1
|
Kocak B, Ponsiglione A, Stanzione A, Ugga L, Klontzas ME, Cannella R, Cuocolo R. CLEAR guideline for radiomics: Early insights into current reporting practices endorsed by EuSoMII. Eur J Radiol 2024; 181:111788. [PMID: 39437630 DOI: 10.1016/j.ejrad.2024.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aims to evaluate current reporting practices in radiomics research, with a focus on CheckList for EvaluAtion of Radiomics research (CLEAR). METHODS We conducted a citation search using Google Scholar to collect original research articles on radiomics citing the CLEAR guideline up to June 17, 2024. We examined the adoption of the guideline, adherence scores per publication, item-wise adherence rates, and self-reporting practices. An expert panel from the European Society of Medical Imaging Informatics Radiomics Auditing Group conducted a detailed item-by-item confirmation analysis of the self-reported CLEAR checklists. RESULTS Out of 100 unique citations from 104 records, 48 original research papers on radiomics were included. The overall adoption rate in the literature was 2 %. Among the citing articles, 94 % (45/48) adopted CLEAR for reporting purposes, applying it to both hand-crafted radiomics (89 %) and deep learning (24 %). Self-reported checklists were included in 58 % (26/45) of these papers. Median study-wise adherence score for self-reported data was 91 % (interquartile range = 18 %). Mean confirmed adherence score was 66 % (standard deviation = 14 %). Difference between these scores was statistically significant, (mean = 21 %; standard deviation = 11 %), p < 0.001. Using an arbitrary 50 % adherence cut-off, the number of items with poor adherence increased from 3 to 15 after confirmation analysis, mostly comprised of open science-related items. In addition, several items were frequently misreported. CONCLUSION This study revealed significant discrepancies between self-reported and confirmed adherence to the CLEAR guideline in radiomics research, indicating a need for improved reporting accuracy and verification practices.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Türkiye.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Michail E Klontzas
- Artificial Intelligence and Translational Imaging (ATI) Laboratory, Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece; Computational Biomedicine Lab, Institute of Computer Science, Foundation for Research and Technology (ICS-FORTH), Heraklion, Crete, Greece; Division of Radiology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institute, Sweden
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
2
|
Wang H, Xu H, Fan J, Liu J, Li L, Kong Z, Zhao H. Predictive value of radiomics for intracranial aneurysm rupture: a systematic review and meta-analysis. Front Neurosci 2024; 18:1474780. [PMID: 39445076 PMCID: PMC11496283 DOI: 10.3389/fnins.2024.1474780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Objective To systematically review the literature on radiomics for predicting intracranial aneurysm rupture and conduct a meta-analysis to obtain evidence confirming the value of radiomics in this prediction. Methods A systematic literature search was conducted in PubMed, Web of Science, Embase, and The Cochrane Library databases up to March 2024. The QUADAS-2 tool was used to assess study quality. Stata 15.0 and Review Manager 5.4.1 were used for statistical analysis. Outcomes included combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (+LR), negative likelihood ratio (-LR), diagnostic odds ratio (DOR), and their 95% confidence intervals (CI), as well as pre-test and post-test probabilities. The SROC curve was plotted, and the area under the curve (AUC) was calculated. Publication bias and small-study effects were assessed using the Deeks' funnel plot. Results The 9 included studies reported 4,284 patients, with 1,411 patients with intracranial aneurysm rupture (prevalence 32.9%). The overall performance of radiomics for predicting intracranial aneurysm rupture showed a combined Sen of 0.78 (95% CI: 0.74-0.82), Spe of 0.74 (95% CI: 0.70-0.78), +LR of 3.0 (95% CI: 2.7-3.4), -LR of 0.29 (95% CI: 0.25-0.35), DOR of 10 (95% CI: 9-12), and AUC of 0.83 (95% CI: 0.79-0.86). Significant heterogeneity was observed in both Sen (I2 = 90.93, 95% CI: 89.00-92.87%) and Spe (I2 = 94.28, 95% CI: 93.21-95.34%). Conclusion Radiomics can improve the diagnostic efficacy of intracranial aneurysm rupture. More large-sample, prospective, multicenter clinical studies are needed to further evaluate its predictive value. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Haoda Wang
- Department of Radiology, The First Hospital of Huhhot, Huhhot, China
| | - Haidong Xu
- Department of Radiology, The First Hospital of Huhhot, Huhhot, China
| | - Junsheng Fan
- Department of Radiology, The First Hospital of Huhhot, Huhhot, China
| | - Jie Liu
- Department of Radiology, The First Hospital of Huhhot, Huhhot, China
| | - Liangfu Li
- Department of Radiology, The First Hospital of Huhhot, Huhhot, China
| | - Zailiang Kong
- Department of Radiology, The First Hospital of Huhhot, Huhhot, China
| | - Hui Zhao
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
3
|
Zhang Y, Huang W, Jiao H, Kang L. PET radiomics in lung cancer: advances and translational challenges. EJNMMI Phys 2024; 11:81. [PMID: 39361110 PMCID: PMC11450131 DOI: 10.1186/s40658-024-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Radiomics is an emerging field of medical imaging that aims at improving the accuracy of diagnosis, prognosis, treatment planning and monitoring non-invasively through the automated or semi-automated quantitative analysis of high-dimensional image features. Specifically in the field of nuclear medicine, radiomics utilizes imaging methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) to evaluate biomarkers related to metabolism, blood flow, cellular activity and some biological pathways. Lung cancer ranks among the leading causes of cancer-related deaths globally, and radiomics analysis has shown great potential in guiding individualized therapy, assessing treatment response, and predicting clinical outcomes. In this review, we summarize the current state-of-the-art radiomics progress in lung cancer, highlighting the potential benefits and existing limitations of this approach. The radiomics workflow was introduced first including image acquisition, segmentation, feature extraction, and model building. Then the published literatures were described about radiomics-based prediction models for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. Finally, we discuss current challenges and provide insights into future directions and potential opportunities for integrating radiomics into routine clinical practice.
Collapse
Affiliation(s)
- Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Hao Jiao
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
4
|
Tran K, Ginzburg D, Hong W, Attenberger U, Ko HS. Post-radiotherapy stage III/IV non-small cell lung cancer radiomics research: a systematic review and comparison of CLEAR and RQS frameworks. Eur Radiol 2024; 34:6527-6543. [PMID: 38625613 PMCID: PMC11399214 DOI: 10.1007/s00330-024-10736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Lung cancer, the second most common cancer, presents persistently dismal prognoses. Radiomics, a promising field, aims to provide novel imaging biomarkers to improve outcomes. However, clinical translation faces reproducibility challenges, despite efforts to address them with quality scoring tools. OBJECTIVE This study had two objectives: 1) identify radiomics biomarkers in post-radiotherapy stage III/IV nonsmall cell lung cancer (NSCLC) patients, 2) evaluate research quality using the CLEAR (CheckList_for_EvaluAtion_of_Radiomics_research), RQS (Radiomics_Quality_Score) frameworks, and formulate an amalgamated CLEAR-RQS tool to enhance scientific rigor. MATERIALS AND METHODS A systematic literature review (Jun-Aug 2023, MEDLINE/PubMed/SCOPUS) was conducted concerning stage III/IV NSCLC, radiotherapy, and radiomic features (RF). Extracted data included study design particulars, such as sample size, radiotherapy/CT technique, selected RFs, and endpoints. CLEAR and RQS were merged into a CLEAR-RQS checklist. Three readers appraised articles utilizing CLEAR, RQS, and CLEAR-RQS metrics. RESULTS Out of 871 articles, 11 met the inclusion/exclusion criteria. The Median cohort size was 91 (range: 10-337) with 9 studies being single-center. No common RF were identified. The merged CLEAR-RQS checklist comprised 61 items. Most unreported items were within CLEAR's "methods" and "open-source," and within RQS's "phantom-calibration," "registry-enrolled prospective-trial-design," and "cost-effective-analysis" sections. No study scored above 50% on RQS. Median CLEAR scores were 55.74% (32.33/58 points), and for RQS, 17.59% (6.3/36 points). CLEAR-RQS article ranking fell between CLEAR and RQS and aligned with CLEAR. CONCLUSION Radiomics research in post-radiotherapy stage III/IV NSCLC exhibits variability and frequently low-quality reporting. The formulated CLEAR-RQS checklist may facilitate education and holds promise for enhancing radiomics research quality. CLINICAL RELEVANCE STATEMENT Current radiomics research in the field of stage III/IV postradiotherapy NSCLC is heterogenous, lacking reproducibility, with no identified imaging biomarker. Radiomics research quality assessment tools may enhance scientific rigor and thereby facilitate radiomics translation into clinical practice. KEY POINTS There is heterogenous and low radiomics research quality in postradiotherapy stage III/IV nonsmall cell lung cancer. Barriers to reproducibility are small cohort size, nonvalidated studies, missing technical parameters, and lack of data, code, and model sharing. CLEAR (CheckList_for_EvaluAtion_of_Radiomics_research), RQS (Radiomics_Quality_Score), and the amalgamated CLEAR-RQS tool are useful frameworks for assessing radiomics research quality and may provide a valuable resource for educational purposes in the field of radiomics.
Collapse
Affiliation(s)
- Kevin Tran
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Daniel Ginzburg
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany
| | - Wei Hong
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany
| | - Hyun Soo Ko
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia.
