1
|
Gao H, Tang H, Zheng Z, Yu H, Mao W, Lin Y, Zheng J, Al-Ibraheem A, He Y, Tang W, Yang R, Xie Y, Tan L, Shi H. One-Stop 68 Ga-FAPI/ 18 F-FDG Total-Body PET/CT Scan : More Theranostics Information Available. Clin Nucl Med 2025; 50:e253-e261. [PMID: 39992887 DOI: 10.1097/rlu.0000000000005673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/01/2024] [Indexed: 02/26/2025]
Abstract
PURPOSE This prospective study aims to assess the feasibility of a one-stop imaging protocol using 68 Ga-FAPI-04/ 18 F-FDG dual-radiotracer with dual-low-activity for tumor imaging. PATIENTS AND METHODS Forty patients underwent one-stop 68 Ga-FAPI-04 PET (PET FAPI ) and dual-radiotracer PET (PET DUAL ) using a total-body PET/CT scanner with a 194-cm axial field of view. After a half-dose (0.925 MBq/kg) 68 Ga-FAPI-04 PET/CT, an additional half-dose (1.85 MBq/kg) of 18 F-FDG was administered for a 60-minute dynamic acquisition. PET DUAL was reconstructed at 10-minute intervals (PET D0-10 , PET D10-20 , PET D20-30 , PET D30-40 , PET D40-50 , and PET D50-60 ). Data of lesion detectability, target-to-background ratios, tumor staging, and total radiation dose were analyzed. A target-to-liver ratio (TLR) ≥ 3 on PET FAPI was considered indicative of sufficient fibroblast activation protein expression. RESULTS PET D50-60 and PET FAPI showed similar performance in detecting primary tumors (42 vs 41, P > 0.999). However, significantly more metastatic lesions were identified on PET D50-60 compared with PET FAPI (102 vs 60, P < 0.001). PET FAPI demonstrated significantly higher TLR, target-to-blood-pool ratio, and target-to-normal-tissue ratio than PET DUAL ( P < 0.05). Lesion detectability was similar across PET D10-20 , PET D20-30 , PET D30-40 , PET D40-50 , and PET D50-60 (all P 's > 0.05). Notably, PET D30-40 and PET D40-50 detected all lesions identified by PET D50-60 . PET D40-50 showed no significant differences in TLR, target-to-blood-pool ratio, and target-to-normal-tissue ratio compared with PET D50-60 ( P > 0.05). Up to 94.9% of malignant primary lesions exhibited a TLR ≥ 3 on PET FAPI . The average effective dose was 9.85 ± 2.19 mSv, similar to that of a whole-body 18 F-FDG PET/CT. CONCLUSIONS This one-stop, dual-radiotracer, dual-low-activity imaging protocol combines the strengths of 68 Ga-FAPI-04 and 18 F-FDG, offering a shorter imaging duration and reduced radiation exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiefu Zheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Deleu AL, Shagera QA, Veldhuijzen van Zanten S, Flamen P, Gheysens O, Hautzel H. FAPI PET in the Management of Lung Tumors. Semin Nucl Med 2025; 55:202-211. [PMID: 40037979 DOI: 10.1053/j.semnuclmed.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
Fibroblast activation protein (FAP), selectively expressed on activated fibroblasts in proliferating tissues, is emerging as a promising target in oncology. In lung cancer, the leading cause of cancer-related deaths worldwide, [18F]FDG PET/CT has set the bar high and earned widespread recognition in clinical guidelines for its essential role in staging and follow-up. Yet, FAP-targeted imaging agents like FAPI PET/CT have demonstrated significant potential due to their high tumor specificity, rapid tracer uptake, and low background activity. This review focuses on the role of FAPI PET/CT in lung cancer, highlighting its applications in staging, biomarker evaluation, and clinical management. FAP expression correlates with cancer associated fibroblast-driven tumorigenesis in lung cancer, showing higher expression in nonsmall cell lung cancer (NSCLC) than in small cell lung cancer (SCLC) subtypes. Studies reveal that FAPI PET/CT provides comparable or superior detection rates for primary tumors and metastases compared to [18F]FDG PET/CT, particularly in brain, pleural, and bone lesions. It also enhances accuracy in lymph node staging, influencing disease management by enabling surgical resection in cases misclassified by [18F]FDG PET/CT. Despite these advantages, several challenges remain, such as differentiating benign from malignant lesions, assessing FAPI's prognostic implications or its role in treatment response monitoring. Future directions include exploring FAPI-based theranostics, standardizing radiopharmaceuticals, and conducting well-designed, adequately powered prospective trials. FAPI PET/CT represents a transformative diagnostic tool, complementing or potentially surpassing [18F]FDG PET/CT in precision lung cancer care.
Collapse
Affiliation(s)
- Anne-Leen Deleu
- Department of Nuclear Medicine, Institut Jules Bordet - Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.
| | - Qaid Ahmed Shagera
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet - Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK) - University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Fouillet J, Torchio J, Rubira L, Fersing C. Unveiling the Tumor Microenvironment Through Fibroblast Activation Protein Targeting in Diagnostic Nuclear Medicine: A Didactic Review on Biological Rationales and Key Imaging Agents. BIOLOGY 2024; 13:967. [PMID: 39765634 PMCID: PMC11673949 DOI: 10.3390/biology13120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.
