1
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Fan F, Li F, Wang Y, Dai Z, Lin Y, Liao L, Wang B, Sun H. Integration of ultrasound-based radiomics with clinical features for predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma. Endocrine 2024; 84:999-1012. [PMID: 38129723 PMCID: PMC11208252 DOI: 10.1007/s12020-023-03644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The primary objective was to establish a radiomics model utilizing longitudinal +cross-sectional ultrasound (US) images of lymph nodes (LNs) to predict cervical lymph node metastasis (CLNM) following differentiated thyroid carcinoma (DTC) surgery. METHODS A retrospective collection of 211 LNs from 211 postoperative DTC patients who underwent neck US with suspicious LN fine needle aspiration cytopathology findings at our institution was conducted between June 2021 and April 2023. Conventional US and clinicopathological information of patients were gathered. Based on the pathological results, patients were categorized into CLNM and non-CLNM groups. The database was randomly divided into a training cohort (n = 147) and a test cohort (n = 64) at a 7:3 ratio. The least absolute shrinkage and selection operator algorithm was applied to screen the most relevant radiomic features from the longitudinal + cross-sectional US images, and a radiomics model was constructed. Univariate and multivariate analyses were used to assess US and clinicopathological significance features. Subsequently, a combined model for predicting CLNM was constructed by integrating radiomics, conventional US, and clinicopathological features and presented as a nomogram. RESULTS The area under the curves (AUCs) of the longitudinal + cross-sectional radiomics models were 0.846 and 0.801 in the training and test sets, respectively, outperforming the single longitudinal and cross-sectional models (p < 0.05). In the testing cohort, the AUC of the combined model in predicting CLNM was 0.901, surpassing that of the single US model (AUC, 0.731) and radiomics model (AUC, 0.801). CONCLUSIONS The US-based radiomics model exhibits the potential to accurately predict CLNM following DTC surgery, thereby enhancing diagnostic accuracy.
Collapse
Affiliation(s)
- Fengjing Fan
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Fei Li
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yixuan Wang
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing, China
| | - Yuyang Lin
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Bei Wang
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Hongjun Sun
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Shao L, Yang X, Sun Z, Tan X, Lu Z, Hu S, Dou W, Duan S. Three-dimensional pseudo-continuous arterial spin-labelled perfusion imaging for diagnosing upper cervical lymph node metastasis in patients with nasopharyngeal carcinoma: a whole-node histogram analysis. Clin Radiol 2024; 79:e736-e743. [PMID: 38341343 DOI: 10.1016/j.crad.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
AIM To evaluate whole-node histogram parameters of blood flow (BF) maps derived from three-dimensional pseudo-continuous arterial spin-labelled (3D pCASL) imaging in discriminating metastatic from benign upper cervical lymph nodes (UCLNs) for nasopharyngeal carcinoma (NPC) patients. MATERIALS AND METHODS Eighty NPC patients with a total of 170 histologically confirmed UCLNs (67 benign and 103 metastatic) were included retrospectively. Pre-treatment 3D pCASL imaging was performed and whole-node histogram analysis was then applied. Histogram parameters and morphological features, such as minimum axis diameter (MinAD), maximum axis diameter (MaxAD), and location of UCLNs, were assessed and compared between benign and metastatic lesions. Predictors were identified and further applied to establish a combined model by multivariate logistic regression in predicting the probability of metastatic UCLNs. Receiver operating characteristic (ROC) curves were used to analyse the diagnostic performance. RESULTS Metastatic UCLNs had larger MinAD and MinAD/MaxAD ratio, greater energy and entropy values, and higher incidence of level II (upper jugular group), but lower BF10th value than benign nodes (all p<0.05). MinAD, BF10th, energy, and entropy were validated as independent predictors in diagnosing metastatic UCLNs. The combined model yielded an area under the curve (AUC) of 0.932, accuracy of 84.42 %, sensitivity of 80.6 %, and specificity of 90.29 %. CONCLUSIONS Whole-node histogram analysis on BF maps is a feasible tool to differentiate metastatic from benign UCLNs in NPC patients, and the combined model can further improve the diagnostic efficacy.