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, 305 Grattan St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Kocak B, Keles A, Kose F, Sendur A. Quality of radiomics research: comprehensive analysis of 1574 unique publications from 89 reviews. Eur Radiol 2024:10.1007/s00330-024-11057-z. [PMID: 39237770 DOI: 10.1007/s00330-024-11057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE This study aims to comprehensively evaluate the quality of radiomics research by examining unique papers from reviews using the radiomics quality score (RQS). METHODS A literature search was conducted in PubMed (last search date: April 14, 2024). Systematic or non-systematic reviews using the RQS to evaluate radiomic studies were potentially included. Exclusion was applied at two levels: first, at the review level, and second, at the study level (i.e., for the individual articles previously evaluated within the reviews). Score-wise and item-wise analyses were performed, along with trend, multivariable, and subgroup analyses based on baseline study characteristics and validation methods. RESULTS A total of 1574 unique papers (published online between 1999 and 2023) from 89 reviews were included in the final analysis. The median RQS percentage was 31% with an IQR of 25% (25th-75th percentiles, 14-39%). A positive correlation between median RQS percentage and publication year (2014-2023) was found, with Kendall's tau coefficient of 0.908 (p < 0.001), suggesting an improvement in quality over time. The quality of radiomics publications significantly varied according to different subfields of radiology (p < 0.001). Around one-third of the publications (32%) lacked a separate validation set. Papers with internal validation (54%) dominated those with external validation (14%). Higher-quality validation practices were significantly associated with better RQS percentage scores, independent of the validation's effect on the final score. Item-wise analysis revealed significant shortcomings in several areas. CONCLUSION Radiomics research quality is low but improving according to RQS. Significant variation exists across radiology subfields. Critical areas were identified for targeted improvement. CLINICAL RELEVANCE STATEMENT Our study shows that the quality of radiomics research is generally low but improving over time, with item-wise analysis highlighting critical areas needing improvement. It also reveals that the quality of radiomics research differs across subfields and validation methods. KEY POINTS Overall quality of radiomics research remains low and highly variable, although a significant positive trend suggests an improvement in quality over time. Considerable variations exist in the quality of radiomics publications across different subfields of radiology and validation types. The item-wise analysis highlights several critical areas requiring attention, emphasizing the need for targeted improvements.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Ali Keles
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Fadime Kose
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Abdurrezzak Sendur
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
7
|
Li Y, Deng J, Ma X, Li W, Wang Z. Diagnostic accuracy of CT and PET/CT radiomics in predicting lymph node metastasis in non-small cell lung cancer. Eur Radiol 2024:10.1007/s00330-024-11036-4. [PMID: 39223336 DOI: 10.1007/s00330-024-11036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES This study evaluates the accuracy of radiomics in predicting lymph node metastasis in non-small cell lung cancer, which is crucial for patient management and prognosis. METHODS Adhering to PRISMA and AMSTAR guidelines, we systematically reviewed literature from March 2012 to December 2023 using databases including PubMed, Web of Science, and Embase. Radiomics studies utilizing computed tomography (CT) and positron emission tomography (PET)/CT imaging were included. The quality of studies was appraised with QUADAS-2 and RQS tools, and the TRIPOD checklist assessed model transparency. Sensitivity, specificity, and AUC values were synthesized to determine diagnostic performance, with subgroup and sensitivity analyses probing heterogeneity and a Fagan plot evaluating clinical applicability. RESULTS Our analysis incorporated 42 cohorts from 22 studies. CT-based radiomics demonstrated a sensitivity of 0.84 (95% CI: 0.79-0.88, p < 0.01) and specificity of 0.82 (95% CI: 0.75-0.87, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.92), indicating no publication bias (p-value = 0.54 > 0.05). PET/CT radiomics showed a sensitivity of 0.82 (95% CI: 0.76-0.86, p < 0.01) and specificity of 0.86 (95% CI: 0.81-0.90, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.93), with a slight publication bias (p-value = 0.03 < 0.05). Despite high clinical utility, subgroup analysis did not clarify heterogeneity sources, suggesting influences from possible factors like lymph node location and small subgroup sizes. CONCLUSIONS Radiomics models show accuracy in predicting lung cancer lymph node metastasis, yet further validation with larger, multi-center studies is necessary. CLINICAL RELEVANCE STATEMENT Radiomics models using CT and PET/CT imaging may improve the prediction of lung cancer lymph node metastasis, aiding personalized treatment strategies. RESEARCH REGISTRATION UNIQUE IDENTIFYING NUMBER (UIN) International Prospective Register of Systematic Reviews (PROSPERO), CRD42023494701. This study has been registered on the PROSPERO platform with a registration date of 18 December 2023. https://www.crd.york.ac.uk/prospero/ KEY POINTS: The study explores radiomics for lung cancer lymph node metastasis detection, impacting surgery and prognosis. Radiomics improves the accuracy of lymph node metastasis prediction in lung cancer. Radiomics can aid in the prediction of lymph node metastasis in lung cancer and personalized treatment.
Collapse
Affiliation(s)
- Yuepeng Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Junyue Deng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China.
| |
Collapse
|
8
|
Zheng J, Liu W, Chen J, Sun Y, Chen C, Li J, Yi C, Zeng G, Chen Y, Song W. Differential diagnostic value of radiomics models in benign versus malignant vertebral compression fractures: A systematic review and meta-analysis. Eur J Radiol 2024; 178:111621. [PMID: 39018646 DOI: 10.1016/j.ejrad.2024.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Early diagnosis of benign and malignant vertebral compression fractures by analyzing imaging data is crucial to guide treatment and assess prognosis, and the development of radiomics made it an alternative option to biopsy examination. This systematic review and meta-analysis was conducted with the purpose of quantifying the diagnostic efficacy of radiomics models in distinguishing between benign and malignant vertebral compression fractures. METHODS Searching on PubMed, Embase, Web of Science and Cochrane Library was conducted to identify eligible studies published before September 23, 2023. After evaluating for methodological quality and risk of bias using the Radiomics Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), we selected studies providing confusion matrix results to be included in random-effects meta-analysis. RESULTS A total of sixteen articles, involving 1,519 vertebrae with pathological-diagnosed tumor infiltration, were included in our meta-analysis. The combined sensitivity and specificity of the top-performing models were 0.92 (95 % CI: 0.87-0.96) and 0.93 (95 % CI: 0.88-0.96), respectively. Their AUC was 0.97 (95 % CI: 0.96-0.99). By contrast, radiologists' combined sensitivity was 0.90 (95 %CI: 0.75-0.97) and specificity was 0.92 (95 %CI: 0.67-0.98). The AUC was 0.96 (95 %CI: 0.94-0.97). Subsequent subgroup analysis and sensitivity test suggested that part of the heterogeneity might be explained by differences in imaging modality, segmentation, deep learning and cross-validation. CONCLUSION We found remarkable diagnosis potential in correctly distinguishing vertebral compression fractures in complex clinical contexts. However, the published radiomics models still have a great heterogeneity, and more large-scale clinical trials are essential to validate their generalizability.
Collapse
Affiliation(s)
- Jiayuan Zheng
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Wenzhou Liu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jianan Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yujun Sun
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chen Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jiajie Li
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chunyan Yi
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Gang Zeng
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yanbo Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Weidong Song
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
9
|
Doniselli FM, Pascuzzo R, Mazzi F, Padelli F, Moscatelli M, Akinci D'Antonoli T, Cuocolo R, Aquino D, Cuccarini V, Sconfienza LM. Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: a systematic review and meta-analysis. Eur Radiol 2024; 34:5802-5815. [PMID: 38308012 PMCID: PMC11364578 DOI: 10.1007/s00330-024-10594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVES To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predicting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas. METHODS PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodological quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) and to assess inter-study heterogeneity. RESULTS We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8-44%). Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibration and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. The pooled AUC was 0.78 (95% CI, 0.73-0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57-0.73, p < 0.01). CONCLUSIONS Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders its current implementation in clinical practice. CLINICAL RELEVANCE STATEMENT MGMT promoter methylation status appears to be variably correlated with MRI radiomic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict MGMT promoter methylation status in patients with glioma before surgery. KEY POINTS • Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score. • MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy results across studies. • Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy than others.
Collapse
Affiliation(s)
- Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy.
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Rheinstrasse 26, 4410, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende 43, Baronissi, 84081, Salerno, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| |
Collapse
|
10
|
Zheng Y, Chen X, Zhang H, Ning X, Mao Y, Zheng H, Dai G, Liu B, Zhang G, Huang D. Multiparametric MRI-based radiomics nomogram for the preoperative prediction of lymph node metastasis in rectal cancer: A two-center study. Eur J Radiol 2024; 178:111591. [PMID: 39013271 DOI: 10.1016/j.ejrad.2024.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To develop a radiomic nomogram based on multiparametric magnetic resonance imaging for the preoperative prediction of lymph node metastasis (LNM) in rectal cancer. METHODS This retrospective study included 318 patients with pathologically proven rectal adenocarcinoma from two hospitals. Radiomic features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging scans of the training cohort, and the radsore model was then constructed. The combined model was obtained by integrating the Radscore and clinical models. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic effectiveness of each model, and the best-performing model was used to develop the nomogram. RESULTS The Radscore and clinical models exhibited similar diagnostic efficacy (DeLong's test, P > 0.05). The AUC of the combined model was significantly higher than those of the clinical and Radscore models in the training cohort (AUC: 0.837 vs. 0.763 and 0.787, P: 0.02120 and 0.02309) and the external validation cohort (AUC: 0.880 vs. 0.797 and 0.779, P: 0.02310 and 0.02471). However, the diagnostic performance of the three models was comparable in the internal validation cohort (P > 0.05). Thus, among the three models, the combined model exhibited the highest diagnostic efficiency. The calibration curve exhibited satisfactory consistency between the nomogram predictions and the actual results. DCA confirmed the considerable clinical usefulness of the nomogram. CONCLUSION The radiomics nomogram can accurately and noninvasively predict LNM in rectal cancer before surgery, serving as a convenient visualization tool for informing treatment decisions, including the choice of surgical approach and the need for neoadjuvant therapy.
Collapse
Affiliation(s)
- Yongfei Zheng
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Xu Chen
- Hangzhou Dianzi University Zhuoyue Honors College, Hangzhou, Zhejiang Province, China
| | - He Zhang
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Xiaoxiang Ning
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yichuan Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hailan Zheng
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Guojiao Dai
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Binghui Liu
- Department of Pathology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Guohua Zhang
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China.
| | - Danjiang Huang
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Feng J, Hui D, Zheng Q, Guo Y, Xia Y, Shi F, Zhou Q, Yu F, He X, Wang S, Li C. Automatic detection of cognitive impairment in patients with white matter hyperintensity and causal analysis of related factors using artificial intelligence of MRI. Comput Biol Med 2024; 178:108684. [PMID: 38852399 DOI: 10.1016/j.compbiomed.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE White matter hyperintensity (WMH) is a common feature of brain aging, often linked with cognitive decline and dementia. This study aimed to employ deep learning and radiomics to develop models for detecting cognitive impairment in WMH patients and to analyze the causal relationships among cognitive impairment and related factors. MATERIALS AND METHODS A total of 79 WMH patients from hospital 1 were randomly divided into a training set (62 patients) and a testing set (17 patients). Additionally, 29 patients from hospital 2 were included as an independent testing set. All participants underwent formal neuropsychological assessments to determine cognitive status. Automated identification and segmentation of WMH were conducted using VB-net, with extraction of radiomics features from cortex, white matter, and nuclei. Four machine learning classifiers were trained on the training set and validated on the testing set to detect cognitive impairment. Model performances were evaluated and compared. Causal analyses were conducted among cortex, white matter, nuclei alterations, and cognitive impairment. RESULTS Among the models, the logistic regression (LR) model based on white matter features demonstrated the highest performance, achieving an AUC of 0.819 in the external test dataset. Causal analyses indicated that age, education level, alterations in cortex, white matter, and nuclei were causal factors of cognitive impairment. CONCLUSION The LR model based on white matter features exhibited high accuracy in detecting cognitive impairment in WMH patients. Furthermore, the possible causal relationships among alterations in cortex, white matter, nuclei, and cognitive impairment were elucidated.
Collapse
Affiliation(s)
- Junbang Feng
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongming Hui
- Department of Radiology, Chongqing Western Hospital, Chongqing, China
| | - Qingqing Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yi Guo
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Yuwei Xia
- Department of Research and Development, Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| | - Qing Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| | - Fei Yu
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Xiaojing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shike Wang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuanming Li
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China.
| |
Collapse
|
12
|
Jia PF, Li YR, Wang LY, Lu XR, Guo X. Radiomics in esophagogastric junction cancer: A scoping review of current status and advances. Eur J Radiol 2024; 177:111577. [PMID: 38905802 DOI: 10.1016/j.ejrad.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE This scoping review aimed to understand the advances in radiomics in esophagogastric junction (EGJ) cancer and assess the current status of radiomics in EGJ cancer. METHODS We conducted systematic searches of PubMed, Embase, and Web of Science databases from January 18, 2012, to January 15, 2023, to identify radiomics articles related to EGJ cancer. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies using the Radiomics Quality Score (RQS) and the METhodological RadiomICs Score (METRICS) tool, respectively. RESULTS A total of 120 articles were retrieved from the three databases, and after screening, only six papers met the inclusion criteria. These studies investigated the role of radiomics in differentiating adenocarcinoma from squamous carcinoma, diagnosing T-stage, evaluating HER2 overexpression, predicting response to neoadjuvant therapy, and prognosis in EGJ cancer. The median score percentage of RQS was 34.7% (range from 22.2% to 38.9%). The median score percentage of METRICS was 71.2% (range from 58.2% to 84.9%). CONCLUSION Although there is a considerable difference between the RQS and METRICS scores of the included literature, we believe that the research value of radiomics in EGJ cancer has been revealed. In the future, while actively exploring more diagnostic, prognostic, and biological correlation studies in EGJ cancer, greater emphasis should be placed on the standardization and clinical application of radiomics.
