - Centre d'Exploration Métaboliques par Résonance Magnétique), Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, 13385, Marseille, France
| | - Alexis Jacquier
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
- UMR 7339, CNRS, CRMBM-CEMEREM (Centre de Résonance Magnétique Biologique et Médicale - Centre d'Exploration Métaboliques par Résonance Magnétique), Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, 13385, Marseille, France
| |
Collapse
|
5
|
Fully automatic classification of breast lesions on multi-parameter MRI using a radiomics model with minimal number of stable, interpretable features. LA RADIOLOGIA MEDICA 2023; 128:160-170. [PMID: 36670236 DOI: 10.1007/s11547-023-01594-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE To build an automatic computer-aided diagnosis (CAD) pipeline based on multiparametric magnetic resonance imaging (mpMRI) and explore the role of different imaging features in the classification of breast cancer. MATERIALS AND METHODS A total of 222 histopathology-confirmed breast lesions, together with their BI-RADS scores, were included in the analysis. The cohort was randomly split into training (159) and test (63) cohorts, and another 50 lesions were collected as an external cohort. An nnUNet-based lesion segmentation model was trained to automatically segment lesion ROI, from which radiomics features were extracted for diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and contrast-enhanced (DCE) pharmacokinetic parametric maps. Models based on combinations of sequences were built using support vector machine (SVM) and logistic regression (LR). Also, the performance of these sequence combinations and BI-RADS scores were compared. The Dice coefficient and AUC were calculated to evaluate the segmentation and classification results. Decision curve analysis (DCA) was used to assess clinical utility. RESULTS The segmentation model achieved a Dice coefficient of 0.831 in the test cohort. The radiomics model used only three features from diffusion coefficient (ADC) images, T2WI, and DCE-derived kinetic mapping, and achieved an AUC of 0.946 [0.883-0.990], AUC of 0.842 [0.6856-0.998] in the external cohort, which was higher than the BI-RADS score with an AUC of 0.872 [0.752-0.975]. The joint model using both radiomics score and BI-RADS score achieved the highest test AUC of 0.975 [0.935-1.000], with a sensitivity of 0.920 and a specificity of 0.923. CONCLUSION Three radiomics features can be used to construct an automatic radiomics-based pipeline to improve the diagnosis of breast lesions and reduce unnecessary biopsies, especially when using jointly with BI-RADS scores.
Collapse
|
6
|
Kataoka M, Iima M, Miyake KK, Matsumoto Y. Multiparametric imaging of breast cancer: An update of current applications. Diagn Interv Imaging 2022; 103:574-583. [DOI: 10.1016/j.diii.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
|
7
|
Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14143515. [PMID: 35884576 PMCID: PMC9316501 DOI: 10.3390/cancers14143515] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy (NAC) followed with surgery is the standard strategy in the treatment of locally advanced breast cancer, but the individual efficacy varies. Early and accurate prediction of complete responders determines the NAC regimens and prognosis. Breast MRI has been recommended to monitor NAC response before, during, and after treatment. Radiomics has been heralded as a breakthrough in medicine and regarded to have changed the landscape of biomedical research in oncology. Delta-radiomics characterizing the change in feature values by applying radiomics to multiple time points, is a promising strategy for predicting response after NAC. In our study, the delta-radiomics model built with the change of radiomic features before and after one cycle NAC could effectively predict pathological complete response (pCR) in breast cancer. The model provides strong support for clinical decision-making at the earliest stage and helps patients benefit the most from NAC. Abstract Objective: To investigate the value of delta-radiomics after the first cycle of neoadjuvant chemotherapy (NAC) using dynamic contrast-enhanced (DCE) MRI for early prediction of pathological complete response (pCR) in patients with breast cancer. Methods: From September 2018 to May 2021, a total of 140 consecutive patients (training, n = 98: validation, n = 42), newly diagnosed with breast cancer who received NAC before surgery, were prospectively enrolled. All patients underwent DCE-MRI at pre-NAC (pre-) and after the first cycle (1st-) of NAC. Radiomic features were extracted from the postcontrast early, peak, and delay phases. Delta-radiomics features were computed in each contrast phases. Least absolute shrinkage and selection operator (LASSO) and a logistic regression model were used to select features and build models. The model performance was assessed by receiver operating characteristic (ROC) analysis and compared by DeLong test. Results: The delta-radiomics model based on the early phases of DCE-MRI showed a highest AUC (0.917/0.842 for training/validation cohort) compared with that using the peak and delay phases images. The delta-radiomics model outperformed the pre-radiomics model (AUC = 0.759/0.617, p = 0.011/0.047 for training/validation cohort) in early phase. Based on the optimal model, longitudinal fusion radiomic models achieved an AUC of 0.871/0.869 in training/validation cohort. Clinical-radiomics model generated good calibration and discrimination capacity with AUC 0.934 (95%CI: 0.882, 0.986)/0.864 (95%CI: 0.746, 0.982) for training and validation cohort. Delta-radiomics based on early contrast phases of DCE-MRI combined clinicopathology information could predict pCR after one cycle of NAC in patients with breast cancer.