Collapse
Affiliation(s)
- L Shao
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - X Yang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - Z Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China.
| | - X Tan
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - Z Lu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - S Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - W Dou
- General Electric (GE) Healthcare, MR Research China, Beijing, China
| | - S Duan
- General Electric (GE) Healthcare China, Shanghai, China
| |
Collapse
|
4
|
Deng Z, Liu X, Wu R, Yan H, Gou L, Hu W, Wan J, Song C, Chen J, Ma D, Zhou H, Tian D. Ultrasound-based radiomics machine learning models for diagnosing cervical lymph node metastasis in patients with non-small cell lung cancer: a multicentre study. BMC Cancer 2024; 24:536. [PMID: 38678211 PMCID: PMC11055367 DOI: 10.1186/s12885-024-12306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Cervical lymph node metastasis (LNM) is an important prognostic factor for patients with non-small cell lung cancer (NSCLC). We aimed to develop and validate machine learning models that use ultrasound radiomic and descriptive semantic features to diagnose cervical LNM in patients with NSCLC. METHODS This study included NSCLC patients who underwent neck ultrasound examination followed by cervical lymph node (LN) biopsy between January 2019 and January 2022 from three institutes. Radiomic features were extracted from the ultrasound images at the maximum cross-sectional areas of cervical LNs. Logistic regression (LR) and random forest (RF) models were developed. Model performance was assessed by the area under the curve (AUC) and accuracy, validated internally and externally by fivefold cross-validation and hold-out method, respectively. RESULTS In total, 313 patients with a median age of 64 years were included, and 276 (88.18%) had cervical LNM. Three descriptive semantic features, including long diameter, shape, and corticomedullary boundary, were selected by multivariate analysis. Out of the 474 identified radiomic features, 9 were determined to fit the LR model, while 15 fit the RF model. The average AUCs of the semantic and radiomics models were 0.876 (range: 0.781-0.961) and 0.883 (range: 0.798-0.966), respectively. However, the average AUC was higher for the semantic-radiomics combined LR model (0.901; range: 0.862-0.927). When the RF algorithm was applied, the average AUCs of the radiomics and semantic-radiomics combined models were improved to 0.908 (range: 0.837-0.966) and 0.922 (range: 0.872-0.982), respectively. The models tested by the hold-out method had similar results, with the semantic-radiomics combined RF model achieving the highest AUC value of 0.901 (95% CI, 0.886-0.968). CONCLUSIONS The ultrasound radiomic models showed potential for accurately diagnosing cervical LNM in patients with NSCLC when integrated with descriptive semantic features. The RF model outperformed the conventional LR model in diagnosing cervical LNM in NSCLC patients.
Collapse
Affiliation(s)
- Zhiqiang Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- College of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiaoling Liu
- Department of Ultrasound, Nanchong Central Hospital, Nanchong, China
| | - Renmei Wu
- Department of Ultrasound, Suining Central Hospital, Suining, China
| | - Haoji Yan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Lingyun Gou
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenlong Hu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiaxin Wan
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chenwanqiu Song
- College of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Jing Chen
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Daiyuan Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Sunning, China.