Collapse
Affiliation(s)
- Ping-Fan Jia
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yu-Ru Li
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Lu-Yao Wang
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiao-Rui Lu
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xing Guo
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China.
| |
Collapse
|
13
|
Vacca S, Scicolone R, Gupta A, Allan Wasserman B, Song J, Nardi V, Yang Q, Benson J, Lanzino G, Paraskevas K, Suri JS, Saba L. Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment. Eur J Radiol 2024; 177:111547. [PMID: 38852329 DOI: 10.1016/j.ejrad.2024.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. MATERIALS AND METHODS Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. RESULTS RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. CONCLUSION In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
Collapse
Affiliation(s)
- Sebastiano Vacca
- University of Cagliari, School of Medicine and Surgery, Cagliari, Italy
| | - Roberta Scicolone
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - Ajay Gupta
- Department of Radiology Weill, Cornell Medical College, New York, NY, USA
| | - Bruce Allan Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, 367 East Park building, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - Jae Song
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina Nardi
- Department of Cardiovascular Sciences, Mayo Clinic, Rochester, MN
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - John Benson
- Department of Radiology Mayo Clinic Rochester MN, USA
| | | | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy.
| |
Collapse
|
14
|
Russo L, Bottazzi S, Kocak B, Zormpas-Petridis K, Gui B, Stanzione A, Imbriaco M, Sala E, Cuocolo R, Ponsiglione A. Evaluating the quality of radiomics-based studies for endometrial cancer using RQS and METRICS tools. Eur Radiol 2024:10.1007/s00330-024-10947-6. [PMID: 39014086 DOI: 10.1007/s00330-024-10947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE To assess the methodological quality of radiomics-based models in endometrial cancer using the radiomics quality score (RQS) and METhodological radiomICs score (METRICS). METHODS We systematically reviewed studies published by October 30th, 2023. Inclusion criteria were original radiomics studies on endometrial cancer using CT, MRI, PET, or ultrasound. Articles underwent a quality assessment by novice and expert radiologists using RQS and METRICS. The inter-rater reliability for RQS and METRICS among radiologists with varying expertise was determined. Subgroup analyses were performed to assess whether scores varied according to study topic, imaging technique, publication year, and journal quartile. RESULTS Sixty-eight studies were analysed, with a median RQS of 11 (IQR, 9-14) and METRICS score of 67.6% (IQR, 58.8-76.0); two different articles reached maximum RQS of 19 and METRICS of 90.7%, respectively. Most studies utilised MRI (82.3%) and machine learning methods (88.2%). Characterisation and recurrence risk stratification were the most explored outcomes, featured in 35.3% and 19.1% of articles, respectively. High inter-rater reliability was observed for both RQS (ICC: 0.897; 95% CI: 0.821, 0.946) and METRICS (ICC: 0.959; 95% CI: 0.928, 0.979). Methodological limitations such as lack of external validation suggest areas for improvement. At subgroup analyses, no statistically significant difference was noted. CONCLUSIONS Whilst using RQS, the quality of endometrial cancer radiomics research was apparently unsatisfactory, METRICS depicts a good overall quality. Our study highlights the need for strict compliance with quality metrics. Adhering to these quality measures can increase the consistency of radiomics towards clinical application in the pre-operative management of endometrial cancer. CLINICAL RELEVANCE STATEMENT Both the RQS and METRICS can function as instrumental tools for identifying different methodological deficiencies in endometrial cancer radiomics research. However, METRICS also reflected a focus on the practical applicability and clarity of documentation. KEY POINTS The topic of radiomics currently lacks standardisation, limiting clinical implementation. METRICS scores were generally higher than the RQS, reflecting differences in the development process and methodological content. A positive trend in METRICS score may suggest growing attention to methodological aspects in radiomics research.
Collapse
Affiliation(s)
- Luca Russo
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Bottazzi
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey
| | - Konstantinos Zormpas-Petridis
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Benedetta Gui
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evis Sala
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
15
|
Castellana R, Fanni SC, Roncella C, Romei C, Natrella M, Neri E. Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Eur J Radiol 2024; 176:111510. [PMID: 38781919 DOI: 10.1016/j.ejrad.2024.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. RESULTS Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77-0.88), 0.76 (95 %CI = 0.62-0.86), 15.70 (95 %CI = 8.12-27.50) and 0.85 (95 %CI = 0.77-0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). CONCLUSION Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
Collapse
Affiliation(s)
- Roberto Castellana
- Diagnostic and Interventional Radiology, "Parini" Regional Hospital, Azienda USL della Valle d'Aosta, Viale Ginevra 3 11100, Aosta, Italy.
| | - Salvatore Claudio Fanni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Claudia Roncella
- Radiology Unit, Apuane Hospital, Azienda USL Toscana Nord Ovest, Via Mattei 21, 54100, Massa, Italy
| | - Chiara Romei
- Department of Diagnostic Imaging, Diagnostic Radiology 2, Pisa University Hospital, Via Paradisa 2, 56124, Pisa, Italy
| | - Massimiliano Natrella
- Diagnostic and Interventional Radiology, "Parini" Regional Hospital, Azienda USL della Valle d'Aosta, Viale Ginevra 3 11100, Aosta, Italy
| | - Emanuele Neri
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
16
|
Jiang X, Luo C, Peng X, Zhang J, Yang L, Liu LZ, Cui YF, Liu MW, Miao L, Jiang JM, Ren JL, Yang XT, Li M, Zhang L. Incidence rate of occult lymph node metastasis in clinical T 1-2N 0M 0 small cell lung cancer patients and radiomic prediction based on contrast-enhanced CT imaging: a multicenter study : Original research. Respir Res 2024; 25:226. [PMID: 38811960 PMCID: PMC11138070 DOI: 10.1186/s12931-024-02852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 - 2N0M0 (cT1 - 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. METHODS By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined the incidence of OLM in cT1 - 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). RESULTS The initial investigation revealed a 33.9% OLM positivity rate in cT1 - 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for cT1 - 2N0M0 SCLC patients. CONCLUSIONS The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 - 2N0M0 SCLC.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xin Peng
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jing Zhang
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Lin Yang
- Department of Pathology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li-Zhi Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yan-Fen Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Meng-Wen Liu
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Miao
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiu-Ming Jiang
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Liang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, 100176, China
| | - Xiao-Tang Yang
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China.
| | - Meng Li
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Li Zhang
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Kocak B, Borgheresi A, Ponsiglione A, Andreychenko AE, Cavallo AU, Stanzione A, Doniselli FM, Vernuccio F, Triantafyllou M, Cannella R, Trotta R, Ghezzo S, Akinci D'Antonoli T, Cuocolo R. Explanation and Elaboration with Examples for CLEAR (CLEAR-E3): an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol Exp 2024; 8:72. [PMID: 38740707 PMCID: PMC11091004 DOI: 10.1186/s41747-024-00471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points• As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.• Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.• The resulting explanation and elaboration document with examples can be accessed at https://radiomic.github.io/CLEAR-E3/ .
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna E Andreychenko
- Laboratory for Digital Public Health Technologies, ITMO University, St. Petersburg, Russian Federation
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milano, Italy
| | - Federica Vernuccio
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D), University of Palermo, 90127, Palermo, Italy
| | - Matthaios Triantafyllou
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Crete, Voutes, Greece
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Romina Trotta
- Department of Radiology - Fatima Hospital, Seville, Spain
| | | | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
18
|
Frood R, Mercer J, Brown P, Appelt A, Mistry H, Kochhar R, Scarsbrook A. Training and external validation of pre-treatment FDG PET-CT-based models for outcome prediction in anal squamous cell carcinoma. Eur Radiol 2024; 34:3194-3204. [PMID: 37924344 PMCID: PMC11126458 DOI: 10.1007/s00330-023-10340-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES The incidence of anal squamous cell carcinoma (ASCC) is increasing worldwide, with a significant proportion of patients treated with curative intent having recurrence. The ability to accurately predict progression-free survival (PFS) and overall survival (OS) would allow for development of personalised treatment strategies. The aim of the study was to train and external test radiomic/clinical feature derived time-to-event prediction models. METHODS Consecutive patients with ASCC treated with curative intent at two large tertiary referral centres with baseline FDG PET-CT were included. Radiomic feature extraction was performed using LIFEx software on the pre-treatment PET-CT. Two distinct predictive models for PFS and OS were trained and tuned at each of the centres, with the best performing models externally tested on the other centres' patient cohort. RESULTS A total of 187 patients were included from centre 1 (mean age 61.6 ± 11.5 years, median follow up 30 months, PFS events = 57/187, OS events = 46/187) and 257 patients were included from centre 2 (mean age 62.6 ± 12.3 years, median follow up 35 months, PFS events = 70/257, OS events = 54/257). The best performing model for PFS and OS was achieved using a Cox regression model based on age and metabolic tumour volume (MTV) with a training c-index of 0.7 and an external testing c-index of 0.7 (standard error = 0.4). CONCLUSIONS A combination of patient age and MTV has been demonstrated using external validation to have the potential to predict OS and PFS in ASCC patients. CLINICAL RELEVANCE STATEMENT A Cox regression model using patients' age and metabolic tumour volume showed good predictive potential for progression-free survival in external testing. The benefits of a previous radiomics model published by our group could not be confirmed on external testing. KEY POINTS • A predictive model based on patient age and metabolic tumour volume showed potential to predict overall survival and progression-free survival and was validated on an external test cohort. • The methodology used to create a predictive model from age and metabolic tumour volume was repeatable using external cohort data. • The predictive ability of positron emission tomography-computed tomography-derived radiomic features diminished when the influence of metabolic tumour volume was accounted for.