Collapse
|
8
|
Sheng A, Zhou P, Ye Y, Sun K, Yang Z. Diagnostic Efficacy of CT Radiomic Features in Pulmonary Invasive Mucinous Adenocarcinoma. SCANNING 2022; 2022:5314225. [PMID: 35832299 PMCID: PMC9252846 DOI: 10.1155/2022/5314225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 05/14/2023]
Abstract
In order to solve the problem of the effect of CT images on the diagnosis of lungs, the authors proposed a method for the diagnosis of invasive mucinous adenocarcinoma of the lungs based on CT radiomic features, and the modified method is found by reviewing past cases: among the 34 cases of primary pulmonary lymphoma, 12 cases were nodular mass type, 19 cases were nonnodular mass type, and 3 cases were mixed type; 13 cases involved bilateral lung lobes, 7 cases involved right lung, and 4 cases involved left lung example. There were 17 cases of tumor consolidation density shadow, 17 cases of mixed density shadow, the average CT value was about 32HU, 15 cases of cavitation sign, 6 cases of cavity, 9 cases of angiography sign, 30 cases of air bronchus sign, 22 cases of bronchiectasis, bronchial stenosis or amputation in 8 cases, pleural effusion in 12 cases, lymph node enlargement in 15 cases, and pleural metastasis in 2 cases. The final pathological results included 24 cases of membrane-associated lymphoid tissue (MALT) lymphoma, 9 cases of diffuse large B-cell lymphoma (DLBCL), and 1 case of T-cell lymphoma. The CT manifestations of primary pulmonary lymphoma (PPL) are diverse and do not have obvious specificity, the imaging manifestations are correlated with pathological types, and air bronchial signs, bronchiectasis, angiography signs, and other signs are used for the diagnosis of PPL. This is of great significance for the diagnosis of PPL.
Collapse
Affiliation(s)
- Aizhu Sheng
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Zhejiang 315000, China
| | - Pengfei Zhou
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Zhejiang 315000, China
| | - Yizhai Ye
- Department of Radiology, Ninghai First Hospital, Ningbo, Zhejiang 315600, China
| | - Keda Sun
- Department of Radiology, No. 2 Hospital of Yinzhou District, Ningbo, Zhejiang 315100, China
| | - Zhenhua Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Zhejiang 315000, China
| |
Collapse
|
9
|
Ruan M, Ding Z, Shan Y, Pan S, Shao C, Xu W, Zhen T, Pang P, Shen Q. Radiomics Based on DCE-MRI Improved Diagnostic Performance Compared to BI-RADS Analysis in Identifying Sclerosing Adenosis of the Breast. Front Oncol 2022; 12:888141. [PMID: 35646630 PMCID: PMC9133496 DOI: 10.3389/fonc.2022.888141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Sclerosing adenosis (SA) is a benign lesion that could mimic breast carcinoma and be evaluated as malignancy by Breast Imaging-Reporting and Data System (BI-RADS) analysis. We aimed to construct and validate the performance of radiomic model based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) compared to BI-RADS analysis to identify SA. Methods Sixty-seven patients with invasive ductal carcinoma (IDC) and 58 patients with SA were included in this retrospective study from two institutions. The 125 patients were divided into a training cohort (n= 88) from institution I and a validation cohort from institution II (n=37). Dynamic contrast-enhanced sequences including one pre-contrast and five dynamic post-contrast series were obtained for all cases with different 3T scanners. Single-phase enhancement, multi-phase enhancement, and dynamic radiomic features were extracted from DCE-MRI. The least absolute shrinkage and selection operator (LASSO) logistic regression and cross-validation was performed to build the radscore of each single-phase enhancement and the final model combined multi-phase and dynamic radiomic features. The diagnostic performance of radiomics was evaluated by receiver operating characteristic (ROC) analysis and compared to the performance of BI-RADS analysis. The classification performance was tested using external validation. Results In the training cohort, the AUCs of BI-RADS analysis were 0.71 (95%CI [0.60, 0.80]), 0.78 (95%CI [0.67, 0.86]), and 0.80 (95%CI [0.70, 0.88]), respectively. In single-phase analysis, the second enhanced phase radiomic signature achieved the highest AUC of 0.88 (95%CI [0.79, 0.94]) in distinguishing SA from IDC. Nine