1
|
Qiu C, Glaser KJ, Owusu N, Li J, Wu H, Venkatesh SK, Manduca A, Ehman RL, Yin M. Acquisition Efficiency and Technical Repeatability of Dual-Frequency 3D Vector MR Elastography of the Liver. J Magn Reson Imaging 2025; 61:1416-1425. [PMID: 38935749 PMCID: PMC11671616 DOI: 10.1002/jmri.29493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND MR elastography (MRE) at 60 Hz is widely used for staging liver fibrosis. MRE with lower frequencies may provide inflammation biomarkers. PURPOSE To establish a practical simultaneous dual-frequency liver MRE protocol at both 30 Hz and 60 Hz during a single examination and validate the occurrence of second harmonic waves at 30 Hz. STUDY TYPE Retrospective. SUBJECTS One hundred six patients (48 females, age: 50.0 ± 13.4 years) were divided as follows: Cohort One (15 patients with chronic liver disease [CLD] and 25 healthy volunteers) with simultaneous dual-frequency MRE. Cohort Two (66 patients with CLD) with second harmonic MRE. FIELD STRENGTH/SEQUENCE 3-T, single- or dual-frequency MRE at 30 Hz and 60 Hz. ASSESSMENT Liver stiffness (LS) in both cohorts was evaluated with manually placed volumetric ROIs by two independent analyzers. Image quality was assessed by three independent readers on a 4-point scale (0-3: none/failed, fair, moderate, excellent) based on the depth of wave propagation with 1/3 incremental penetration. The success rate was derived from the percentage of nonzero quality scores. STATISTICAL TESTS Measurement agreement, bias, and repeatability of LS were assessed using intraclass correlation coefficients (ICCs), Bland-Altman plots, and repeatability coefficient (RC). Mann-Whitney U tests were used to evaluate the differences in image quality between different methods. A P-value <0.05 was considered statistically significant. RESULTS Success rate was 97.5% in Cohort One and 91% success rate for the second harmonic MRE in Cohort Two. The second harmonic and conventional MRE showed excellent agreement in LS (all ICCs >0.90). The quality scores for the second harmonic wave images were lower than those from the conventional MRE (Z = -4.523). DATA CONCLUSION Compared with conventional and second harmonic methods, simultaneous dual-frequency had better image quality, high success rate and the advantage of intrinsic co-registration, while the second harmonic method can be an alternative if custom waveform is not available. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Caixin Qiu
- Department of RadiologyTianjin First Central HospitalTianjinChina
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Nana Owusu
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Jiahui Li
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Hao Wu
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Meng Yin
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
2
|
Serai SD, Franchi-Abella S, Syed AB, Tkach JA, Toso S, Ferraioli G. MR and Ultrasound Elastography for Fibrosis Assessment in Children: Practical Implementation and Supporting Evidence- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 223:e2330506. [PMID: 38170833 DOI: 10.2214/ajr.23.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Quantitative MRI and ultrasound biomarkers of liver fibrosis have become important tools in the diagnosis and clinical management of children with chronic liver disease (CLD). In particular, MR elastography is now routinely performed in clinical practice to evaluate the liver for fibrosis. Ultrasound shear-wave elastography has also become widely performed for this purpose, especially in young children. These noninvasive methods are increasingly used to replace liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. Although ultrasound has the advantages of portability and lower equipment cost than MRI, available evidence indicates that MRI may have greater reliability and accuracy in liver fibrosis evaluation. In this AJR Expert Panel Narrative Review, we describe how, why, and when to use MRI- and ultrasound-based elastography methods for liver fibrosis assessment in children. Practical approaches are discussed for adapting and optimizing these methods in children, with consideration of clinical indications, patient preparation, equipment requirements, and acquisition technique, as well as pitfalls and confounding factors. Guidance is provided for interpretation and reporting, and representative case examples are presented.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stéphanie Franchi-Abella
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de Radiologie Pédiatrique Diagnostique et Interventionnelle, Centre de Référence des Maladies Rares du Foie de L'enfant, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- BIOMAPS, University Paris-Saclay, Orsay, France
| | - Ali B Syed
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seema Toso
- Department of Pediatric Radiology, University Children's Hospital Geneva, Geneva, Switzerland
| | - Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Medical School University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Atamaniuk V, Hańczyk Ł, Chen J, Pozaruk A, Obrzut M, Gutkowski K, Domka W, Cholewa M, Ehman RL, Obrzut B. 3D vector MR elastography applications in small organs. Magn Reson Imaging 2024; 112:54-62. [PMID: 38909764 PMCID: PMC11334951 DOI: 10.1016/j.mri.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is a rapidly developing medical imaging technique that allows for quantitative assessment of the biomechanical properties of the tissue. MRE is now regarded as the most accurate noninvasive test for detecting and staging liver fibrosis. A two-dimensional (2D MRE) acquisition version is currently deployed at >2000 locations worldwide. 2D MRE allows for the evaluation of the magnitude of the complex shear modulus, also referred to as stiffness. The development of 3D vector MRE has enabled researchers to assess the biomechanical properties of small organs where wave propagation cannot be adequately analyzed with the 2D MRE imaging approach used in the liver. In 3D vector MRE, the shear waves are imaged and processed throughout a 3D volume and processed with an algorithm that accounts for wave propagation in any direction. Additionally, the motion is also imaged in x, y, and z directions at each voxel, allowing for more advanced processing to be applied. PURPOSE This review describes the technical principles of 3D vector MRE, surveys its clinical applications in small organs, and discusses potential clinical significance of 3D vector MRE. CONCLUSION 3D vector MRE is a promising tool for characterizing the biomechanical properties of small organs such as the uterus, pancreas, thyroid, prostate, and salivary glands. However, its potential has not yet been fully explored.