Collapse
Affiliation(s)
- Russell Frood
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - Joseph Mercer
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter Brown
- Department of Radiology, York and Scarborough Teaching Hospitals NHS Foundation Trust, York, UK
| | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Hitesh Mistry
- Division of Pharmacy, University of Manchester, Manchester, UK
| | - Rohit Kochhar
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Mirza-Aghazadeh-Attari M, Srinivas T, Kamireddy A, Kim A, Weiss CR. Radiomics Features Extracted From Pre- and Postprocedural Imaging in Early Prediction of Treatment Response in Patients Undergoing Transarterial Radioembolization of Hepatic Lesions: A Systematic Review, Meta-Analysis, and Quality Appraisal Study. J Am Coll Radiol 2024; 21:740-751. [PMID: 38220040 DOI: 10.1016/j.jacr.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Transarterial radioembolization (TARE) is one of the most promising therapeutic options for hepatic masses. Radiomics features, which are quantitative numeric features extracted from medical images, are considered to have potential in predicting treatment response in TARE. This article aims to provide meta-analytic evidence and critically appraise the methodology of radiomics studies published in this regard. METHODS A systematic search was performed on PubMed, Scopus, Embase, and Web of Science. All relevant articles were retrieved, and the characteristics of the studies were extracted. The Radiomics Quality Score and Checklist for Evaluation of Radiomics Research were used to assess the methodologic quality of the studies. Pooled sensitivity, specificity, and area under the receiver operating characteristic curve in predicting objective response were determined. RESULTS The systematic review included 15 studies. The average Radiomics Quality Score of these studies was 11.4 ± 2.1, and the average Checklist for Evaluation of Radiomics Research score was 33± 6.7. There was a notable correlation (correlation coefficient = 0.73) between the two metrics. Adherence to quality measures differed considerably among the studies and even within different components of the same studies. The pooled sensitivity and specificity of the radiomics models in predicting complete or partial response were 83.5% (95% confidence interval 76%-88.9%) and 86.7% (95% confidence interval 78%-92%), respectively. CONCLUSION Radiomics models show great potential in predicting treatment response in TARE of hepatic lesions. However, the heterogeneity seen between the methodologic quality of studies may limit the generalizability of the results. Future initiatives should aim to develop radiomics signatures using multiple external datasets and adhere to quality measures in radiomics methodology.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Tara Srinivas
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Arun Kamireddy
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Alan Kim
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Clifford R Weiss
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
20
|
Corti A, Cavalieri S, Calareso G, Mattavelli D, Ravanelli M, Poli T, Licitra L, Corino VDA, Mainardi L. MRI radiomics in head and neck cancer from reproducibility to combined approaches. Sci Rep 2024; 14:9451. [PMID: 38658630 PMCID: PMC11043398 DOI: 10.1038/s41598-024-60009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The clinical applicability of radiomics in oncology depends on its transferability to real-world settings. However, the absence of standardized radiomics pipelines combined with methodological variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Seven signatures were identified and reproduced on 58 HNSCC patients from the DB2Decide Project. The analysis focused on: assessing the signatures' reproducibility and replicating them by addressing the insufficient reporting; evaluating their relationship and performances; and proposing a cluster-based approach to combine radiomic signatures, enhancing the prognostic performance. The analysis revealed key insights: (1) despite the signatures were based on different features, high correlations among signatures and features suggested consistency in the description of lesion properties; (2) although the uncertainties in reproducing the signatures, they exhibited a moderate prognostic capability on an external dataset; (3) clustering approaches improved prognostic performance compared to individual signatures. Thus, transparent methodology not only facilitates replication on external datasets but also advances the field, refining prognostic models for potential personalized medicine applications.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| |
Collapse
|
21
|
Aghakhanyan G, Filidei T, Febi M, Fanni SC, Marciano A, Francischello R, Caputo FP, Tumminello L, Cioni D, Neri E, Volterrani D. Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS). Diagnostics (Basel) 2024; 14:832. [PMID: 38667477 PMCID: PMC11049622 DOI: 10.3390/diagnostics14080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Pediatric sarcomas, rare malignancies of mesenchymal origin, pose diagnostic and therapeutic challenges. In this review, we explore the role of radiomics in reshaping our understanding of pediatric sarcomas, emphasizing methodological considerations and applications such as diagnostics and predictive modeling. A systematic review conducted up to November 2023 identified 72 papers on radiomics analysis in pediatric sarcoma from PubMed/MEDLINE, Web of Knowledge, and Scopus. Following inclusion and exclusion criteria, 10 reports were included in this review. The studies, predominantly retrospective, focus on Ewing sarcoma and osteosarcoma, utilizing diverse imaging modalities, including CT, MRI, PET/CT, and PET/MRI. Manual segmentation is common, with a median of 35 features extracted. Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS) assessments reveal a consistent emphasis on non-radiomic features, validation criteria, and improved methodological rigor in recent publications. Diagnostic applications dominate, with innovative studies exploring prognostic and treatment response aspects. Challenges include feature heterogeneity and sample size variations. The evolving landscape underscores the need for standardized methodologies. Despite challenges, the diagnostic and predictive potential of radiomics in pediatric oncology is evident, paving the way for precision medicine advancements.
Collapse
Affiliation(s)
- Gayane Aghakhanyan
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
| | - Tommaso Filidei
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
| | - Maria Febi
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Salvatore C. Fanni
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Andrea Marciano
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Francesca Pia Caputo
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Lorenzo Tumminello
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Dania Cioni
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Emanuele Neri
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Duccio Volterrani
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
- Regional Center of Nuclear Medicine, University Hospital of Pisa, 56126 Pisa, Italy
| |
Collapse
|
22
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
23
|
De Angelis R, Casale R, Coquelet N, Ikhlef S, Mokhtari A, Simoni P, Bali MA. The impact of radiomics in the management of soft tissue sarcoma. Discov Oncol 2024; 15:62. [PMID: 38441726 PMCID: PMC10914656 DOI: 10.1007/s12672-024-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Soft tissue sarcomas (STSs) are rare malignancies. Pre-therapeutic tumour grading and assessment are crucial in making treatment decisions. Radiomics is a high-throughput method for analysing imaging data, providing quantitative information beyond expert assessment. This review highlights the role of radiomic texture analysis in STSs evaluation. MATERIALS AND METHODS We conducted a systematic review according to the Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was conducted in PubMed/MEDLINE and Scopus using the search terms: 'radiomics [All Fields] AND ("soft tissue sarcoma" [All Fields] OR "soft tissue sarcomas" [All Fields])'. Only original articles, referring to humans, were included. RESULTS A preliminary search conducted on PubMed/MEDLINE and Scopus provided 74 and 93 studies respectively. Based on the previously described criteria, 49 papers were selected, with a publication range from July 2015 to June 2023. The main domains of interest were risk stratification, histological grading prediction, technical feasibility/reproductive aspects, treatment response. CONCLUSIONS With an increasing interest over the last years, the use of radiomics appears to have potential for assessing STSs from initial diagnosis to predicting treatment response. However, additional and extensive research is necessary to validate the effectiveness of radiomics parameters and to integrate them into a comprehensive decision support system.
Collapse
Affiliation(s)
- Riccardo De Angelis
- Institut Jules Bordet, Anderlecht, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Roberto Casale
- Institut Jules Bordet, Anderlecht, Belgium.
- Université Libre de Bruxelles, Brussels, Belgium.
| | | | - Samia Ikhlef
- Institut Jules Bordet, Anderlecht, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Ayoub Mokhtari
- Institut Jules Bordet, Anderlecht, Belgium.
- Université Libre de Bruxelles, Brussels, Belgium.
| | - Paolo Simoni
- Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Antonietta Bali
- Institut Jules Bordet, Anderlecht, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Gitto S, Annovazzi A, Nulle K, Interlenghi M, Salvatore C, Anelli V, Baldi J, Messina C, Albano D, Di Luca F, Armiraglio E, Parafioriti A, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones. EBioMedicine 2024; 101:105018. [PMID: 38377797 PMCID: PMC10884340 DOI: 10.1016/j.ebiom.2024.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones. METHODS This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test. FINDINGS Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617). INTERPRETATION X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones. FUNDING AIRC Investigator Grant.
Collapse
Affiliation(s)
- Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Kitija Nulle
- Radiology Department, Riga East Clinical University Hospital, Riga, Latvia
| | | | - Christian Salvatore
- DeepTrace Technologies s.r.l., Milan, Italy; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Filippo Di Luca
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Castiglioni
- Department of Physics "G. Occhialini", Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Gitto S, Cuocolo R, Huisman M, Messina C, Albano D, Omoumi P, Kotter E, Maas M, Van Ooijen P, Sconfienza LM. CT and MRI radiomics of bone and soft-tissue sarcomas: an updated systematic review of reproducibility and validation strategies. Insights Imaging 2024; 15:54. [PMID: 38411750 PMCID: PMC10899555 DOI: 10.1186/s13244-024-01614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To systematically review radiomic feature reproducibility and model validation strategies in recent studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas, thus updating a previous version of this review which included studies published up to 2020. METHODS A literature search was conducted on EMBASE and PubMed databases for papers published between January 2021 and March 2023. Data regarding radiomic feature reproducibility and model validation strategies were extracted and analyzed. RESULTS Out of 201 identified papers, 55 were included. They dealt with radiomics of bone (n = 23) or soft-tissue (n = 32) tumors. Thirty-two (out of 54 employing manual or semiautomatic segmentation, 59%) studies included a feature reproducibility analysis. Reproducibility was assessed based on intra/interobserver segmentation variability in 30 (55%) and geometrical transformations of the region of interest in 2 (4%) studies. At least one machine learning validation technique was used for model development in 34 (62%) papers, and K-fold cross-validation was employed most frequently. A clinical validation of the model was reported in 38 (69%) papers. It was performed using a separate dataset from the primary institution (internal test) in 22 (40%), an independent dataset from another institution (external test) in 14 (25%) and both in 2 (4%) studies. CONCLUSIONS Compared to papers published up to 2020, a clear improvement was noted with almost double publications reporting methodological aspects related to reproducibility and validation. Larger multicenter investigations including external clinical validation and the publication of databases in open-access repositories could further improve methodology and bring radiomics from a research area to the clinical stage. CRITICAL RELEVANCE STATEMENT An improvement in feature reproducibility and model validation strategies has been shown in this updated systematic review on radiomics of bone and soft-tissue sarcomas, highlighting efforts to enhance methodology and bring radiomics from a research area to the clinical stage. KEY POINTS • 2021-2023 radiomic studies on CT and MRI of musculoskeletal sarcomas were reviewed. • Feature reproducibility was assessed in more than half (59%) of the studies. • Model clinical validation was performed in 69% of the studies. • Internal (44%) and/or external (29%) test datasets were employed for clinical validation.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Merel Huisman
- Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elmar Kotter
- Department of Radiology, Freiburg University Medical Center, Freiburg, Germany
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
26
|
Sun S, Yang Z, Majdaeen M, Agbele AT, Abedi-Firouzjah R. Functions of Sialyltransferases in gynecological malignancies: A systematic review. Pathol Res Pract 2024; 254:155159. [PMID: 38306862 DOI: 10.1016/j.prp.2024.155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
INTRODUCTION The biosynthesis of tumor-associated sialoglycans involves Sialyltransferases expressed in cancer cells differentially. The current review aspires to bridge the existing knowledge gaps by consolidating evidence regarding the role of Sialyltransferases in gynecological malignant tumors (ovarian, cervix, endometrial, and breast). METHODS In this systematic review, we searched databases, including PubMed, Embase, Web of Science, Scopus and Cochrane Library. Twenty-two high-quality articles were selected out of 559 researched studies using radiomics quality score (RQS) tools. RESULTS Our findings indicated that 7 articles were related to Sialyltransferases in ovarian cancer, in which 6 studies was examined only ST6Gal-I and one study examined the ST3Gal-I, ST3Gal-II, ST3Gal-III, ST3Gal-IV, ST3Gal-VI, and ST3Gal-6. In addition, 5 articles were related to Sialyltransferases in cervix cancer (ST6Gal-I), 3 articles to endometrial cancer (ST6Gal-I, ST3Gal-III, ST3Gal-IV, and ST3Gal-6), and 7 articles to breast cancer (ST6Gal-I gene in 5 studies, ST6GAL-II gene in one study, and ST8SIA1 and ST3GAL-V genes in one study). CONCLUSION ST6Gal-I gene expression occurs at a high speed in ovarian, cervix, endometrial, and breast cancers, leading to metastasis to distant cells, cell destruction, cell invasion, and reduced patient survival.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Gynecology, The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Zhenying Yang
- Department of Gynecology, The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Mehrsa Majdaeen
- Department of Radio-Oncology, Razi Hospital, Guilan University of Medical Science, Rasht, Iran.
| | - Alaba Tolulope Agbele
- Department of Physics, Bamidele Olumilua University of Education, Science and Technology, Ikere, Ekiti, Nigeria
| | - Razzagh Abedi-Firouzjah
- Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
27
|
Maino C, Vernuccio F, Cannella R, Franco PN, Giannini V, Dezio M, Pisani AR, Blandino AA, Faletti R, De Bernardi E, Ippolito D, Gatti M, Inchingolo R. Radiomics and liver: Where we are and where we are headed? Eur J Radiol 2024; 171:111297. [PMID: 38237517 DOI: 10.1016/j.ejrad.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
Hepatic diffuse conditions and focal liver lesions represent two of the most common scenarios to face in everyday radiological clinical practice. Thanks to the advances in technology, radiology has gained a central role in the management of patients with liver disease, especially due to its high sensitivity and specificity. Since the introduction of computed tomography (CT) and magnetic resonance imaging (MRI), radiology has been considered the non-invasive reference modality to assess and characterize liver pathologies. In recent years, clinical practice has moved forward to a quantitative approach to better evaluate and manage each patient with a more fitted approach. In this setting, radiomics has gained an important role in helping radiologists and clinicians characterize hepatic pathological entities, in managing patients, and in determining prognosis. Radiomics can extract a large amount of data from radiological images, which can be associated with different liver scenarios. Thanks to its wide applications in ultrasonography (US), CT, and MRI, different studies were focused on specific aspects related to liver diseases. Even if broadly applied, radiomics has some advantages and different pitfalls. This review aims to summarize the most important and robust studies published in the field of liver radiomics, underlying their main limitations and issues, and what they can add to the current and future clinical practice and literature.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy.