multi-phase radiomic features and two dynamic radiomic features showed the best predictive ability for final model building. The final model improved the AUC to 0.92 (95%CI [0.84, 0.97]), and showed statistically significant differences with BI-RADS analysis (p<0.05 for all). In the validation cohort, the AUC of the final model was 0.90 (95%CI [0.75, 0.97]), which was higher than all BI-RADS analyses and showed statistically significant differences with one of the BI-RADS analysis observers (p = 0.03). Conclusions Radiomics based on DCE-MRI could show better diagnostic performance compared to BI-RADS analysis in differentiating SA from IDC, which may contribute to clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Mei Ruan
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanna Shan
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shushu Pan
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Shao
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Zhen
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Qijun Shen
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Crimì F, Vernuccio F, Cabrelle G, Zanon C, Pepe A, Quaia E. Tumor Diagnosis and Treatment: Imaging Assessment. Tomography 2022; 8:1463-1465. [PMID: 35736866 PMCID: PMC9227109 DOI: 10.3390/tomography8030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 12/05/2022] Open
|
11
|
Zhang Y, Sun X, Li J, Gao Q, Guo X, Liu JX, Gan W, Yang S. The diagnostic value of contrast-enhanced ultrasound and superb microvascular imaging in differentiating benign from malignant solid breast lesions: A systematic review and meta-analysis. Clin Hemorheol Microcirc 2022; 81:109-121. [PMID: 35180108 DOI: 10.3233/ch-211367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the added value of contrast-enhanced ultrasound (CEUS) and superb microvascular imaging (SMI) to the conventional ultrasound (US) in the diagnosis of breast lesions. METHODS PubMed, EMBASE, Web of Science, Chinese national knowledge infrastructure databases, Chinese biomedical literature databases, and Wanfang were searched for relevant studies from November 2015 to November 2021. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Studies (QUADAS) tool. Meta-Disc version 1.4 was used to calculate sensitivity (SEN), specificity (SPE), positive likelihood ratio (LR +), negative likelihood ratio (LR-), area under curve (AUC), and diagnostic odds ratio (DOR). Meta-regression analysis was performed using STATA 16.0 software to compare the diagnostic accuracy of the two techniques. RESULTS In the five studies included, 530 patients were eligible for this meta-analysis. For SMI, the pooled SEN and SPE were 0.75 (95% confidence interval [CI]: 0.69-0.91) and 0.88 (95% CI: 0.83-0.91), respectively, LR + was 5.75 (95% CI: 4.26-7.78), LR- was 0.29 (95% CI: 0.23-0.36), DOR was 21.42 (95% CI, 13.61-33.73), and AUC was 0.8871. For CEUS, the pooled SEN and SPE were 0.87 (95% CI: 0.82-0.91) and 0.86 (95% CI: 0.82-0.89), respectively, LR + was 5.92 (95% CI: 4.21-8.33), LR- was 0.16 (95% CI: 0.11-0.25), DOR was 38.27 (95% CI: 18.73-78.17), and AUC was 0.9210. CONCLUSIONS Adding CEUS and (or) SMI to conventional US could improve its diagnostic performance in differentiating benign from malignant solid breast lesions.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng Sun
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingjing Li
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Gao
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofei Guo
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Xin Liu
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenyuan Gan
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunshi Yang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Mottaghy FM, Hertel F, Beheshti M. Will we successfully avoid the garbage in garbage out problem in imaging data mining? An overview on current concepts and future directions in molecular imaging. Methods 2021; 188:1-3. [PMID: 33592236 DOI: 10.1016/j.ymeth.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- F M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands.
| | - F Hertel
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany
| | - M Beheshti
- Division of Molecular Imaging and Theranostics, University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|