Collapse
Affiliation(s)
- Vitaliy Atamaniuk
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Profesora Stanisława Pigonia str. 1, 35-310 Rzeszow, Poland; Doctoral School of the University of Rzeszow, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland.
| | - Łukasz Hańczyk
- Clinical Regional Hospital, No. 2 in Rzeszów, Lwowska 60, 35-301 Rzeszow, Poland
| | - Jun Chen
- Department of Radiology, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Resoundant Inc, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Andrii Pozaruk
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Profesora Stanisława Pigonia str. 1, 35-310 Rzeszow, Poland; Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Wojciech Domka
- Department of Otorhinolaryngology, Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Profesora Stanisława Pigonia str. 1, 35-310 Rzeszow, Poland
| | | | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Ito D, Habe T, Numano T, Okuda S, Soga S, Jinzaki M. A Versatile MR Elastography Research Tool with a Modified Motion Signal-to-noise Ratio Approach. Magn Reson Med Sci 2024; 23:417-427. [PMID: 37045750 PMCID: PMC11447463 DOI: 10.2463/mrms.mp.2022-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE This study aimed to facilitate research progress in MR elastography (MRE) by providing a versatile and convenient application for MRE reconstruction, namely the MRE research tool (MRE-rTool). It can be used for a series of MRE image analyses, including phase unwrapping, arbitrary bandpass and directional filtering, noise assessment of the wave propagation image (motion SNR), and reconstruction of the elastogram in both 2D and 3D MRE acquisitions. To reinforce the versatility of MRE-rTool, the conventional method of motion SNR was modified into a new method that reflects the effects of image filtering. METHODS MRE tests of the phantom and liver were performed using different estimation algorithms for stiffness value (algebraic inversion of the differential equation [AIDE], local frequency estimation [LFE] in MRE-rTool, and multimodel direct inversion [MMDI] in clinical reconstruction) and acquiring dimensions (2D and 3D acquisitions). This study also tested the accuracy of masking low SNR regions using modified and conventional motion SNR under various mechanical vibration powers. RESULTS The stiffness values estimated using AIDE/LFE in MRE-rTool were comparable to that of MMDI (phantom, 3.71 ± 0.74, 3.60 ± 0.32, and 3.60 ± 0.54 kPa in AIDE, LFE, and MMDI; liver, 2.26 ± 0.31, 2.74 ± 0.16, and 2.21 ± 0.26 kPa in AIDE, LFE, and MMDI). The stiffness value in 3D acquisition was independent of the direction of the motion-encoding gradient and was more accurate than that of 2D acquisition. The masking of low SNR regions using the modified motion SNR worked better than that in the conventional motion SNR for each vibration power, especially when using a directional filter. CONCLUSION The performance of MRE-rTool on test data reached the level required in clinical MRE studies. MRE-rTool has the potential to facilitate MRE research, contribute to the future development of MRE, and has been freely released online.