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Michele Dezio
- Department of Radiology, Miulli Hospital, Acquaviva delle Fonti 70021, Bari, Italy
| | - Antonio Rosario Pisani
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine, University of Bari, Bari 70121, Italy
| | - Antonino Andrea Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Elisabetta De Bernardi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, University of Milano Bicocca, Milano 20100, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| |
Collapse
|
28
|
Kocak B, Akinci D'Antonoli T, Mercaldo N, Alberich-Bayarri A, Baessler B, Ambrosini I, Andreychenko AE, Bakas S, Beets-Tan RGH, Bressem K, Buvat I, Cannella R, Cappellini LA, Cavallo AU, Chepelev LL, Chu LCH, Demircioglu A, deSouza NM, Dietzel M, Fanni SC, Fedorov A, Fournier LS, Giannini V, Girometti R, Groot Lipman KBW, Kalarakis G, Kelly BS, Klontzas ME, Koh DM, Kotter E, Lee HY, Maas M, Marti-Bonmati L, Müller H, Obuchowski N, Orlhac F, Papanikolaou N, Petrash E, Pfaehler E, Pinto Dos Santos D, Ponsiglione A, Sabater S, Sardanelli F, Seeböck P, Sijtsema NM, Stanzione A, Traverso A, Ugga L, Vallières M, van Dijk LV, van Griethuysen JJM, van Hamersvelt RW, van Ooijen P, Vernuccio F, Wang A, Williams S, Witowski J, Zhang Z, Zwanenburg A, Cuocolo R. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 2024; 15:8. [PMID: 38228979 PMCID: PMC10792137 DOI: 10.1186/s13244-023-01572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Bettina Baessler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Anna E Andreychenko
- Laboratory for Digital Public Health Technologies, ITMO University, St. Petersburg, Russian Federation
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Federated Learning in Precision Medicine, Indiana University, Indianapolis, IN, USA
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Keno Bressem
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irene Buvat
- Institut Curie, Inserm, PSL University, Laboratory of Translational Imaging in Oncology, Orsay, France
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Leonid L Chepelev
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada
| | - Linda Chi Hang Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aydin Demircioglu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital , Essen, Germany
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Matthias Dietzel
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | | | - Andrey Fedorov
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laure S Fournier
- Department of Radiology, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, PARCC UMRS 970, INSERM, Paris, France
| | | | - Rossano Girometti
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Georgios Kalarakis
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Division of Radiology, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Medical School, University of Crete, Heraklion, Greece
| | - Brendan S Kelly
- Department of Radiology, St Vincent's University Hospital, Dublin, Ireland
- Insight Centre for Data Analytics, UCD, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, FORTH, Heraklion, Crete, Greece
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Sutton, UK
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Mario Maas
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Luis Marti-Bonmati
- Medical Imaging Department and Biomedical Imaging Research Group, Hospital Universitario y Politécnico La Fe and Health Research Institute, Valencia, Spain
| | - Henning Müller
- University of Applied Sciences of Western Switzerland (HES-SO Valais), Sierra, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UniGe), Geneva, Switzerland
| | - Nancy Obuchowski
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fanny Orlhac
- Institut Curie, Inserm, PSL University, Laboratory of Translational Imaging in Oncology, Orsay, France
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - Ekaterina Petrash
- Radiology department, Research Institute of Pediatric Oncology and Hematology n. a. L.A. Durnov, National Medical Research Center of Oncology n. a. N.N. Blokhin Ministry of Health of Russian Federation, Moscow, Russia
- Medical Department IRA-Labs, Moscow, Russia
| | - Elisabeth Pfaehler
- Institute for advanced simulation (IAS-8): Machine learning and data analytics, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Institute for Diagnostic and Interventional Radiology, Goethe-University Frankfurt Am Main, Frankfurt, Germany
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Sebastià Sabater
- Department of Radiation Oncology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Philipp Seeböck
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Traverso
- Department of Radiotherapy, Maastro Clinic, Maastricht, the Netherlands
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Martin Vallières
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada
| | - Lisanne V van Dijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Robbert W van Hamersvelt
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter van Ooijen
- Department of Radiotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Federica Vernuccio
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D), University of Palermo, Palermo, 90127, Italy
| | - Alan Wang
- Centre for Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Stuart Williams
- Department of Radiology, Norfolk & Norwich University Hospital, Colney Lane, Norwich, Norfolk, UK
| | - Jan Witowski
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Zhongyi Zhang
- School of Information and Communication Technology, Griffith University, Nathan, Brisbane, Australia
| | - Alex Zwanenburg
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
29
|
Di Salle G, Tumminello L, Laino ME, Shalaby S, Aghakhanyan G, Fanni SC, Febi M, Shortrede JE, Miccoli M, Faggioni L, Cosottini M, Neri E. Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis. Radiol Artif Intell 2024; 6:e220257. [PMID: 38231039 PMCID: PMC10831518 DOI: 10.1148/ryai.220257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase (IDH) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of IDH mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, z = -1.9; P = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing IDH mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. Keywords: Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Gianfranco Di Salle
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Lorenzo Tumminello
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Maria Elena Laino
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Sherif Shalaby
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Gayane Aghakhanyan
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Salvatore Claudio Fanni
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Maria Febi
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Jorge Eduardo Shortrede
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Mario Miccoli
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Lorenzo Faggioni
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Mirco Cosottini
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Emanuele Neri
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| |
Collapse
|
30
|
Leo E, Stanzione A, Miele M, Cuocolo R, Sica G, Scaglione M, Camera L, Maurea S, Mainenti PP. Artificial Intelligence and Radiomics for Endometrial Cancer MRI: Exploring the Whats, Whys and Hows. J Clin Med 2023; 13:226. [PMID: 38202233 PMCID: PMC10779496 DOI: 10.3390/jcm13010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Endometrial cancer (EC) is intricately linked to obesity and diabetes, which are widespread risk factors. Medical imaging, especially magnetic resonance imaging (MRI), plays a major role in EC assessment, particularly for disease staging. However, the diagnostic performance of MRI exhibits variability in the detection of clinically relevant prognostic factors (e.g., deep myometrial invasion and metastatic lymph nodes assessment). To address these challenges and enhance the value of MRI, radiomics and artificial intelligence (AI) algorithms emerge as promising tools with a potential to impact EC risk assessment, treatment planning, and prognosis prediction. These advanced post-processing techniques allow us to quantitatively analyse medical images, providing novel insights into cancer characteristics beyond conventional qualitative image evaluation. However, despite the growing interest and research efforts, the integration of radiomics and AI to EC management is still far from clinical practice and represents a possible perspective rather than an actual reality. This review focuses on the state of radiomics and AI in EC MRI, emphasizing risk stratification and prognostic factor prediction, aiming to illuminate potential advancements and address existing challenges in the field.
Collapse
Affiliation(s)
- Elisabetta Leo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mariaelena Miele
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Luigi Camera
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Council of Research (CNR), 80131 Naples, Italy
| |
Collapse
|
31
|
Maurea S, Stanzione A, Klain M. Thyroid Cancer Radiomics: Navigating Challenges in a Developing Landscape. Cancers (Basel) 2023; 15:5884. [PMID: 38136429 PMCID: PMC10742201 DOI: 10.3390/cancers15245884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
In a review from 2021 by Cao et al [...].
Collapse
Affiliation(s)
| | - Arnaldo Stanzione
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80123 Naples, Italy
| | | |
Collapse
|
32
|
Abbas E, Fanni SC, Bandini C, Francischello R, Febi M, Aghakhanyan G, Ambrosini I, Faggioni L, Cioni D, Lencioni RA, Neri E. Delta-radiomics in cancer immunotherapy response prediction: A systematic review. Eur J Radiol Open 2023; 11:100511. [PMID: 37520768 PMCID: PMC10371799 DOI: 10.1016/j.ejro.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background The new immunotherapies have not only changed the oncological therapeutic approach but have also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics consists of the analysis of radiomic features variation between different medical images, usually before and after therapy. Purpose This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. Methods A systematic search was performed in PubMed, Scopus, and Web Of Science using "delta radiomics AND immunotherapy" as search terms. The included articles' methodological quality was measured using the Radiomics Quality Score (RQS) tool. Results Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 %. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness analysis. Conclusions Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical implementation.
Collapse
Affiliation(s)
- Engy Abbas
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
| | | | - Claudio Bandini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Maria Febi
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Gayane Aghakhanyan
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Emanuele Neri
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Wang YD, Huang CP, Yang YR, Wu HC, Hsu YJ, Yeh YC, Yeh PC, Wu KC, Kao CH. Machine Learning and Radiomics of Bone Scintigraphy: Their Role in Predicting Recurrence of Localized or Locally Advanced Prostate Cancer. Diagnostics (Basel) 2023; 13:3380. [PMID: 37958276 PMCID: PMC10648785 DOI: 10.3390/diagnostics13213380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Machine-learning (ML) and radiomics features have been utilized for survival outcome analysis in various cancers. This study aims to investigate the application of ML based on patients' clinical features and radiomics features derived from bone scintigraphy (BS) and to evaluate recurrence-free survival in local or locally advanced prostate cancer (PCa) patients after the initial treatment. METHODS A total of 354 patients who met the eligibility criteria were analyzed and used to train the model. Clinical information and radiomics features of BS were obtained. Survival-related clinical features and radiomics features were included in the ML model training. Using the pyradiomics software, 128 radiomics features from each BS image's region of interest, validated by experts, were extracted. Four textural matrices were also calculated: GLCM, NGLDM, GLRLM, and GLSZM. Five training models (Logistic Regression, Naive Bayes, Random Forest, Support Vector Classification, and XGBoost) were applied using K-fold cross-validation. Recurrence was defined as either a rise in PSA levels, radiographic progression, or death. To assess the classifier's effectiveness, the ROC curve area and confusion matrix were employed. RESULTS Of the 354 patients, 101 patients were categorized into the recurrence group with more advanced disease status compared to the non-recurrence group. Key clinical features including tumor stage, radical prostatectomy, initial PSA, Gleason Score primary pattern, and radiotherapy were used for model training. Random Forest (RF) was the best-performing model, with a sensitivity of 0.81, specificity of 0.87, and accuracy of 0.85. The ROC curve analysis showed that predictions from RF outperformed predictions from other ML models with a final AUC of 0.94 and a p-value of <0.001. The other models had accuracy ranges from 0.52 to 0.78 and AUC ranges from 0.67 to 0.84. CONCLUSIONS The study showed that ML based on clinical features and radiomics features of BS improves the prediction of PCa recurrence after initial treatment. These findings highlight the added value of ML techniques for risk classification in PCa based on clinical features and radiomics features of BS.
