1
|
Dong J, Ng WT, Wong CHL, Li JS, Bollen H, Chow JCH, Eisbruch A, Lee AWM, Lee VHF, Ng SP, Nuyts S, Smee R, Ferlito A. Dosimetric parameters predict radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma patients: A systematic review and meta-analysis. Radiother Oncol 2024; 195:110258. [PMID: 38537680 DOI: 10.1016/j.radonc.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
This systematic review examines the role of dosimetric parameters in predicting temporal lobe necrosis (TLN) risk in nasopharyngeal carcinoma (NPC) patients treated with three-dimensional conformal RT (3D-CRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). TLN is a serious late complication that can adversely affect the quality of life of NPC patients. Understanding the relationship between dosimetric parameters and TLN can guide treatment planning and minimize radiation-related complications. A comprehensive search identified relevant studies published up to July 2023. Studies reporting on dosimetric parameters and TLN in NPC patients undergoing 3D-CRT, IMRT, and VMAT were included. TLN incidence, follow-up duration, and correlation with dosimetric parameters of the temporal lobe were analyzed. The review included 30 studies with median follow-up durations ranging from 28 to 110 months. The crude incidence of TLN varied from 2.3 % to 47.3 % and the average crude incidence of TLN is approximately 14 %. Dmax and D1cc emerged as potential predictors of TLN in 3D-CRT and IMRT-treated NPC patients. Threshold values of >72 Gy for Dmax and >62 Gy for D1cc were associated with increased TLN risk. However, other factors should also be considered, including host characteristics, tumor-specific features and therapeutic factors. In conclusion, this systematic review highlights the significance of dosimetric parameters, particularly Dmax and D1cc, in predicting TLN risk in NPC patients undergoing 3D-CRT, IMRT, and VMAT. The findings provide valuable insights that can help in developing optimal treatment planning strategies and contribute to the development of clinical guidelines in this field.
Collapse
Affiliation(s)
- Jun Dong
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wai Tong Ng
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Charlene H L Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ji-Shi Li
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Heleen Bollen
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium; Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Anne W M Lee
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor H F Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium; Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, Australia
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
2
|
Hou J, He Y, Li H, Lu Q, Lin H, Zeng B, Xie C, Yu X. MRI-based radiomics models predict cystic brain radionecrosis of nasopharyngeal carcinoma after intensity modulated radiotherapy. Front Neurol 2024; 15:1344324. [PMID: 38872826 PMCID: PMC11169923 DOI: 10.3389/fneur.2024.1344324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Objective To construct radiomics models based on MRI at different time points for the early prediction of cystic brain radionecrosis (CBRN) for nasopharyngeal carcinoma (NPC). Methods A total of 202 injured temporal lobes from 155 NPC patients with radiotherapy-induced temporal lobe injury (RTLI) after intensity modulated radiotherapy (IMRT) were included in the study. All the injured lobes were randomly divided into the training (n = 143) and validation (n = 59) sets. Radiomics models were constructed by using features extracted from T2WI at two different time points: at the end of IMRT (post-IMRT) and the first-detected RTLI (first-RTLI). A delta-radiomics feature was defined as the percentage change in a radiomics feature from post-IMRT to first-RTLI. The radiomics nomogram was constructed by combining clinical risk factors and radiomics signatures using multivariate logistic regression analysis. Predictive performance was evaluated using area under the curve (AUC) from receiver operating characteristic analysis and decision curve analysis (DCA). Results The post-IMRT, first-RTLI, and delta-radiomics models yielded AUC values of 0.84 (95% CI: 0.76-0.92), 0.86 (95% CI: 0.78-0.94), and 0.77 (95% CI: 0.67-0.87), respectively. The nomogram exhibited the highest AUC of 0.91 (95% CI: 0.85-0.97) and sensitivity of 0.82 compared to any single radiomics model. From the DCA, the nomogram model provided more clinical benefit than the radiomics models or clinical model. Conclusion The radiomics nomogram model combining clinical factors and radiomics signatures based on MRI at different time points after radiotherapy showed excellent prediction potential for CBRN in patients with NPC.
