1
|
Sun D, Wu G, Zhang W, Gharaibeh NM, Li X. Visualizing Preosteoarthritis: Updates on UTE-Based Compositional MRI and Deep Learning Algorithms. J Magn Reson Imaging 2025. [PMID: 39792443 DOI: 10.1002/jmri.29710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA." In this review, we first focus on ultrashort echo time-based magnetic resonance imaging (MRI) techniques for direct visualization as well as quantitative morphological and compositional assessment of both short- and long-T2 musculoskeletal tissues, and second explore how DL revolutionize the way of MRI analysis (eg, automatic tissue segmentation and extraction of quantitative image biomarkers) and the classification, prediction, and management of OA. PLAIN LANGUAGE SUMMARY: Detecting osteoarthritis (OA) before the onset of irreversible changes is crucial for early proactive management. OA is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Ultrashort echo time-based magnetic resonance imaging (MRI), in particular, enables direct visualization and quantitative compositional assessment of short-T2 tissues. Deep learning is revolutionizing the way of MRI analysis (eg, automatic tissue segmentation and extraction of quantitative image biomarkers) and the detection, classification, and prediction of disease. They together have made further advances toward identification of imaging biomarkers/features for pre-OA. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Dong Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nadeer M Gharaibeh
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Li X, Kim J, Yang M, Ok AH, Zbýň Š, Link TM, Majumdar S, Ma CB, Spindler KP, Winalski CS. Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades. Skeletal Radiol 2024; 53:1761-1781. [PMID: 38980364 PMCID: PMC11303573 DOI: 10.1007/s00256-024-04734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Articular cartilage damage and degeneration are among hallmark manifestations of joint injuries and arthritis, classically osteoarthritis. Cartilage compositional MRI (Cart-C MRI), a quantitative technique, which aims to detect early-stage cartilage matrix changes that precede macroscopic alterations, began development in the 1990s. However, despite the significant advancements over the past three decades, Cart-C MRI remains predominantly a research tool, hindered by various technical and clinical hurdles. This paper will review the technical evolution of Cart-C MRI, delve into its clinical applications, and conclude by identifying the existing gaps and challenges that need to be addressed to enable even broader clinical application of Cart-C MRI.
Collapse
Affiliation(s)
- Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA.
| | - Jeehun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet H Ok
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Štefan Zbýň
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sharmilar Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, UCSF, San Francisco, CA, USA
| | - Kurt P Spindler
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Carl S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Mahendrakar P, Kumar D, Patil U. A Comprehensive Review on MRI-based Knee Joint Segmentation and Analysis Techniques. Curr Med Imaging 2024; 20:e150523216894. [PMID: 37189281 DOI: 10.2174/1573405620666230515090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 05/17/2023]
Abstract
Using magnetic resonance imaging (MRI) in osteoarthritis pathogenesis research has proven extremely beneficial. However, it is always challenging for both clinicians and researchers to detect morphological changes in knee joints from magnetic resonance (MR) imaging since the surrounding tissues produce identical signals in MR studies, making it difficult to distinguish between them. Segmenting the knee bone, articular cartilage and menisci from the MR images allows one to examine the complete volume of the bone, articular cartilage, and menisci. It can also be used to assess certain characteristics quantitatively. However, segmentation is a laborious and time-consuming operation that requires sufficient training to complete correctly. With the advancement of MRI technology and computational methods, researchers have developed several algorithms to automate the task of individual knee bone, articular cartilage and meniscus segmentation during the last two decades. This systematic review aims to present available fully and semi-automatic segmentation methods for knee bone, cartilage, and meniscus published in different scientific articles. This review provides a vivid description of the scientific advancements to clinicians and researchers in this field of image analysis and segmentation, which helps the development of novel automated methods for clinical applications. The review also contains the recently developed fully automated deep learning-based methods for segmentation, which not only provides better results compared to the conventional techniques but also open a new field of research in Medical Imaging.