Collapse
Affiliation(s)
- Yu-De Wang
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
- School of Medicine, China Medical University, Taichung 406040, Taiwan;
| | - You-Rong Yang
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung 406040, Taiwan;
- Department of Urology, China Medical University Beigang Hospital, Yunlin 651012, Taiwan
| | - Yu-Ju Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Yi-Chun Yeh
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Pei-Chun Yeh
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Kuo-Chen Wu
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
34
|
HajiEsmailPoor Z, Kargar Z, Tabnak P. Radiomics diagnostic performance in predicting lymph node metastasis of papillary thyroid carcinoma: A systematic review and meta-analysis. Eur J Radiol 2023; 168:111129. [PMID: 37820522 DOI: 10.1016/j.ejrad.2023.111129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To evaluate the diagnostic performance of radiomics in lymph node metastasis (LNM) prediction in patients with papillary thyroid carcinoma (PTC) through a systematic review and meta-analysis. METHOD A literature search of PubMed, EMBASE, and Web of Science was conducted to find relevant studies published until February 18th, 2023. Studies that reported the accuracy of radiomics in different imaging modalities for LNM prediction in PTC patients were selected. The methodological quality of included studies was evaluated by radiomics quality score (RQS) and quality assessment of diagnostic accuracy studies (QUADAS-2) tools. General characteristics and radiomics accuracy were extracted. Overall sensitivity, specificity, and area under the curve (AUC) were calculated for diagnostic accuracy evaluation. Spearman correlation coefficient and subgroup analysis were performed for heterogeneity exploration. RESULTS In total, 25 studies were included, of which 22 studies provided adequate data for meta-analysis. We conducted two types of meta-analysis: one focused solely on radiomics features models and the other combined radiomics and non-radiomics features models in the analysis. The pooled sensitivity, specificity, and AUC of radiomics and combined models were 0.75 [0.68, 0.80] vs. 0.77 [0.74, 0.80], 0.77 [0.74, 0.81] vs. 0.83 [0.78, 0.87] and 0.80 [0.73, 0.85] vs 0.82 [0.75, 0.88], respectively. The analysis showed a high heterogeneity level among the included studies. There was no threshold effect. The subgroup analysis demonstrated that utilizing ultrasonography, 2D segmentation, central and lateral LNM detection, automatic segmentation, and PyRadiomics software could slightly improve diagnostic accuracy. CONCLUSIONS Our meta-analysis shows that the radiomics has the potential for pre-operative LNM prediction in PTC patients. Although methodological quality is sufficient but we still need more prospective studies with larger sample sizes from different centers.
Collapse
Affiliation(s)
| | - Zana Kargar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Xue Y, Zhang H, Zheng Z, Liu X, Yin J, Zhang J. Predictive performance of radiomics for peritoneal metastasis in patients with gastric cancer: a meta-analysis and radiomics quality assessment. J Cancer Res Clin Oncol 2023; 149:12103-12113. [PMID: 37422882 DOI: 10.1007/s00432-023-05096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE The purpose of this meta-analysis is to systematically review the diagnostic performance of radiomic techniques in predicting peritoneal metastasis in patients with gastric cancer, and to evaluate the quality of current research. METHODS We searched PubMed, Web of Science, EBSCO, Embase, and Cochrane databases for relevant studies up to April 3, 2023. Data extraction and quality evaluation were performed by two independent reviewers. Then we performed statistical analysis, including plotting the forest plot and summary receiver operating characteristic (SROC) curve, and source of heterogeneity analysis, through the MIDAS module in Stata 15. We performed meta-regression and subgroup analyses to analyze the sources of heterogeneity. Using the QUADAS-2 scale and the RQS scale to assess the quality of retrieved studies. RESULTS Ten studies with 6199 patients were finally included in our meta-analysis. Pooled sensitivity and specificity were 0.77 (95% confidence interval [CI]: 0.66, 0.86), and 0.88 (95% CI 0.80, 0.93), respectively. The overall AUC was 0.89 (95% CI 0.86, 0.92). The heterogeneity of this meta-analysis was high, with I2 = 88% (95% CI 75,100). The result of meta-regression showed that QUADAS-2 results, RQS results and machine learning method led to heterogeneity in sensitivity and specificity (P < 0.05). Furthermore, the image segmentation area and the presence or absence of combined clinical factors were associated with sensitivity heterogeneity and specificity heterogeneity, respectively. CONCLUSION Undoubtedly, radiomics has potential value in diagnosing peritoneal metastasis of gastric cancer, but the quality of current research is inconsistent, and more standardized and high-quality research is still needed in the future to achieve the transformation of radiomics results into clinical applications.
Collapse
Affiliation(s)
- Yasheng Xue
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
36
|
Aymerich M, García-Baizán A, Franco PN, Otero-García M. Exploratory Analysis of the Role of Radiomic Features in the Differentiation of Oncocytoma and Chromophobe RCC in the Nephrographic CT Phase. Life (Basel) 2023; 13:1950. [PMID: 37895332 PMCID: PMC10607929 DOI: 10.3390/life13101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
In diagnostic imaging, distinguishing chromophobe renal cell carcinomas (chRCCs) from renal oncocytomas (ROs) is challenging, since they both present similar radiological characteristics. Radiomics has the potential to help in the differentiation between chRCCs and ROs by extracting quantitative imaging. This is a preliminary study of the role of radiomic features in the differentiation of chRCCs and ROs using machine learning models. In this retrospective work, 38 subjects were involved: 19 diagnosed with chRCCs and 19 with ROs. The CT nephrographic contrast phase was selected in each case. Three-dimensional segmentations of the lesions were performed and the radiomic features were extracted. To assess the reliability of the features, the intraclass correlation coefficient was calculated from the segmentations performed by three radiologists with different degrees of expertise. The selection of features was based on the criteria of excellent intraclass correlation coefficient (ICC), high correlation, and statistical significance. Three machine learning models were elaborated: support vector machine (SVM), random forest (RF), and logistic regression (LR). From 105 extracted features, 41 presented an excellent ICC and 6 were not highly correlated with each other. Only two features showed significant differences according to histological type and machine learning models were developed with them. LR was the better model, in particular, with an 83% precision.
Collapse
Affiliation(s)
- María Aymerich
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain; (A.G.-B.); (M.O.-G.)
| | - Alejandra García-Baizán
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain; (A.G.-B.); (M.O.-G.)
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Paolo Niccolò Franco
- Department of Diagnostic Radiology, IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Milagros Otero-García
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain; (A.G.-B.); (M.O.-G.)
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
37
|
Qiao X, Gu X, Liu Y, Shu X, Ai G, Qian S, Liu L, He X, Zhang J. MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer. Cancers (Basel) 2023; 15:4536. [PMID: 37760505 PMCID: PMC10526397 DOI: 10.3390/cancers15184536] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The Ki67 index and the Gleason grade group (GGG) are vital prognostic indicators of prostate cancer (PCa). This study investigated the value of biparametric magnetic resonance imaging (bpMRI) radiomics feature-based machine learning (ML) models in predicting the Ki67 index and GGG of PCa. METHODS A total of 122 patients with pathologically proven PCa who had undergone preoperative MRI were retrospectively included. Radiomics features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. Then, recursive feature elimination (RFE) was applied to remove redundant features. ML models for predicting Ki67 expression and GGG were constructed based on bpMRI and different algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN). The performances of different models were evaluated with receiver operating characteristic (ROC) analysis. In addition, a joint analysis of Ki67 expression and GGG was performed by assessing their Spearman correlation and calculating the diagnostic accuracy for both indices. RESULTS The ML model based on LR and ADC + T2 (LR_ADC + T2, AUC = 0.8882) performed best in predicting Ki67 expression, and ADC_wavelet-LHH_firstorder_Maximum had the highest feature weighting. The SVM_DWI + T2 (AUC = 0.9248) performed best in predicting GGG, and DWI_wavelet HLL_glcm_SumAverage had the highest feature weighting. The Ki67 and GGG exhibited a weak positive correlation (r = 0.382, p < 0.001), and LR_ADC + DWI had the highest diagnostic accuracy in predicting both (0.6230). CONCLUSION The proposed ML models are suitable for predicting both Ki67 expression and GGG in PCa. This algorithm could be used to identify indolent or invasive PCa with a noninvasive, repeatable, and accurate diagnostic method.
Collapse
Affiliation(s)
- Xiaofeng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.Q.); (X.G.); (Y.L.); (X.S.); (G.A.)
| | - Xiling Gu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.Q.); (X.G.); (Y.L.); (X.S.); (G.A.)
| | - Yunfan Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.Q.); (X.G.); (Y.L.); (X.S.); (G.A.)
| | - Xin Shu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.Q.); (X.G.); (Y.L.); (X.S.); (G.A.)
| | - Guangyong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.Q.); (X.G.); (Y.L.); (X.S.); (G.A.)
| | - Shuang Qian
- Big Data and Software Engineering College, Chongqing University, Chongqing 400000, China; (S.Q.); (L.L.)
| | - Li Liu
- Big Data and Software Engineering College, Chongqing University, Chongqing 400000, China; (S.Q.); (L.L.)
| | - Xiaojing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.Q.); (X.G.); (Y.L.); (X.S.); (G.A.)
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
38
|
Wang Q, Wang A, Wu X, Hu X, Bai G, Fan Y, Stål P, Brismar TB. Radiomics models for preoperative prediction of the histopathological grade of hepatocellular carcinoma: A systematic review and radiomics quality score assessment. Eur J Radiol 2023; 166:111015. [PMID: 37541183 DOI: 10.1016/j.ejrad.2023.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE To systematically review the efficacy of radiomics models derived from computed tomography (CT) or magnetic resonance imaging (MRI) in preoperative prediction of the histopathological grade of hepatocellular carcinoma (HCC). METHODS Systematic literature search was performed at databases of PubMed, Web of Science, Embase, and Cochrane Library up to 30 December 2022. Studies that developed a radiomics model using preoperative CT/MRI for predicting the histopathological grade of HCC were regarded as eligible. A pre-defined table was used to extract the data related to study and patient characteristics, characteristics of radiomics modelling workflow, and the model performance metrics. Radiomics quality score and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were applied for research quality evaluation. RESULTS Eleven eligible studies were included in this review, consisting of 2245 patients (range 53-494, median 165). No studies were prospectively designed and only two studies had an external test cohort. Half of the studies (five) used CT images and the other half MRI. The median number of extracted radiomics features was 328 (range: 40-1688), which was reduced to 11 (range: 1-50) after feature selection. The commonly used classifiers were logistic regression and support vector machine (both 4/11). When evaluated on the two external test cohorts, the area under the curve of the radiomics models was 0.70 and 0.77. The median radiomics quality score was 10 (range 2-13), corresponding to 28% (range 6-36%) of the full scale. Most studies showed an unclear risk of bias as evaluated by QUADAS-2. CONCLUSION Radiomics models based on preoperative CT or MRI have the potential to be used as an imaging biomarker for prediction of HCC histopathological grade. However, improved research and reporting quality is required to ensure sufficient reliability and reproducibility prior to implementation into clinical practice.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Anrong Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Interventional Therapy, People's Hospital of Dianjiang County, Chongqing, China
| | - Xueyun Wu
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Hu
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guojie Bai
- Department of Radiology, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| | - Yingfang Fan
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Per Stål
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
39
|
Ahmed TM, Kawamoto S, Hruban RH, Fishman EK, Soyer P, Chu LC. A primer on artificial intelligence in pancreatic imaging. Diagn Interv Imaging 2023; 104:435-447. [PMID: 36967355 DOI: 10.1016/j.diii.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Artificial Intelligence (AI) is set to transform medical imaging by leveraging the vast data contained in medical images. Deep learning and radiomics are the two main AI methods currently being applied within radiology. Deep learning uses a layered set of self-correcting algorithms to develop a mathematical model that best fits the data. Radiomics converts imaging data into mineable features such as signal intensity, shape, texture, and higher-order features. Both methods have the potential to improve disease detection, characterization, and prognostication. This article reviews the current status of artificial intelligence in pancreatic imaging and critically appraises the quality of existing evidence using the radiomics quality score.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Sol Goldman Pancreatic Research Center, Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Department of Radiology, Hôpital Cochin-APHP, 75014, 75006, Paris, France, 7501475006
| | - Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
40
|
Decoux A, Duron L, Habert P, Roblot V, Arsovic E, Chassagnon G, Arnoux A, Fournier L. Comparative performances of machine learning algorithms in radiomics and impacting factors. Sci Rep 2023; 13:14069. [PMID: 37640728 PMCID: PMC10462640 DOI: 10.1038/s41598-023-39738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
There are no current recommendations on which machine learning (ML) algorithms should be used in radiomics. The objective was to compare performances of ML algorithms in radiomics when applied to different clinical questions to determine whether some strategies could give the best and most stable performances regardless of datasets. This study compares the performances of nine feature selection algorithms combined with fourteen binary classification algorithms on ten datasets. These datasets included radiomics features and clinical diagnosis for binary clinical classifications including COVID-19 pneumonia or sarcopenia on CT, head and neck, orbital or uterine lesions on MRI. For each dataset, a train-test split was created. Each of the 126 (9 × 14) combinations of feature selection algorithms and classification algorithms was trained and tuned using a ten-fold cross validation, then AUC was computed. This procedure was repeated three times per dataset. Best overall performances were obtained with JMI and JMIM as feature selection algorithms and random forest and linear regression models as classification algorithms. The choice of the classification algorithm was the factor explaining most of the performance variation (10% of total variance). The choice of the feature selection algorithm explained only 2% of variation, while the train-test split explained 9%.