Collapse
Affiliation(s)
- Jing Hou
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yun He
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Handong Li
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Huashan Lin
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Changsha, China
| | - Biao Zeng
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chuanmiao Xie
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ren W, Liang B, Sun C, Wu R, Men K, Chen H, Feng X, Hou L, Han F, Yi J, Dai J. A deep learning-based method for the prediction of temporal lobe injury in patients with nasopharyngeal carcinoma. Phys Med 2024; 121:103362. [PMID: 38653120 DOI: 10.1016/j.ejmp.2024.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/27/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE To establish a deep learning-based model to predict radiotherapy-induced temporal lobe injury (TLI). MATERIALS AND METHODS Spatial features of dose distribution within the temporal lobe were extracted using both the three-dimensional convolution (C3D) network and the dosiomics method. The Minimal Redundancy-Maximal-Relevance (mRMR) method was employed to rank the extracted features and select the most relevant ones. Four machine learning (ML) classifiers, including logistic regression (LR), k-nearest neighbors (kNN), support vector machines (SVM) and random forest (RF), were used to establish prediction models. Nested sampling and hyperparameter tuning methods were applied to train and validate the prediction models. For comparison, a prediction model base on the conventional D0.5cc of the temporal lobe obtained from dose volume (DV) histogram was established. The area under the receiver operating characteristic (ROC) curve (AUC) was utilized to compare the predictive performance of the different models. RESULTS A total of 127 nasopharyngeal carcinoma (NPC) patients were included in the study. In the model based on C3D deep learning features, the highest AUC value of 0.843 was achieved with 5 features. For the dosiomics features model, the highest AUC value of 0.715 was attained with 1 feature. Both of these models demonstrated superior performance compared to the prediction model based on DV parameters, which yielded an AUC of 0.695. CONCLUSION The prediction model utilizing C3D deep learning features outperformed models based on dosiomics features or traditional parameters in predicting the onset of TLI. This approach holds promise for predicting radiation-induced toxicities and guide individualized radiotherapy.
Collapse
Affiliation(s)
- Wenting Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Sun
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Runye Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huan Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lu Hou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Han
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Wang CK, Wang TW, Lu CF, Wu YT, Hua MW. Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis. Diagnostics (Basel) 2024; 14:924. [PMID: 38732337 PMCID: PMC11082984 DOI: 10.3390/diagnostics14090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This meta-analysis investigates the prognostic value of MRI-based radiomics in nasopharyngeal carcinoma treatment outcomes, specifically focusing on overall survival (OS) variability. The study protocol was registered with INPLASY (INPLASY202420101). Initially, a systematic review identified 15 relevant studies involving 6243 patients through a comprehensive search across PubMed, Embase, and Web of Science, adhering to PRISMA guidelines. The methodological quality was assessed using the Quality in Prognosis Studies (QUIPS) tool and the Radiomics Quality Score (RQS), highlighting a low risk of bias in most domains. Our analysis revealed a significant average concordance index (c-index) of 72% across studies, indicating the potential of radiomics in clinical prognostication. However, moderate heterogeneity was observed, particularly in OS predictions. Subgroup analyses and meta-regression identified validation methods and radiomics software as significant heterogeneity moderators. Notably, the number of features in the prognosis model correlated positively with its performance. These findings suggest radiomics' promising role in enhancing cancer treatment strategies, though the observed heterogeneity and potential biases call for cautious interpretation and standardization in future research.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Chia-Fung Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Man-Wei Hua
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| |
Collapse
|
5
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
6
|
Lin S, Lv X, Lin X, Chen S, Li Y, Xu M, Qiu Y, Tang L. Modulation Effects of the CEP128 Gene on Radiotherapy-Related Brain Injury: A Longitudinal Structural Study Using Multi-Parametric Brain MR Images. J Magn Reson Imaging 2024; 59:648-658. [PMID: 37249021 DOI: 10.1002/jmri.28824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The promoter variant rs17111237 in the CEP128 closely relates to radiotherapy (RT)-related brain necrosis in nasopharyngeal carcinoma (NPC) patients. PURPOSE To explore RT-related dynamic alterations in brain morphology and their potential genetic mechanism, and to explore the modulatory effects of CEP128 genetic variants on RT-related brain morphological alterations in NPC patients. STUDY TYPE Prospective, longitudinal. POPULATION One hundred one patients with histopathologic ally-proven NPC (age 41.64 ± 9.63, 46 male), analyzed at baseline (pre-RT), 3-months post-RT and 6 months post-RT, and 19 sex-, age- and education-matched healthy controls. FIELD STRENGTH/SEQUENCE 3D gradient echo brain volume (3D-BRAVO) and diffusion-weighted single-shot spin-echo echo-planar sequences at 3.0 T. ASSESSMENT