Collapse
Affiliation(s)
- Pavan Mahendrakar
- BLDEA’s V.P.Dr. P.G., Halakatti College of Engineering and Technology, Vijayapur, Karnataka, India
| | | | - Uttam Patil
- Jain College of Engineering, T.S Nagar, Hunchanhatti Road, Machhe, Belagavi, Karnataka, India
| |
Collapse
|
4
|
Zhang Y, Chen C, Huang W, Teng Y, Shu X, Zhao F, Xu J, Zhang L. Preoperative volume of the optic chiasm is an easily obtained predictor for visual recovery of pituitary adenoma patients following endoscopic endonasal transsphenoidal surgery: a cohort study. Int J Surg 2023; 109:896-904. [PMID: 36999782 PMCID: PMC10389445 DOI: 10.1097/js9.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Predicting the postoperative visual outcome of pituitary adenoma patients is important but remains challenging. This study aimed to identify a novel prognostic predictor which can be automatically obtained from routine MRI using a deep learning approach. MATERIALS AND METHODS A total of 220 pituitary adenoma patients were prospectively enrolled and stratified into the recovery and nonrecovery groups according to the visual outcome at 6 months after endoscopic endonasal transsphenoidal surgery. The optic chiasm was manually segmented on preoperative coronal T2WI, and its morphometric parameters were measured, including suprasellar extension distance, chiasmal thickness, and chiasmal volume. Univariate and multivariate analyses were conducted on clinical and morphometric parameters to identify predictors for visual recovery. Additionally, a deep learning model for automated segmentation and volumetric measurement of optic chiasm was developed with nnU-Net architecture and evaluated in a multicenter data set covering 1026 pituitary adenoma patients from four institutions. RESULTS Larger preoperative chiasmal volume was significantly associated with better visual outcomes ( P =0.001). Multivariate logistic regression suggested it could be taken as the independent predictor for visual recovery (odds ratio=2.838, P <0.001). The auto-segmentation model represented good performances and generalizability in internal (Dice=0.813) and three independent external test sets (Dice=0.786, 0.818, and 0.808, respectively). Moreover, the model achieved accurate volumetric evaluation of the optic chiasm with an intraclass correlation coefficient of more than 0.83 in both internal and external test sets. CONCLUSION The preoperative volume of the optic chiasm could be utilized as the prognostic predictor for visual recovery of pituitary adenoma patients after surgery. Moreover, the proposed deep learning-based model allowed for automated segmentation and volumetric measurement of the optic chiasm on routine MRI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University
- Department of Radiology, West China Hospital, Sichuan University
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University
- Department of Radiology, West China Hospital, Sichuan University
| | - Wei Huang
- College of Computer Science, Sichuan University
| | - Yuen Teng
- Department of Neurosurgery, West China Hospital, Sichuan University
- Department of Radiology, West China Hospital, Sichuan University
| | - Xin Shu
- College of Computer Science, Sichuan University
| | - Fumin Zhao
- Department of Radiology, West China Second University Hospital, Sichuan University
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University
- Department of Radiology, West China Hospital, Sichuan University
| | - Lei Zhang
- College of Computer Science, Sichuan University
| |
Collapse
|
5
|
Gohla G, Kraus MS, Peyker I, Springer F, Keller G. Diagnostic Accuracy of 128-Slice Single-Source CT for the Detection of Dislocated Bucket Handle Meniscal Tears in the Setting of an Acute Knee Trauma—Correlation with MRI and Arthroscopy. Diagnostics (Basel) 2023; 13:diagnostics13071295. [PMID: 37046513 PMCID: PMC10093062 DOI: 10.3390/diagnostics13071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
(1) Background: Meniscal tears are amongst the most common knee injuries. Dislocated bucket handle meniscal tears in particular should receive early intervention. The purpose of this study was to evaluate the diagnostic performance of CT in detecting dislocated bucket handle meniscal tears compared with the gold-standard MRI and arthroscopy. (2) Methods: Retrospectively, 96 consecutive patients underwent clinically indicated CT of the knee for suspected acute traumatic knee injuries (standard study protocol, 120 kV, 90 mAs). Inclusion criteria were the absence of an acute fracture on CT and a timely MRI (<6 months). Corresponding arthroscopy was assessed. Two experienced musculoskeletal radiologists analyzed the images for dislocated bucket handle meniscal tears, associated signs thereof (double posterior cruciate ligament sign, double delta sign, disproportional posterior horn sign), and subjective diagnostic confidence on a 5-point-Likert scale (1 = ‘non-diagnostic image quality’, 5 = ‘very confident’). (3) Results: Dislocated bucket handle meniscal tears were detected on CT by standard three-plane bone kernel reconstructions with a sensitivity of 90.7% and a specificity of 99.3% by transferring the knowledge of established MRI signs. The additional use of soft-tissue kernel reconstructions in three planes increased the sensitivity by 4.0% to 94.7%, specificity to 100%, inter-rater agreement to 1.0, and the diagnostic confidence of both readers improved to a median 4/5 (‘confident’) in both readers. (4) Conclusions: Trauma CT scan of the knee with three-plane soft-tissue reconstructions delivers the potential for the detection of dislocated bucket handle meniscal tears with very high diagnostic accuracy.