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
6
|
Zhou J, Wen Y, Ding R, Liu J, Fang H, Li X, Zhao K, Wan Q. Radiomics signature based on robust features derived from diffusion data for differentiation between benign and malignant solitary pulmonary lesions. Cancer Imaging 2024; 24:14. [PMID: 38246984 PMCID: PMC10802010 DOI: 10.1186/s40644-024-00660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Classifying and characterizing pulmonary lesions are critical for clinical decision-making process to identify optimal therapeutic strategies. The purpose of this study was to develop and validate a radiomics nomogram for distinguishing between benign and malignant pulmonary lesions based on robust features derived from diffusion images. MATERIAL AND METHODS The study was conducted in two phases. In the first phase, we prospectively collected 30 patients with pulmonary nodule/mass who underwent twice EPI-DWI scans. The robustness of features between the two scans was evaluated using the concordance correlation coefficient (CCC) and dynamic range (DR). In the second phase, 139 patients who underwent pulmonary DWI were randomly divided into training and test sets in a 7:3 ratio. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator, and logistic regression were used for feature selection and construction of radiomics signatures. Nomograms were established incorporating clinical features, radiomics signatures, and ADC(0, 800). The diagnostic efficiency of different models was evaluated using the area under the curve (AUC) and decision curve analysis. RESULTS Among the features extracted from DWI and ADC images, 42.7% and 37.4% were stable (both CCC and DR ≥ 0.85). The AUCs for distinguishing pulmonary lesions in the test set for clinical model, ADC, ADC radiomics signatures, and DWI radiomics signatures were 0.694, 0.802, 0.885, and 0.767, respectively. The nomogram exhibited the best differentiation performance (AUC = 0.923). The decision curve showed that the nomogram consistently outperformed ADC value and clinical model in lesion differentiation. CONCLUSION Our study demonstrates the robustness of radiomics features derived from lung DWI. The ADC radiomics nomogram shows superior clinical net benefits compared to conventional clinical models or ADC values alone in distinguishing solitary pulmonary lesions, offering a promising tool for noninvasive, precision diagnosis in lung cancer.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- Department of Radiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yu Wen
- Department of Radiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Ruolin Ding
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jieqiong Liu
- Department of Radiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hanzhen Fang
- Department of Radiology, Huilai County People's Hospital, Jieyang, China
| | - Xinchun Li
- Department of Radiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Kangyan Zhao
- Department of Radiology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, 441021, Hubei, China.
| | - Qi Wan
- Department of Radiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
7
|
Gu B, Meng M, Xu M, Feng DD, Bi L, Kim J, Song S. Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:3996-4009. [PMID: 37596343 PMCID: PMC10611876 DOI: 10.1007/s00259-023-06399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. METHODS A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [18F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan-Meier method and compared with the observed PFS probability. RESULTS Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785-0.851), 0.752 (95% CI: 0.638-0.865), and 0.717 (95% CI: 0.641-0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822-0.895), 0.769 (95% CI: 0.642-0.896), and 0.730 (95% CI: 0.634-0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. CONCLUSION Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.
Collapse
Affiliation(s)
- Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Mingyuan Meng
- School of Computer Science, the University of Sydney, Sydney, Australia
| | - Mingzhen Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - David Dagan Feng
- School of Computer Science, the University of Sydney, Sydney, Australia
| | - Lei Bi
- Institute of Translational Medicine, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinman Kim
- School of Computer Science, the University of Sydney, Sydney, Australia
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China.
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
9
|
Konishi M, Kakimoto N. Radiomics analysis of intraoral ultrasound images for prediction of late cervical lymph node metastasis in patients with tongue cancer. Head Neck 2023; 45:2619-2626. [PMID: 37584449 DOI: 10.1002/hed.27487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND We investigated the predictability of late cervical lymph node metastasis using radiomics analysis of ultrasonographic images of tongue cancer. METHODS We selected 120 patients with tongue cancer who underwent intraoral ultrasonography, 30 of which had late cervical lymph node metastasis. Radiomics analysis was used to extract and quantify the image features. Bootstrap forest (BF), support vector machine (SVM), and neural tanh boost (NTB) were used as the machine learning models, and receiver operating characteristic curve analysis was conducted to determine diagnostic performance. RESULTS The sensitivity, specificity, accuracy, and AUC in the validation group were, respectively, 0.600, 0.967, 0.875, and 0.923 for the BF model; 0.700, 0.967, 0.900, and 0.950 for the SVM model; and 0.900, 0.967, 0.950, and 0.967 for NTB model. CONCLUSIONS Radiomics analysis and machine learning models using ultrasonographic images of pretreated tongue cancer could predict late cervical lymph node metastasis with high accuracy.
Collapse
Affiliation(s)
- Masaru Konishi
- Department of Oral and Maxillofacial Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoya Kakimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|