rs17111237 in CEP128 was detected by Sanger sequencing. Structural and diffusion images were processed with FreeSurfer and FSL. Morphometric similarity network (MSN) was constructed with nine cortical indices derived from structural and diffusion images. STATISTICAL TESTS One-way ANOVA, chi-square test. Pearson's correlation analysis was conducted to measure the relationship between CEP128 gene-expression level in human brain and MSN alterations. Repeated analysis of variance performed to assess group differences in MSN and the modulatory effects of the CEP128 gene within patients. Significance level: P < 0.05, false-discovery rate correction. RESULTS RT-related significant widespread MSN alterations were observed in the cortices of NPC patients. Notably, regional MSN alterations had a weak but significant negative correlation with the cortical pattern of CEP128 gene expression (r = -0.152). Furthermore, rs17111237 in the CEP128 had significant modulatory effects on the observed MSN alterations in NPC patients, with the modulatory effects being most obvious at 3 months post-RT. CONCLUSIONS MSN has potential to serve as a sensitive biomarker to detect RT-related brain injury. Inter-brain regional and inter-patient variability of RT-related brain injuries may be attributed to the cortical expression of the CEP128 gene and the modulatory effects of the promoter variant rs17111237 in CEP128. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanqing Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manxi Xu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Linquan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
7
|
Ren J, Yuan Y, Qi M, Tao X. MRI-based radiomics nomogram for distinguishing solitary fibrous tumor from schwannoma in the orbit: a two-center study. Eur Radiol 2024; 34:560-568. [PMID: 37532903 DOI: 10.1007/s00330-023-10031-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To investigate the value of magnetic resonance imaging (MRI) radiomics for distinguishing solitary fibrous tumor (SFT) from schwannoma in the orbit. MATERIALS AND METHODS A total of 140 patients from two institutions were retrospectively included. All patients from institution 1 were randomized into a training cohort (n = 69) and a validation cohort (n = 35), and patients from institution 2 were used as an external testing cohort (n = 36). One hundred and six features were extracted from T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CET1WI). A radiomics model was built for each sequence using least absolute shrinkage and selection operator logistic regression, and radiomics scores were calculated. A combined model was constructed and displayed as a radiomics nomogram. Two radiologists jointly assessed tumor category based on MRI findings. The performances of the radiomics models and visual assessment were compared via area under the curve (AUC). RESULTS The performances of the radiomics nomogram combining T2WI and CET1WI radiomics scores were superior to those of the pooled readers in the training (AUC 0.986 vs. 0.807, p < 0.001), validation (AUC 0.989 vs. 0.788, p = 0.009), and the testing (AUC 0.903 vs. 0.792, p = 0.093), although significant difference was not found in the testing cohort. Decision curve analysis demonstrated that the radiomics nomogram had better clinical utility than visual assessment. CONCLUSION MRI radiomics nomogram can be used for distinguishing between orbital SFT and schwannoma, which may help tumor management by clinicians. CLINICAL RELEVANCE STATEMENT It is of great importance and challenging for distinguishing solitary fibrous tumor from schwannoma in the orbit. In the present study, an MRI-based radiomics nomogram were developed and independently validated, which could help the discrimination of the two entities. KEY POINTS • It is challenging to differentiate solitary fibrous tumor from schwannoma in the orbit due to similar clinical and image features. • A radiomics nomogram based on T2-weighted imaging and contrast-enhanced T1-weighted imaging has advantages over radiologists. • Radiomics can provide a non-invasive diagnostic tool for differentiating between the two entities.
Collapse
Affiliation(s)
- Jiliang Ren
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200010, China
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200010, China
| | - Meng Qi
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200030, China.
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200010, China.
| |
Collapse
|
8
|
Gu B, Meng M, Xu M, Feng DD, Bi L, Kim J, Song S. Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:3996-4009. [PMID: 37596343 PMCID: PMC10611876 DOI: 10.1007/s00259-023-06399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. METHODS A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [18F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan-Meier method and compared with the observed PFS probability. RESULTS Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785-0.851), 0.752 (95% CI: 0.638-0.865), and 0.717 (95% CI: 0.641-0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822-0.895), 0.769 (95% CI: 0.642-0.896), and 0.730 (95% CI: 0.634-0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. CONCLUSION Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.
Collapse
Affiliation(s)
- Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Mingyuan Meng
- School of Computer Science, the University of Sydney, Sydney, Australia
| | - Mingzhen Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - David Dagan Feng
- School of Computer Science, the University of Sydney, Sydney, Australia
| | - Lei Bi
- Institute of Translational Medicine, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinman Kim
- School of Computer Science, the University of Sydney, Sydney, Australia
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China.