Collapse
Affiliation(s)
- Daiki Ito
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tetsushi Habe
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Shigeo Okuda
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeyoshi Soga
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Ito D, Numano T, Habe T, Okuda S, Nozaki T, Jinzaki M. Fast abdominal magnetic resonance elastography with simultaneous encoding of three-dimensional displacements. Magn Reson Imaging 2024; 108:138-145. [PMID: 38360120 DOI: 10.1016/j.mri.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional (3D) magnetic resonance elastography (MRE) is more accurate than two-dimensional (2D) MRE; however, it requires long-term acquisition. This study aimed to reduce the acquisition time of abdominal 3D MRE using a new sample interval modulation (short-SLIM) approach that can acquire all three motions faster while reducing the prolongation of echo time and flow compensation. To this end, two types of phantom studies and an in vivo test of the liver in three healthy volunteers were performed to compare the performances of conventional spin-echo echo-planar (SE-EPI) MRE, conventional SLIM and short-SLIM. One phantom study measured the mean amplitude and shear modulus within the overall region of a homogeneous phantom by changing the mechanical vibration power to assess the robustness to the lowered phase-to-noise ratio in short-SLIM. The other measured the mean shear modulus in the stiff and background materials of a phantom with an embedded stiffer rod to assess the performance of short-SLIM for complex wave patterns with wave interference. The Spearman's rank correlation coefficient was used to assess similarity of elastograms in the rod-embedded phantom and liver between methods. The results of the phantom study changing the vibration power indicated that there was little difference between conventional MRE and short-SLIM. Moreover, the elastogram pattern and the mean shear modulus in the rod-embedded phantom in conventional SLIM and short-SLIM did not change for conventional MRE; the liver test also showed a small difference between the acquisition techniques. This study demonstrates that short-SLIM can provide MRE results comparable to those of conventional MRE. Short-SLIM can reduce the total acquisition time by a factor of 2.25 compared to conventional 3D MRE time, leading to an improvement in the accuracy of shear modulus estimation by suppressing the patient movements.
Collapse
Affiliation(s)
- Daiki Ito
- Office of Radiation Technology, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Tetsushi Habe
- Office of Radiation Technology, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shigeo Okuda
- Department of Diagnostic Radiology, National Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; Department of Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Moura Cunha G, Fan B, Navin PJ, Olivié D, Venkatesh SK, Ehman RL, Sirlin CB, Tang A. Interpretation, Reporting, and Clinical Applications of Liver MR Elastography. Radiology 2024; 310:e231220. [PMID: 38470236 PMCID: PMC10982829 DOI: 10.1148/radiol.231220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Boyan Fan
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Patrick J. Navin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Damien Olivié
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Sudhakar K. Venkatesh
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Richard L. Ehman
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Claude B. Sirlin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - An Tang
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| |
Collapse
|
7
|
Bhuiyan EH, Ozkaya E, Kennedy P, Del Hoyo JL, Achkar BE, Thung S, Lewis S, Bane O, Taouli B. Magnetic resonance elastography for noninvasive detection of liver fibrosis: is there an added value of 3D acquisition? Abdom Radiol (NY) 2023; 48:3420-3429. [PMID: 37700185 DOI: 10.1007/s00261-023-04036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE (1) Assess the diagnostic performance of liver 3D magnetic resonance elastography (MRE) parameters (including stiffness, storage/loss modulus and damping ratio) compared to liver stiffness measured with 2D MRE for noninvasive detection of advanced liver fibrosis (F3-F4) and cirrhosis (F4) in patients with chronic liver disease. (2) Assess the value of serum markers (FIB-4) in detecting advanced liver fibrosis and cirrhosis in the same patients. METHODS This was a single center, prospective IRB-approved cross-sectional study that included 49 patients (M/F: 23/26, mean age 50.8 y) with chronic liver disease and concomitant liver biopsy. MRE was acquired at 1.5T using a spin echo-EPI sequence. The following parameters were measured: liver stiffness using 2D MRE (LS-2D) and 3D MRE parameters (LS-3D, liver storage, loss modulus and damping ratio). The Mann-Whitney U test, ROC curve analysis, Spearman correlation and logistic regression were performed to evaluate diagnostic performance of MRE parameters and FIB-4. RESULTS LS-2D and LS-3D had similar diagnostic performance for diagnosis of F3-F4, with AUCs of 0.87 and 0.88, sensitivity of 0.71 and 0.81, specificity of 0.89 for both. For diagnosis of F4, LS-2D and LS-3D had similar performance with AUCs of 0.81 for both, sensitivity of 0.75 and 0.83, and specificity of 0.84 and 0.73, respectively. Additional 3D parameters (storage modulus, loss modulus, damping ratio) had variable performance, with AUC range of 0.59-0.78 for F3-F4; and 0.52-0.70 for F4. FIB-4 had lower diagnostic performance, with AUCs of 0.66 for F3-F4, and 0.68 for F4. CONCLUSION Our study shows no added value of 3D MRE compared to 2D MRE for detection of advanced fibrosis and cirrhosis, while FIB-4 had lower diagnostic performance.
