1
|
Zu T, Yong X, Dai Z, Jiang T, Hsu YC, Lu S, Zhang Y. Prospective acceleration of whole-brain CEST imaging by golden-angle view ordering in Cartesian coordinates and joint k-space and image-space parallel imaging (KIPI). Magn Reson Med 2025; 93:1585-1601. [PMID: 39607875 DOI: 10.1002/mrm.30375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To prospectively accelerate whole-brain CEST acquisition by joint k-space and image-space parallel imaging (KIPI) with a proposed golden-angle view ordering technique (GAVOT) in Cartesian coordinates. THEORY AND METHODS The T2-decay effect will vary across frames with variable acceleration factors (AF) in the prospective acquisition using sequences with long echo trains. The GAVOT method uses a subset strategy to eliminate the T2-decay inconsistency, where all frames use a subset of shots from the calibration frame to form their k-space view ordering. The golden-angle rule is adapted to ensure uniform k-space coverage for arbitrary AFs in Cartesian coordinates. Phantom and in vivo studies were conducted on a 3 T scanner. RESULTS The GAVOT view ordering yielded a higher g-factor than conventional uniformly centric ordering, whereas the noise propagation in amide proton transfer (APT) weighted images was similar between different view ordering. Compared to centric ordering, GAVOT successfully eliminated the T2-decay inconsistency across all frames, resulting in fewer image artifacts for both KIPI and conventional parallel imaging methods. The synergy of GAVOT and KIPI mitigated strong aliasing artifacts and achieved high-quality reconstruction of prospective variable-AF datasets. GAVOT-KIPI reduced the scan time to 2.1 min for whole-brain APT weighted imaging and 4.7 min for quantitative APT signal (APT#) mapping. CONCLUSION GAVOT makes the prospective variable AF strategy flexible and practical, and, in conjunction with KIPI, ensures high-quality reconstruction from highly undersampled data, facilitating the clinical translation of whole-brain CEST imaging.
Collapse
Affiliation(s)
- Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xingwang Yong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhechuan Dai
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Tongling Jiang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Shanshan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang H, Cai J. Quantitative MRI in Childhood Neuroblastoma: Beyond the Assessment of Image-defined Risk Factors. Radiol Imaging Cancer 2024; 6:e240089. [PMID: 39485111 PMCID: PMC11615636 DOI: 10.1148/rycan.240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Neuroblastoma commonly occurs in children. MRI is a radiation-free imaging modality and has played an important role in identifying image-defined risk factors of neuroblastoma, providing necessary guidance for surgical resection and treatment response evaluation. However, image-defined risk factors are limited to providing structural information about neuroblastoma. With the evolution of MRI technologies, quantitative MRI can not only help assess image-defined risk factors but can also quantitatively reflect the biologic features of neuroblastoma in a noninvasive manner. Therefore, compared with anatomic imaging, these emerging quantitative MRI technologies are expected to provide more imaging biomarkers for the management of neuroblastoma. This review article discusses the current applications of quantitative MRI technologies in evaluating childhood neuroblastoma. Keywords: Pediatrics, MR-Functional Imaging, Children, MRI, Neuroblastoma, Quantitative Imaging © RSNA, 2024.
Collapse
Affiliation(s)
- Haoru Wang
- From the Department of Radiology, Children’s Hospital of
Chongqing Medical University, National Clinical Research Center for Child Health
and Disorders, Ministry of Education Key Laboratory of Child Development and
Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive
Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014,
China
| | - Jinhua Cai
- From the Department of Radiology, Children’s Hospital of
Chongqing Medical University, National Clinical Research Center for Child Health
and Disorders, Ministry of Education Key Laboratory of Child Development and
Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive
Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014,
China
| |
Collapse
|
3
|
Wang X, Cao YY, Jiang Y, Jia M, Tian G, Bu CQ, Zhao N, Yue XZ, Shen ZW, Ji Y, Han YD. Effects of Breathing Patterns on Amide Proton Transfer MRI in the Kidney: A Preliminary Comparative Study in Healthy Volunteers and Patients With Tumors. J Magn Reson Imaging 2024; 60:222-230. [PMID: 37888865 DOI: 10.1002/jmri.29099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The amide proton transfer-weighted (APTw) imaging for kidney diseases is important. However, the breathing patterns on APTw imaging remains unexplored. PURPOSE This study aimed to investigate the effects of intermittent breath-hold (IBH) and free breathing (FB) on renal 3D-APTw imaging. STUDY TYPE Healthy volunteers were enrolled prospectively, and renal clear cell carcinoma (RCCC) patients were included retrospectively. POPULATION 58 healthy volunteers and 10 RCCC patients. FIELD STRENGTH/SEQUENCE 3-T, turbo spin echo, and fast field echo. ASSESSMENT 3D-APTw imaging was scanned using the IBH and FB methods in volunteers and using the IBH method in RCCC patients. The image quality was evaluated by three observers according to the 5-point Likert scale. Optimal images rated at three points or higher were used to measure the APT values. STATISTICAL ANALYSIS The measurement repeatability was assessed using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. The APT values were analyzed using McNemar's test, one-way analysis of variance, and t test. RESULTS 50 healthy volunteers and 8 RCCC patients were enrolled. Renal 3D-APTw imaging using the IBH method revealed a higher success rate (88% vs 78%). The ICCs were excellent in the IBH group (ICCs > 0.74) and were good in the FB group (ICCs < 0.74). No significant differences in the APT values among various zones using the IBH (P = 0.263) or FB method (P = 0.506). The mean APT value using the IBH method (2.091% ± 0.388%) was slightly lower than the FB method (2.176% ± 0.292%), but no significant difference (P = 0.233). The APT value of RCCC (4.832% ± 1.361%) was considerably higher than normal renal using the IBH method. CONCLUSIONS The study demonstrated that the IBH method substantially increased the image quality of renal 3D-APTw imaging. Furthermore, APT values may vary between normal and tumor tissues. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- X Wang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Y Y Cao
- Department of Imaging Center, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Y Jiang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - M Jia
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - G Tian
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - C Q Bu
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - N Zhao
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - X Z Yue
- Philips Healthcare, Beijing, China
| | - Z W Shen
- Philips Healthcare, Beijing, China
| | - Y Ji
- Department of Imaging Center, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Y D Han
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Sheng L, Yuan E, Yuan F, Song B. Amide proton transfer-weighted imaging of the abdomen: Current progress and future directions. Magn Reson Imaging 2024; 107:88-99. [PMID: 38242255 DOI: 10.1016/j.mri.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
The chemical exchange saturation transfer technique serves as a valuable tool for generating in vivo image contrast based on the content of various proton groups, including amide protons, amine protons, and aliphatic protons. Among these, amide proton transfer-weighted (APTw) imaging has seen extensive development as a means to assess the biochemical status of lesions. The exchange from saturated amide protons to bulk water protons during and following the saturation ratio frequency pulse contributes to detectable APT signals. While APTw imaging has garnered significant attention in the central nervous system, demonstrating noteworthy findings in cerebral neoplasia, stroke, and Alzheimer's disease over the past decade, its application in the abdomen has been a relatively recent progression. Notably, studies have explored its utility in hepatocellular carcinoma, prostate cancer, and cervical carcinoma within the abdominal context. Despite these advancements, there is a paucity of reviews on APTw imaging in abdominal applications. This paper aims to fill this gap by providing a concise overview of the fundamental theories underpinning APTw imaging. Additionally, we systematically summarize its diverse clinical applications in the abdomen, with a particular focus on the digestive and urogenital systems. Finally, the manuscript concludes by discussing technical limitations and factors influencing APTw imaging in abdominal applications, along with prospects for future research.
Collapse
Affiliation(s)
- Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Enyu Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
5
|
Xu J, Zu T, Hsu YC, Wang X, Chan KWY, Zhang Y. Accelerating CEST imaging using a model-based deep neural network with synthetic training data. Magn Reson Med 2024; 91:583-599. [PMID: 37867413 DOI: 10.1002/mrm.29889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE To develop a model-based deep neural network for high-quality image reconstruction of undersampled multi-coil CEST data. THEORY AND METHODS Inspired by the variational network (VN), the CEST image reconstruction equation is unrolled into a deep neural network (CEST-VN) with a k-space data-sharing block that takes advantage of the inherent redundancy in adjacent CEST frames and 3D spatial-frequential convolution kernels that exploit correlations in the x-ω domain. Additionally, a new pipeline based on multiple-pool Bloch-McConnell simulations is devised to synthesize multi-coil CEST data from publicly available anatomical MRI data. The proposed network is trained on simulated data with a CEST-specific loss function that jointly measures the structural and CEST contrast. The performance of CEST-VN was evaluated on four healthy volunteers and five brain tumor patients using retrospectively or prospectively undersampled data with various acceleration factors, and then compared with other conventional and state-of-the-art reconstruction methods. RESULTS The proposed CEST-VN method generated high-quality CEST source images and amide proton transfer-weighted maps in healthy and brain tumor subjects, consistently outperforming GRAPPA, blind compressed sensing, and the original VN. With the acceleration factors increasing from 3 to 6, CEST-VN with the same hyperparameters yielded similar and accurate reconstruction without apparent loss of details or increase of artifacts. The ablation studies confirmed the effectiveness of the CEST-specific loss function and data-sharing block used. CONCLUSIONS The proposed CEST-VN method can offer high-quality CEST source images and amide proton transfer-weighted maps from highly undersampled multi-coil data by integrating the deep learning prior and multi-coil sensitivity encoding model.
Collapse
Affiliation(s)
- Jianping Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, People's Republic of China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, People's Republic of China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|