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Zhao LT, Liu ZY, Xie WF, Shao LZ, Lu J, Tian J, Liu JG. What benefit can be obtained from magnetic resonance imaging diagnosis with artificial intelligence in prostate cancer compared with clinical assessments? Mil Med Res 2023; 10:29. [PMID: 37357263 DOI: 10.1186/s40779-023-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
The present study aimed to explore the potential of artificial intelligence (AI) methodology based on magnetic resonance (MR) images to aid in the management of prostate cancer (PCa). To this end, we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics, thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa. First, we found that, in the included studies of the present study, AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa, such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression. In particular, for the diagnosis of clinically significant PCa, the AI methods achieved a higher summary receiver operator characteristic curve (SROC-AUC) than that of the clinical assessment methods (0.87 vs. 0.82). For the prediction of adverse pathology, the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods (0.86 vs. 0.75). Second, as revealed by the radiomics quality score (RQS), the studies included in the present study presented a relatively high total average RQS of 15.2 (11.0-20.0). Further, the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes, but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence, such as prospective studies and open-testing datasets.
Collapse
Affiliation(s)
- Li-Tao Zhao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhen-Yu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Wan-Fang Xie
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Li-Zhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
| | - Jian Lu
- Department of Urology, Peking University Third Hospital, Peking University, 100191, Beijing, China.
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, 100191, Beijing, China.
| | - Jian-Gang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, 100191, Beijing, China.
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, 100029, China.
| |
Collapse
|
10
|
OuYang PY, Zhang BY, Guo JG, Liu JN, Li J, Peng QH, Yang SS, He Y, Liu ZQ, Zhao YN, Li A, Wu YS, Hu XF, Chen C, Han F, You KY, Xie FY. Deep learning-based precise prediction and early detection of radiation-induced temporal lobe injury for nasopharyngeal carcinoma. EClinicalMedicine 2023; 58:101930. [PMID: 37090437 PMCID: PMC10114519 DOI: 10.1016/j.eclinm.2023.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Background Radiotherapy is the mainstay of treatment for nasopharyngeal carcinoma. Radiation-induced temporal lobe injury (TLI) can regress or resolve in the early phase, but it is irreversible at a later stage. However, no study has proposed a risk-based follow-up schedule for its early detection. Planning evaluation is difficult when dose-volume histogram (DVH) parameters are similar and optimization is terminated. Methods This multicenter retrospective study included 6065 patients between 2014 and 2018. A 3D ResNet-based deep learning model was developed in training and validation cohorts and independently tested using concordance index in internal and external test cohorts. Accordingly, the patients were stratified into risk groups, and the model-predicted risks were used to develop risk-based follow-up schedules. The schedule was compared with the Radiation Therapy Oncology Group (RTOG) recommendation (every 3 months during the first 2 years and every 6 months in 3-5 years). Additionally, the model was used to evaluate plans with similar DVH parameters. Findings Our model achieved concordance indexes of 0.831, 0.818, and 0.804, respectively, which outperformed conventional prediction models (all P < 0.001). The temporal lobes in all the cohorts were stratified into three groups with discrepant TLI-free survival. Personalized follow-up schedules developed for each risk group could detect TLI 1.9 months earlier than the RTOG recommendation. According to a higher median predicted 3-year TLI-free survival (99.25% vs. 99.15%, P < 0.001), the model identified a better plan than previous models. Interpretation The deep learning model predicted TLI more precisely. The model-determined risk-based follow-up schedule detected the TLI earlier. The planning evaluation was refined because the model identified a better plan with a lower risk of TLI. Funding The Sun Yat-sen University Clinical Research 5010 Program (2015020), Guangdong Basic and Applied Basic Research Foundation (2022A1515110356), Medical Scientific Research Foundation of Guangdong Province (A2022367), and Guangzhou Science and Technology Program (2023A04J1788).