Collapse
Affiliation(s)
- Georg Gohla
- Department of Diagnostic and Interventional Neuroradiology, University-Hospital of Tuebingen, 72076 Tuebingen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital of Tuebingen, 72076 Tuebingen, Germany
- Correspondence:
| | - Mareen Sarah Kraus
- Department of Diagnostic Radiology, IWK Health Care Centre, 5850 University Avenue, Halifax, NS B3K 6R8, Canada
| | - Isabell Peyker
- Department of Diagnostic and Interventional Radiology, University-Hospital of Tuebingen, 72076 Tuebingen, Germany
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University-Hospital of Tuebingen, 72076 Tuebingen, Germany
| | - Gabriel Keller
- Department of Diagnostic and Interventional Radiology, University-Hospital of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
6
|
Bonaldi L, Pretto A, Pirri C, Uccheddu F, Fontanella CG, Stecco C. Deep Learning-Based Medical Images Segmentation of Musculoskeletal Anatomical Structures: A Survey of Bottlenecks and Strategies. Bioengineering (Basel) 2023; 10:137. [PMID: 36829631 PMCID: PMC9952222 DOI: 10.3390/bioengineering10020137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
By leveraging the recent development of artificial intelligence algorithms, several medical sectors have benefited from using automatic segmentation tools from bioimaging to segment anatomical structures. Segmentation of the musculoskeletal system is key for studying alterations in anatomical tissue and supporting medical interventions. The clinical use of such tools requires an understanding of the proper method for interpreting data and evaluating their performance. The current systematic review aims to present the common bottlenecks for musculoskeletal structures analysis (e.g., small sample size, data inhomogeneity) and the related strategies utilized by different authors. A search was performed using the PUBMED database with the following keywords: deep learning, musculoskeletal system, segmentation. A total of 140 articles published up until February 2022 were obtained and analyzed according to the PRISMA framework in terms of anatomical structures, bioimaging techniques, pre/post-processing operations, training/validation/testing subset creation, network architecture, loss functions, performance indicators and so on. Several common trends emerged from this survey; however, the different methods need to be compared and discussed based on each specific case study (anatomical region, medical imaging acquisition setting, study population, etc.). These findings can be used to guide clinicians (as end users) to better understand the potential benefits and limitations of these tools.
Collapse
Affiliation(s)
- Lorenza Bonaldi
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Andrea Pretto
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35121 Padova, Italy
| | - Carmelo Pirri
- Department of Neuroscience, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy
| | - Francesca Uccheddu
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35121 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35121 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
7
|
Chen S, Zhong L, Qiu C, Zhang Z, Zhang X. Transformer-based multilevel region and edge aggregation network for magnetic resonance image segmentation. Comput Biol Med 2023; 152:106427. [PMID: 36543009 DOI: 10.1016/j.compbiomed.2022.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
To improve the quality of magnetic resonance (MR) image edge segmentation, some researchers applied additional edge labels to train the network to extract edge information and aggregate it with region information. They have made significant progress. However, due to the intrinsic locality of convolution operations, the convolution neural network-based region and edge aggregation has limitations in modeling long-range information. To solve this problem, we proposed a novel transformer-based multilevel region and edge aggregation network for MR image segmentation. To the best of our knowledge, this is the first literature on transformer-based region and edge aggregation. We first extract multilevel region and edge features using a dual-branch module. Then, the region and edge features at different levels are inferred and aggregated through multiple transformer-based inference modules to form multilevel complementary features. Finally, the attention feature selection module aggregates these complementary features with the corresponding level region and edge features to decode the region and edge features. We evaluated our method on a public MR dataset: Medical image computation and computer-assisted intervention atrial segmentation challenge (ASC). Meanwhile, the private MR dataset considered infrapatellar fat pad (IPFP). Our method achieved a dice score of 93.2% for ASC and 91.9% for IPFP. Compared with other 2D segmentation methods, our method improved a dice score by 0.6% for ASC and 3.0% for IPFP.