Collapse
Affiliation(s)
- Antoine Decoux
- Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France
- Unité de Recherche Clinique, Center d'Investigation Clinique 1418 Épidémiologie Clinique, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, INSERM, Paris, France
| | - Loic Duron
- Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France
- Department of Radiology, Hôpital Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Paul Habert
- Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France
- Imaging Department, Hôpital Nord, APHM, Aix Marseille University, Marseille, France
- Aix Marseille Univ, LIIE, Marseille, France
| | - Victoire Roblot
- Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France
| | - Emina Arsovic
- Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France
| | - Guillaume Chassagnon
- Department of Radiology, Université Paris Cité, AP-HP, Hôpital Cochin, Paris, France
| | - Armelle Arnoux
- Unité de Recherche Clinique, Center d'Investigation Clinique 1418 Épidémiologie Clinique, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, INSERM, Paris, France
| | - Laure Fournier
- Department of Radiology, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, PARCC UMRS 970, INSERM, Paris, France.
| |
Collapse
|
41
|
Mirza-Aghazadeh-Attari M, Madani SP, Shahbazian H, Ansari G, Mohseni A, Borhani A, Afyouni S, Kamel IR. Predictive role of radiomics features extracted from preoperative cross-sectional imaging of pancreatic ductal adenocarcinoma in detecting lymph node metastasis: a systemic review and meta-analysis. Abdom Radiol (NY) 2023; 48:2570-2584. [PMID: 37202642 DOI: 10.1007/s00261-023-03940-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Lymph node metastases are associated with poor clinical outcomes in pancreatic ductal adenocarcinoma (PDAC). In preoperative imaging, conventional diagnostic modalities do not provide the desired accuracy in diagnosing lymph node metastasis. The current review aims to determine the pooled diagnostic profile of studies examining the role of radiomics features in detecting lymph node metastasis in PDAC. PubMed, Google Scholar, and Embase databases were searched for relevant articles. The quality of the studies was examined using the Radiomics Quality Score and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tools. Pooled results for sensitivity, specificity, likelihood, and odds ratios with the corresponding 95% confidence intervals (CIs) were calculated using a random-effect model (DerSimonian-Liard method). No significant publication bias was detected among the studies included in this meta-analysis. The pooled sensitivity of the validation datasets included in the study was 77.4% (72.7%, 81.5%) and pooled specificity was 72.4% (63.8, 79.6%). The diagnostic odds ratio of the validation datasets was 9.6 (6.0, 15.2). No statistically significant heterogeneity was detected for sensitivity and odds ratio (P values of 0.3 and 0.08, respectively). However, there was significant heterogeneity concerning specificity (P = 0.003). The pretest probability of having lymph node metastasis in the pooled databases was 52% and a positive post-test probability was 76% after the radiomics features were used, showing a net benefit of 24%. Classifiers trained on radiomics features extracted from preoperative images can improve the sensitivity and specificity of conventional cross-sectional imaging in detecting lymph node metastasis in PDAC.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Seyedeh Panid Madani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Haneyeh Shahbazian
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Golnoosh Ansari
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Ali Borhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Shadi Afyouni
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA.
| |
Collapse
|
42
|
Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, Iannessi A, Bodard S. Systematic Review, Meta-Analysis and Radiomics Quality Score Assessment of CT Radiomics-Based Models Predicting Tumor EGFR Mutation Status in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11433. [PMID: 37511192 PMCID: PMC10380456 DOI: 10.3390/ijms241411433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.
Collapse
Affiliation(s)
- Mehdi Felfli
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Yan Liu
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Fadila Zerka
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Charles Voyton
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Alexandre Thinnes
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Sebastien Jacques
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Antoine Iannessi
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
- Centre Antoine Lacassagne, F-06100 Nice, France
| | - Sylvain Bodard
- AP-HP, Service d’Imagerie Adulte, Hôpital Necker Enfants Malades, Université de Paris Cité, F-75015 Paris, France
- CNRS UMR 7371, INSERM U 1146, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, F-75006 Paris, France
| |
Collapse
|
43
|
Calimano-Ramirez LF, Virarkar MK, Hernandez M, Ozdemir S, Kumar S, Gopireddy DR, Lall C, Balaji KC, Mete M, Gumus KZ. MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review. Abdom Radiol (NY) 2023; 48:2379-2400. [PMID: 37142824 DOI: 10.1007/s00261-023-03924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Prediction of extraprostatic extension (EPE) is essential for accurate surgical planning in prostate cancer (PCa). Radiomics based on magnetic resonance imaging (MRI) has shown potential to predict EPE. We aimed to evaluate studies proposing MRI-based nomograms and radiomics for EPE prediction and assess the quality of current radiomics literature. METHODS We used PubMed, EMBASE, and SCOPUS databases to find related articles using synonyms for MRI radiomics and nomograms to predict EPE. Two co-authors scored the quality of radiomics literature using the Radiomics Quality Score (RQS). Inter-rater agreement was measured using the intraclass correlation coefficient (ICC) from total RQS scores. We analyzed the characteristic s of the studies and used ANOVAs to associate the area under the curve (AUC) to sample size, clinical and imaging variables, and RQS scores. RESULTS We identified 33 studies-22 nomograms and 11 radiomics analyses. The mean AUC for nomogram articles was 0.783, and no significant associations were found between AUC and sample size, clinical variables, or number of imaging variables. For radiomics articles, there were significant associations between number of lesions and AUC (p < 0.013). The average RQS total score was 15.91/36 (44%). Through the radiomics operation, segmentation of region-of-interest, selection of features, and model building resulted in a broader range of results. The qualities the studies lacked most were phantom tests for scanner variabilities, temporal variability, external validation datasets, prospective designs, cost-effectiveness analysis, and open science. CONCLUSION Utilizing MRI-based radiomics to predict EPE in PCa patients demonstrates promising outcomes. However, quality improvement and standardization of radiomics workflow are needed.
Collapse
Affiliation(s)
- Luis F Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Mauricio Hernandez
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Savas Ozdemir
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Sindhu Kumar
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Dheeraj R Gopireddy
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - K C Balaji
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Mutlu Mete
- Department of Computer Science and Information System, Texas A&M University-Commerce, Commerce, TX, 75428, USA
| | - Kazim Z Gumus
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA.
| |
Collapse
|
44
|
Li C, Deng M, Zhong X, Ren J, Chen X, Chen J, Xiao F, Xu H. Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI. Front Oncol 2023; 13:1198899. [PMID: 37448515 PMCID: PMC10338012 DOI: 10.3389/fonc.2023.1198899] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction This study aims to develop an imaging model based on multi-parametric MR images for distinguishing between prostate cancer (PCa) and prostate hyperplasia. Methods A total of 236 subjects were enrolled and divided into training and test sets for model construction. Firstly, a multi-view radiomics modeling strategy was designed in which different combinations of radiomics feature categories (original, LoG, and wavelet) were compared to obtain the optimal input feature sets. Minimum-redundancy maximum-relevance (mRMR) selection and least absolute shrinkage selection operator (LASSO) were used for feature reduction, and the next logistic regression method was used for model construction. Then, a Swin Transformer architecture was designed and trained using transfer learning techniques to construct the deep learning models (DL). Finally, the constructed multi-view radiomics and DL models were combined and compared for model selection and nomogram construction. The prediction accuracy, consistency, and clinical benefit were comprehensively evaluated in the model comparison. Results The optimal input feature set was found when LoG and wavelet features were combined, while 22 and 17 radiomic features in this set were selected to construct the ADC and T2 multi-view radiomic models, respectively. ADC and T2 DL models were built by transferring learning from a large number of natural images to a relatively small sample of prostate images. All individual and combined models showed good predictive accuracy, consistency, and clinical benefit. Compared with using only an ADC-based model, adding a T2-based model to the combined model would reduce the model's predictive performance. The ADCCombinedScore model showed the best predictive performance among all and was transformed into a nomogram for better use in clinics. Discussion The constructed models in our study can be used as a predictor in differentiating PCa and BPH, thus helping clinicians make better clinical treatment decisions and reducing unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Ma H, Zhang D, Wang Y, Ding Y, Yang J, Li K. Prediction of early improvement of major depressive disorder to antidepressant medication in adolescents with radiomics analysis after ComBat harmonization based on multiscale structural MRI. BMC Psychiatry 2023; 23:466. [PMID: 37365541 DOI: 10.1186/s12888-023-04966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Due to individual differences and lack of objective biomarkers, only 30-40% patients with major depressive disorder (MDD) achieve remission after initial antidepressant medication (ADM). We aimed to employ radiomics analysis after ComBat harmonization to predict early improvement to ADM in adolescents with MDD by using brain multiscale structural MRI (sMRI) and identify the radiomics features with high prediction power for selection of selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs). METHODS 121 MDD patients were recruited for brain sMRI, including three-dimensional T1 weighted imaging (3D-T1WI)and diffusion tensor imaging (DTI). After receiving SSRIs or SNRIs for 2 weeks, the subjects were divided into ADM improvers (SSRIs improvers and SNRIs improvers) and non-improvers according to reduction rate of the Hamilton Depression Rating Scale, 17 item (HAM-D17) score. Then, sMRI data were preprocessed, and conventional imaging indicators and radiomics features of gray matter (GM) based on surface-based morphology (SBM) and voxel-based morphology (VBM) and diffusion properties of white matter (WM) were extracted and harmonized with ComBat harmonization. Two-level reduction strategy with analysis of variance (ANOVA) and recursive feature elimination (RFE) was utilized sequentially to decrease high-dimensional features. Support vector machine with radial basis function kernel (RBF-SVM) was used to integrate multiscale sMRI features to construct models for early improvement prediction. Area under the curve (AUC), accuracy, sensitivity, and specificity based on the leave-one-out cross-validation (LOO-CV) and receiver operating characteristic (ROC) curve analysis were calculated to evaluate the model performance. Permutation tests were used for assessing the generalization rate. RESULTS After 2-week ADM, 121 patients were divided into 67 ADM improvers (31 SSRIs improvers and 36 SNRIs improvers) and 54 ADM non-improvers. After two-level dimensionality reduction, 8 conventional indicators (2 VBM-based features and 6 diffusion features) and 49 radiomics features (16 VBM-based features and 33 diffusion features) were selected. The overall accuracy of RBF-SVM models based on conventional indicators and radiomics features was 74.80% and 88.19%. The radiomics model achieved the AUC, sensitivity, specificity, and accuracy of 0.889, 91.2%, 80.1% and 85.1%, 0.954, 89.2%, 87.4% and 88.5%, 0.942, 91.9%, 82.5% and 86.8% for predicting ADM improvers, SSRIs improvers and SNRIs improvers, respectively. P value of permutation tests were less than 0.001. The radiomics features predicting ADM improver were mainly located in the hippocampus, medial orbitofrontal gyrus, anterior cingulate gyrus, cerebellum (lobule vii-b), body of corpus callosum, etc. The radiomics features predicting SSRIs improver were primarily distributed in hippocampus, amygdala, inferior temporal gyrus, thalamus, cerebellum (lobule vi), fornix, cerebellar peduncle, etc. The radiomics features predicting SNRIs improver were primarily located in the medial orbitofrontal cortex, anterior cingulate gyrus, ventral striatum, corpus callosum, etc. CONCLUSIONS: These findings suggest the radiomics analysis based on brain multiscale sMRI after ComBat harmonization could effectively predict the early improvement of ADM in adolescent MDD patients with a high accuracy, which was superior to the model based on the conventional indicators. The radiomics features with high prediction power may help for the individual selection of SSRIs and SNRIs.