Collapse
Affiliation(s)
- Enamul H Bhuiyan
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Efe Ozkaya
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Lloret Del Hoyo
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bassam El Achkar
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swan Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Qi YM, Xiao EH. Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis. World J Gastroenterol 2023; 29:4384-4396. [PMID: 37576700 PMCID: PMC10415971 DOI: 10.3748/wjg.v29.i28.4384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Liver disease is a major health concern globally, with high morbidity and mor-tality rates. Precise diagnosis and assessment are vital for guiding treatment approaches, predicting outcomes, and improving patient prognosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that has been widely used for detecting liver disease. Recent advancements in MRI technology, such as diffusion weighted imaging, intravoxel incoherent motion, magnetic resonance elastography, chemical exchange saturation transfer, magnetic resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-diomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. This review aims to discuss the progress in new MRI technologies for liver diagnosis. By summarizing current research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI in liver disease diagnosis and improve patient prognosis.
Collapse
Affiliation(s)
- Yi-Ming Qi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
9
|
Zheng S, He K, Zhang L, Li M, Zhang H, Gao P. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging. Eur J Radiol 2023; 165:110912. [PMID: 37290363 DOI: 10.1016/j.ejrad.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Chronic liver disease (CLD) ultimately develops into liver fibrosis and cirrhosis and is a major public health problem globally. The assessment of liver fibrosis is important for patients with CLD for prognostication, treatment decisions, and surveillance. Liver biopsies are traditionally performed to determine the stage of liver fibrosis. However, the risks of complications and technical limitations restrict their application to screening and sequential monitoring in clinical practice. CT and MRI are essential for evaluating cirrhosis-associated complications in patients with CLD, and several non-invasive methods based on them have been proposed. Artificial intelligence (AI) techniques have also been applied to stage liver fibrosis. This review aimed to explore the values of conventional and AI-based CT and MRI quantitative techniques for non-invasive liver fibrosis staging and summarized their diagnostic performance, advantages, and limitations.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Kan He
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Lei Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Mingyang Li
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Huimao Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Pujun Gao
- Department of Hepatology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
10
|
Pagé G, Julea F, Paradis V, Vilgrain V, Valla D, Van Beers BE, Garteiser P. Comparative Analysis of a Locally Resampling
MR
Elastography Reconstruction Algorithm in Liver Fibrosis. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
| | - Felicia Julea
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
| | - Valérie Paradis
- Department of Pathology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Valérie Vilgrain
- Department of Radiology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Dominique Valla
- Department of Hepatology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Bernard E. Van Beers
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
- Department of Radiology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Philippe Garteiser
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
| |
Collapse
|
11
|
Santarelli C, Carfagni M, Alparone L, Arienzo A, Argenti F. Multimodal fusion of tomographic sequences of medical images: MRE spatially enhanced by MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106964. [PMID: 35759822 DOI: 10.1016/j.cmpb.2022.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE In biomedical fields, image analysis is often necessary for an accurate diagnosis. In order to obtain all the information needed to form an in-depth clinical picture, it may be useful to combine the contents of images taken under different diagnostic modes. Multimodal medical image fusion techniques enable complementary information acquired by different imaging devices to be automatically combined into a unique image. METHODS In this paper, multimodal medical images fusion method based on multiresolution analysis (MRA) is proposed, with the aim to combine the high geometric content of magnetic resonance imaging (MRI) and the elasticity information of magnetic resonance elastography (MRE), simultaneously acquired on the same organs of a patient. First, the slices of MRE are volumetrically interpolated to exactly overlap, each with a slice of MRI. Then, the spatial details of MRI are extracted by means of MRA and injected into the corresponding slices of MRE. Due to the intrinsic dissimilarity between corresponding slices of MRE and MRI, the spatial details of MRI are modulated by local or global matching functions. RESULTS The performance of the proposed method is quantitatively assessed considering radiometric and geometric consistency of the fused images with respect to their originals, in a comparison with two popular methods from the literature. For a qualitative evaluation, a visual inspection is carried out. CONCLUSIONS The results show that the proposed method enables an effective MRI-MRE fusion that allows the elasticity information and geometric details of the examined organs to be evaluated in a single image.
Collapse
Affiliation(s)
- Chiara Santarelli
- Department of Industrial Engineering, University of Florence, Via di Santa Marta, Florence 3 - 50139, Italy.
| | - Monica Carfagni
- Department of Industrial Engineering, University of Florence, Via di Santa Marta, Florence 3 - 50139, Italy.
| | - Luciano Alparone
- Department of Information Engineering, University of Florence, Via di Santa Marta, Florence 3 - 50139, Italy.
| | - Alberto Arienzo
- Department of Information Engineering, University of Florence, Via di Santa Marta, Florence 3 - 50139, Italy.
| | - Fabrizio Argenti
- Department of Information Engineering, University of Florence, Via di Santa Marta, Florence 3 - 50139, Italy.
| |
Collapse
|
12
|
MR Elastography as a biomarker for Prediction of Early and Late Recurrence in HBV-related Hepatocellular Carcinoma Patients before Hepatectomy. Eur J Radiol 2022; 152:110340. [DOI: 10.1016/j.ejrad.2022.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
|