Collapse
Affiliation(s)
- Shaolong Chen
- School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lijie Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics·Guangdong Province), Guangzhou, 510630, China
| | - Changzhen Qiu
- School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyong Zhang
- School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics·Guangdong Province), Guangzhou, 510630, China.
| |
Collapse
|
8
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
9
|
Kubicek J, Varysova A, Cerny M, Hancarova K, Oczka D, Augustynek M, Penhaker M, Prokop O, Scurek R. Performance and Robustness of Regional Image Segmentation Driven by Selected Evolutionary and Genetic Algorithms: Study on MR Articular Cartilage Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176335. [PMID: 36080793 PMCID: PMC9460494 DOI: 10.3390/s22176335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 05/12/2023]
Abstract
The analysis and segmentation of articular cartilage magnetic resonance (MR) images belongs to one of the most commonly routine tasks in diagnostics of the musculoskeletal system of the knee area. Conventional regional segmentation methods, which are based either on the histogram partitioning (e.g., Otsu method) or clustering methods (e.g., K-means), have been frequently used for the task of regional segmentation. Such methods are well known as fast and well working in the environment, where cartilage image features are reliably recognizable. The well-known fact is that the performance of these methods is prone to the image noise and artefacts. In this context, regional segmentation strategies, driven by either genetic algorithms or selected evolutionary computing strategies, have the potential to overcome these traditional methods such as Otsu thresholding or K-means in the context of their performance. These optimization strategies consecutively generate a pyramid of a possible set of histogram thresholds, of which the quality is evaluated by using the fitness function based on Kapur's entropy maximization to find the most optimal combination of thresholds for articular cartilage segmentation. On the other hand, such optimization strategies are often computationally demanding, which is a limitation of using such methods for a stack of MR images. In this study, we publish a comprehensive analysis of the optimization methods based on fuzzy soft segmentation, driven by artificial bee colony (ABC), particle swarm optimization (PSO), Darwinian particle swarm optimization (DPSO), and a genetic algorithm for an optimal thresholding selection against the routine segmentations Otsu and K-means for analysis and the features extraction of articular cartilage from MR images. This study objectively analyzes the performance of the segmentation strategies upon variable noise with dynamic intensities to report a segmentation's robustness in various image conditions for a various number of segmentation classes (4, 7, and 10), cartilage features (area, perimeter, and skeleton) extraction preciseness against the routine segmentation strategies, and lastly the computing time, which represents an important factor of segmentation performance. We use the same settings on individual optimization strategies: 100 iterations and 50 population. This study suggests that the combination of fuzzy thresholding with an ABC algorithm gives the best performance in the comparison with other methods as from the view of the segmentation influence of additive dynamic noise influence, also for cartilage features extraction. On the other hand, using genetic algorithms for cartilage segmentation in some cases does not give a good performance. In most cases, the analyzed optimization strategies significantly overcome the routine segmentation methods except for the computing time, which is normally lower for the routine algorithms. We also publish statistical tests of significance, showing differences in the performance of individual optimization strategies against Otsu and K-means method. Lastly, as a part of this study, we publish a software environment, integrating all the methods from this study.