Collapse
Affiliation(s)
- Huan Ma
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Dafu Zhang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
| | - Yao Wang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
| | - Yingying Ding
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
| | - Jianzhong Yang
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Kun Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China.
| |
Collapse
|
46
|
Zhong J, Lu J, Zhang G, Mao S, Chen H, Yin Q, Hu Y, Xing Y, Ding D, Ge X, Zhang H, Yao W. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation. Insights Imaging 2023; 14:111. [PMID: 37336830 DOI: 10.1186/s13244-023-01437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE To conduct an overview of meta-analyses of radiomics studies assessing their study quality and evidence level. METHODS A systematical search was updated via peer-reviewed electronic databases, preprint servers, and systematic review protocol registers until 15 November 2022. Systematic reviews with meta-analysis of primary radiomics studies were included. Their reporting transparency, methodological quality, and risk of bias were assessed by PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020 checklist, AMSTAR-2 (A MeaSurement Tool to Assess systematic Reviews, version 2) tool, and ROBIS (Risk Of Bias In Systematic reviews) tool, respectively. The evidence level supporting the radiomics for clinical use was rated. RESULTS We identified 44 systematic reviews with meta-analyses on radiomics research. The mean ± standard deviation of PRISMA adherence rate was 65 ± 9%. The AMSTAR-2 tool rated 5 and 39 systematic reviews as low and critically low confidence, respectively. The ROBIS assessment resulted low, unclear and high risk in 5, 11, and 28 systematic reviews, respectively. We reperformed 53 meta-analyses in 38 included systematic reviews. There were 3, 7, and 43 meta-analyses rated as convincing, highly suggestive, and weak levels of evidence, respectively. The convincing level of evidence was rated in (1) T2-FLAIR radiomics for IDH-mutant vs IDH-wide type differentiation in low-grade glioma, (2) CT radiomics for COVID-19 vs other viral pneumonia differentiation, and (3) MRI radiomics for high-grade glioma vs brain metastasis differentiation. CONCLUSIONS The systematic reviews on radiomics were with suboptimal quality. A limited number of radiomics approaches were supported by convincing level of evidence. CLINICAL RELEVANCE STATEMENT The evidence supporting the clinical application of radiomics are insufficient, calling for researches translating radiomics from an academic tool to a practicable adjunct towards clinical deployment.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
47
|
Gitto S, Interlenghi M, Cuocolo R, Salvatore C, Giannetta V, Badalyan J, Gallazzi E, Spinelli MS, Gallazzi M, Serpi F, Messina C, Albano D, Annovazzi A, Anelli V, Baldi J, Aliprandi A, Armiraglio E, Parafioriti A, Daolio PA, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01657-y. [PMID: 37335422 DOI: 10.1007/s11547-023-01657-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE To determine diagnostic performance of MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor (ALT) of the extremities. MATERIAL AND METHODS This retrospective study was performed at three tertiary sarcoma centers and included 150 patients with surgically treated and histology-proven lesions. The training-validation cohort consisted of 114 patients from centers 1 and 2 (n = 64 lipoma, n = 50 ALT). The external test cohort consisted of 36 patients from center 3 (n = 24 lipoma, n = 12 ALT). 3D segmentation was manually performed on T1- and T2-weighted MRI. After extraction and selection of radiomic features, three machine learning classifiers were trained and validated using nested fivefold cross-validation. The best-performing classifier according to previous analysis was evaluated and compared to an experienced musculoskeletal radiologist in the external test cohort. RESULTS Eight features passed feature selection and were incorporated into the machine learning models. After training and validation (74% ROC-AUC), the best-performing classifier (Random Forest) showed 92% sensitivity and 33% specificity in the external test cohort with no statistical difference compared to the radiologist (p = 0.474). CONCLUSION MRI radiomics-based machine learning may classify deep-seated lipoma and ALT of the extremities with high sensitivity and negative predictive value, thus potentially serving as a non-invasive screening tool to reduce unnecessary referral to tertiary tumor centers.
Collapse
Affiliation(s)
- Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | | | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Christian Salvatore
- DeepTrace Technologies, Milan, Italy
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Vincenzo Giannetta
- Diagnostic and Interventional Radiology Department, IRCCS Ospedale San Raffaele-Turro, Università Vita-Salute San Raffaele, Milan, Italy
| | - Julietta Badalyan
- Scuola di Specializzazione in Statistica Sanitaria e Biometria, Università Degli Studi Di Milano, Milan, Italy
| | - Enrico Gallazzi
- UOC Patologia Vertebrale e Scoliosi, ASST Gaetano Pini - CTO, Milan, Italy
| | | | - Mauro Gallazzi
- UOC Radiodiagnostica, ASST Gaetano Pini - CTO, Milan, Italy
| | - Francesca Serpi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | | | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Castiglioni
- Department of Physics, Università degli Studi di Milano-Bicocca, Milan, Italy
- Institute of Biomedical Imaging and Physiology, Consiglio Nazionale Delle Ricerche, Segrate, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
48
|
Wang KX, Yu J, Xu Q. Histogram analysis of dynamic contrast-enhanced magnetic resonance imaging to predict extramural venous invasion in rectal cancer. BMC Med Imaging 2023; 23:77. [PMID: 37291527 PMCID: PMC10249234 DOI: 10.1186/s12880-023-01027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND To explore the potential of histogram analysis (HA) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the identification of extramural venous invasion (EMVI) in rectal cancer patients. METHODS This retrospective study included preoperative images of 194 rectal cancer patients at our hospital between May 2019 and April 2022. The postoperative histopathological examination served as the reference standard. The mean values of DCE-MRI quantitative perfusion parameters (Ktrans, Kep and Ve) and other HA features calculated from these parameters were compared between the pathological EMVI-positive and EMVI-negative groups. Multivariate logistic regression analysis was performed to establish the prediction model for pathological EMVI-positive status. Diagnostic performance was assessed and compared using the receiver operating characteristic (ROC) curve. The clinical usefulness of the best prediction model was further measured with patients with indeterminate MRI-defined EMVI (mrEMVI) score 2(possibly negative) and score 3 (probably positive). RESULTS The mean values of Ktrans and Ve in the EMVI-positive group were significantly higher than those in the EMVI-negative group (P = 0.013 and 0.025, respectively). Significant differences in Ktrans skewness, Ktrans entropy, Ktrans kurtosis, and Ve maximum were observed between the two groups (P = 0.001,0.002, 0.000, and 0.033, respectively). The Ktrans kurtosis and Ktrans entropy were identified as independent predictors for pathological EMVI. The combined prediction model had the highest area under the curve (AUC) at 0.926 for predicting pathological EMVI status and further reached the AUC of 0.867 in subpopulations with indeterminate mrEMVI scores. CONCLUSIONS Histogram Analysis of DCE-MRI Ktrans maps may be useful in preoperative identification of EMVI in rectal cancer, particularly in patients with indeterminate mrEMVI scores.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Gulou District, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, China
| | - Jing Yu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Gulou District, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, China
| | - Qing Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Gulou District, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
49
|
Zhong J, Xing Y, Zhang G, Hu Y, Ding D, Ge X, Pan Z, Yin Q, Zhang H, Yang Q, Zhang H, Yao W. A systematic review of radiomics in giant cell tumor of bone (GCTB): the potential of analysis on individual radiomics feature for identifying genuine promising imaging biomarkers. J Orthop Surg Res 2023; 18:414. [PMID: 37287036 DOI: 10.1186/s13018-023-03863-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE To systematically assess the quality of radiomics research in giant cell tumor of bone (GCTB) and to test the feasibility of analysis at the level of radiomics feature. METHODS We searched PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data to identify articles of GCTB radiomics until 31 July 2022. The studies were assessed by radiomics quality score (RQS), transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement, checklist for artificial intelligence in medical imaging (CLAIM), and modified quality assessment of diagnostic accuracy studies (QUADAS-2) tool. The radiomic features selected for model development were documented. RESULTS Nine articles were included. The average of the ideal percentage of RQS, the TRIPOD adherence rate and the CLAIM adherence rate were 26%, 56%, and 57%, respectively. The risk of bias and applicability concerns were mainly related to the index test. The shortness in external validation and open science were repeatedly emphasized. In GCTB radiomics models, the gray level co-occurrence matrix features (40%), first order features (28%), and gray-level run-length matrix features (18%) were most selected features out of all reported features. However, none of the individual feature has appeared repeatably in multiple studies. It is not possible to meta-analyze radiomics features at present. CONCLUSION The quality of GCTB radiomics studies is suboptimal. The reporting of individual radiomics feature data is encouraged. The analysis at the level of radiomics feature has potential to generate more practicable evidence for translating radiomics into clinical application.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhen Pan
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
50
|
Koechli C, Zwahlen DR, Schucht P, Windisch P. Radiomics and machine learning for predicting the consistency of benign tumors of the central nervous system: A systematic review. Eur J Radiol 2023; 164:110866. [PMID: 37207398 DOI: 10.1016/j.ejrad.2023.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE Predicting the consistency of benign central nervous system (CNS) tumors prior to surgery helps to improve surgical outcomes. This review summarizes and analyzes the literature on using radiomics and/or machine learning (ML) for consistency prediction. METHOD The Medical Literature Analysis and Retrieval System Online (MEDLINE) database was screened for studies published in English from January 1st 2000. Data was extracted according to the PRISMA guidelines and quality of the studies was assessed in compliance with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS Eight publications were included focusing on pituitary macroadenomas (n = 5), pituitary adenomas (n = 1), and meningiomas (n = 2) using a retrospective (n = 6), prospective (n = 1), and unknown (n = 1) study design with a total of 763 patients for the consistency prediction. The studies reported an area under the curve (AUC) of 0.71-0.99 for their respective best performing model regarding the consistency prediction. Of all studies, four articles validated their models internally whereas none validated their models externally. Two articles stated making data available on request with the remaining publications lacking information with regard to data availability. CONCLUSIONS The research on consistency prediction of CNS tumors is still at an early stage regarding the use of radiomics and different ML techniques. Best-practice procedures regarding radiomics and ML need to be followed more rigorously to facilitate the comparison between publications and, accordingly, the possible implementation into clinical practice in the future.
Collapse
Affiliation(s)
- Carole Koechli
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland; Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland.
| | - Daniel R Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Philippe Schucht
- Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland
| | - Paul Windisch
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| |
Collapse
|