Collapse
Affiliation(s)
- Pu-Yun OuYang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Bao-Yu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian-Gui Guo
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jia-Ni Liu
- Department of Head and Neck Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiajian Li
- CVTE Research, Guangzhou, Guangdong, China
| | - Qing-He Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Shan-Shan Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yun He
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Zhi-Qiao Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ya-Nan Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Anwei Li
- CVTE Research, Guangzhou, Guangdong, China
| | - Yi-Shan Wu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xue-Feng Hu
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Kai-Yun You
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yun Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
- Corresponding author. Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Huang L, Yang Z, Zeng Z, Ren H, Jiang M, Hu Y, Xu Y, Zhang H, Ma K, Long L. MRI-based radiomics models for the early prediction of radiation-induced temporal lobe injury in nasopharyngeal carcinoma. Front Neurol 2023; 14:1135978. [PMID: 37006478 PMCID: PMC10060957 DOI: 10.3389/fneur.2023.1135978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveThis study was conducted to develop and validate a radiomics-clinics combined model-based magnetic resonance imaging (MRI) radiomics and clinical features for the early prediction of radiation-induced temporal lobe injury (RTLI) in patients with nasopharyngeal carcinoma (NPC).MethodsThis retrospective study was conducted using data from 130 patients with NPC (80 patients with and 50 patients without RTLI) who received radiotherapy. Cases were assigned randomly to training (n = 91) and testing (n = 39) datasets. Data on 168 medial temporal lobe texture features were extracted from T1WI, T2WI, and T1WI-CE MRI sequences obtained at the end of radiotherapy courses. Clinics, radiomics, and radiomics–clinics combined models (based on selected radiomics signatures and clinical factors) were constructed using machine learning software. Univariate logistic regression analysis was performed to identify independent clinical factors. The area under the ROC curve (AUC) was performed to evaluate the performance of three models. A nomogram, decision curves, and calibration curves were used to assess the performance of the combined model.ResultsSix texture features and three independent clinical factors associated significantly with RTLI were used to build the combined model. The AUCs for the combined and radiomics models were 0.962 [95% confidence interval (CI), 0.9306–0.9939] and 0.904 (95% CI, 0.8431–0.9651), respectively, for the training cohort and 0.947 (95% CI, 0.8841–1.0000) and 0.891 (95% CI, 0.7903–0.9930), respectively, for the testing cohort. All of these values exceeded those for the clinics model (AUC = 0.809 and 0.713 for the training and testing cohorts, respectively). Decision curve analysis showed that the combined model had a good corrective effect.ConclusionThe radiomics–clinics combined model developed in this study showed good performance for predicting RTLI in patients with NPC.
Collapse
Affiliation(s)
- Lixuan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zongxiang Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Ren
- Department of Radiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Muliang Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yao Hu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yifan Xu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Kun Ma
- CT Imaging Research Center, GE Healthcare China, Guangzhou, China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
- *Correspondence: Liling Long
| |
Collapse
|
12
|
Bao D, Zhao Y, Wu W, Zhong H, Yuan M, Li L, Lin M, Zhao X, Luo D. Added value of histogram analysis of ADC in predicting radiation-induced temporal lobe injury of patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy. Insights Imaging 2022; 13:197. [PMID: 36528686 PMCID: PMC9759610 DOI: 10.1186/s13244-022-01338-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study evaluated the predictive potential of histogram analysis derived from apparent diffusion coefficient (ADC) maps in radiation-induced temporal lobe injury (RTLI) of nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). RESULTS Pretreatment diffusion-weighted imaging (DWI) of the temporal lobes of 214 patients with NPC was retrospectively analyzed to obtain ADC histogram parameters. Of the 18 histogram parameters derived from ADC maps, 7 statistically significant variables in the univariate analysis were included in the multivariate logistic regression analysis. The final best prediction model selected by backward stepwise elimination with Akaike information criteria as the stopping rule included kurtosis, maximum energy, range, and total energy. A Rad-score was established by combining the four variables, and it provided areas under the curve (AUCs) of 0.95 (95% confidence interval [CI] 0.91-0.98) and 0.89 (95% CI 0.81-0.97) in the training and validation cohorts, respectively. The combined model, integrating the Rad-score with the T stage (p = 0.02), showed a favorable prediction performance in the training and validation cohorts (AUC = 0.96 and 0.87, respectively). The calibration curves showed a good agreement between the predicted and actual RTLI occurrences. CONCLUSIONS Pretreatment histogram analysis of ADC maps and their combination with the T stage showed a satisfactory ability to predict RTLI in NPC after IMRT.
Collapse
Affiliation(s)
- Dan Bao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Yanfeng Zhao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Wenli Wu
- Medical Imaging Center, Liaocheng Tumor Hospital, Shandong, 252000 China
| | - Hongxia Zhong
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Meng Yuan
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Lin Li
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Meng Lin
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Dehong Luo
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China ,grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116 China
| |
Collapse
|