Collapse
Affiliation(s)
- Jan Kubicek
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
- Correspondence:
| | - Alice Varysova
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Martin Cerny
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Kristyna Hancarova
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - David Oczka
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Martin Augustynek
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17.listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Ondrej Prokop
- MEDIN, a.s., Vlachovicka 619, 592 31 Nove Mesto na Morave, Czech Republic
| | - Radomir Scurek
- Department of Security Services, Faculty of Safety Engineering, VŠB—Technical University of Ostrava, ul. Lumirova 3, 700 30 Ostrava, Czech Republic
| |
Collapse
|
10
|
Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation. SENSORS 2022; 22:s22103820. [PMID: 35632229 PMCID: PMC9145221 DOI: 10.3390/s22103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/07/2022]
Abstract
The latest medical image segmentation methods uses UNet and transformer structures with great success. Multiscale feature fusion is one of the important factors affecting the accuracy of medical image segmentation. Existing transformer-based UNet methods do not comprehensively explore multiscale feature fusion, and there is still much room for improvement. In this paper, we propose a novel multiresolution aggregation transformer UNet (MRA-TUNet) based on multiscale input and coordinate attention for medical image segmentation. It realizes multiresolution aggregation from the following two aspects: (1) On the input side, a multiresolution aggregation module is used to fuse the input image information of different resolutions, which enhances the input features of the network. (2) On the output side, an output feature selection module is used to fuse the output information of different scales to better extract coarse-grained information and fine-grained information. We try to introduce a coordinate attention structure for the first time to further improve the segmentation performance. We compare with state-of-the-art medical image segmentation methods on the automated cardiac diagnosis challenge and the 2018 atrial segmentation challenge. Our method achieved average dice score of 0.911 for right ventricle (RV), 0.890 for myocardium (Myo), 0.961 for left ventricle (LV), and 0.923 for left atrium (LA). The experimental results on two datasets show that our method outperforms eight state-of-the-art medical image segmentation methods in dice score, precision, and recall.
Collapse
|
11
|
Afsahi AM, Sedaghat S, Moazamian D, Afsahi G, Athertya JS, Jang H, Ma YJ. Articular Cartilage Assessment Using Ultrashort Echo Time MRI: A Review. Front Endocrinol (Lausanne) 2022; 13:892961. [PMID: 35692400 PMCID: PMC9178905 DOI: 10.3389/fendo.2022.892961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage is a major component of the human knee joint which may be affected by a variety of degenerative mechanisms associated with joint pathologies and/or the aging process. Ultrashort echo time (UTE) sequences with a TE less than 100 µs are capable of detecting signals from both fast- and slow-relaxing water protons in cartilage. This allows comprehensive evaluation of all the cartilage layers, especially for the short T2 layers which include the deep and calcified zones. Several ultrashort echo time (UTE) techniques have recently been developed for both morphological imaging and quantitative cartilage assessment. This review article summarizes the current catalog techniques based on UTE Magnetic Resonance Imaging (MRI) that have been utilized for such purposes in the human knee joint, such as T1, T2∗ , T1ρ, magnetization transfer (MT), double echo steady state (DESS), quantitative susceptibility mapping (QSM) and inversion recovery (IR). The contrast mechanisms as well as the advantages and disadvantages of these techniques are discussed.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Sam Sedaghat
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Ghazaleh Afsahi
- Department of Biotechnology Research, BioSapien, San Diego, CA, United States
| | - Jiyo S. Athertya
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- *Correspondence: Ya-Jun Ma,
| |
Collapse
|
12
|
Afsahi AM, Ma Y, Jang H, Jerban S, Chung CB, Chang EY, Du J. Ultrashort Echo Time Magnetic Resonance Imaging Techniques: Met and Unmet Needs in Musculoskeletal Imaging. J Magn Reson Imaging 2021; 55:1597-1612. [PMID: 34962335 DOI: 10.1002/jmri.28032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
This review article summarizes recent technical developments in ultrashort echo time (UTE) magnetic resonance imaging of musculoskeletal (MSK) tissues with short-T2 relaxation times. A series of contrast mechanisms are discussed for high-contrast morphological imaging of short-T2 MSK tissues including the osteochondral junction, menisci, ligaments, tendons, and bone. Quantitative UTE mapping of T1, T2*, T1ρ, adiabatic T1ρ, magnetization transfer ratio, MT modeling of macromolecular proton fraction, quantitative susceptibility mapping, and water content is also introduced. Met and unmet needs in MSK imaging are discussed. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, California, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|