Collapse
Affiliation(s)
- Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Jade Torchio
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
4
|
Zanoni L, Fortunati E, Cuzzani G, Malizia C, Lodi F, Cabitza VS, Brusa I, Emiliani S, Assenza M, Antonacci F, Giunchi F, Degiovanni A, Ferrari M, Natali F, Galasso T, Bandelli GP, Civollani S, Candoli P, D’Errico A, Solli P, Fanti S, Nanni C. [68Ga]Ga-FAPI-46 PET/CT for Staging Suspected/Confirmed Lung Cancer: Results on the Surgical Cohort Within a Monocentric Prospective Trial. Pharmaceuticals (Basel) 2024; 17:1468. [PMID: 39598380 PMCID: PMC11597145 DOI: 10.3390/ph17111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES To evaluate T&N-staging diagnostic performance of [68Ga]Ga-FAPI-46 PET/CT (FAPI) in a suspected/confirmed lung cancer surgical cohort. METHODS Patients were enrolled in a prospective monocentric trial (EudraCT: 2021-006570-23) to perform FAPI, in addition to conventional-staging-flow-chart (including [18F]F-FDG PET/CT-FDG). For the current purpose, only surgical patients were included. PET-semiquantitative parameters were measured for T&N: SUVmax, target-to-background-ratios (using mediastinal blood pool-MBP, liver-L and pulmonary-parenchyma-P). Visual and semiquantitative T&N PET/CT performances were analysed per patient and per region for both tracers, with surgical histopathology as standard-of-truth. RESULTS 63 FAPI scans were performed in 64 patients enrolled (26 May 2022-30 November 2023). A total of 50/63 patients underwent surgery and were included. Agreement (%) with histopathological-T&N-StagingAJCC8thEdition was slightly in favour of FAPI (T-66% vs. 58%, N-78% vs. 70%), increasing when T&N dichotomised (T-92% vs. 80%, N-78% vs. 72%). The performance of Visual-Criteria for T-per patient (n = 50) resulted higher FAPI than FDG. For N-per patient (n = 46), sensitivity and NPV were slightly lower with FAPI. Among 59 T-regions surgically examined, malignancy was excluded in 6/59 (10%). FAPI showed (vs. FDG): sensitivity 85% (vs. 72%), specificity 67% (vs. 50%), PPV 96% (vs. 93%), NPV 33% (vs. 17%), accuracy 83% (vs. 69%). Among 217 N-stations surgically assessed (overall 746 ln removed), only 15/217 (7%) resulted malignant; FAPI showed (vs. FDG): sensitivity 53% (vs. 60%), PPV 53% (vs. 26%), NPV 97% (vs. 97%), and significantly higher specificity (97% vs. 88%, p = 0.001) and accuracy (94% vs. 86%, p = 0.018). Semiquantitative-PET parameters performed similarly, better for N (p < 0.001) than for T, slightly in favour (although not significantly) of FAPI over FDG. CONCLUSIONS In a suspected/confirmed lung cancer surgical cohort, PET/CT performances for preoperative T&Nstaging were slightly in favour of FAPI than FDG (except for suboptimal N-sensitivity), significantly better only for N (region-based) specificity and accuracy using visual assessment. The trial's conventional follow-up is still ongoing; future analyses are pending, including non-surgical findings and theoretical impact on patient management.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Emilia Fortunati
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Giulia Cuzzani
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Claudio Malizia
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Filippo Lodi
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Veronica Serena Cabitza
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Irene Brusa
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Stefano Emiliani
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Marta Assenza
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| | - Filippo Antonacci
- Division of Thoracic Surgery, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (P.S.)
| | - Francesca Giunchi
- Pathology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.D.); (A.D.)
| | - Alessio Degiovanni
- Pathology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.D.); (A.D.)
| | - Marco Ferrari
- Interventional Pulmonology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (F.N.); (T.G.); (G.P.B.); (P.C.)
| | - Filippo Natali
- Interventional Pulmonology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (F.N.); (T.G.); (G.P.B.); (P.C.)
| | - Thomas Galasso
- Interventional Pulmonology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (F.N.); (T.G.); (G.P.B.); (P.C.)
| | - Gian Piero Bandelli
- Interventional Pulmonology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (F.N.); (T.G.); (G.P.B.); (P.C.)
| | - Simona Civollani
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy;
| | - Piero Candoli
- Interventional Pulmonology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (F.N.); (T.G.); (G.P.B.); (P.C.)
| | - Antonietta D’Errico
- Pathology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.D.); (A.D.)
| | - Piergiorgio Solli
- Division of Thoracic Surgery, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (P.S.)
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (E.F.); (C.M.); (F.L.); (V.S.C.); (I.B.); (S.E.); (M.A.); (C.N.)
| |
Collapse
|
5
|
Albano D, Rizzo A, Slart RHJA, Hess S, Noriega-Álvarez E, Wakfie-Corieh CG, Leccisotti L, Glaudemans AWJM, Gheysens O, Treglia G. The Role of Fibroblast Activation Protein Inhibitor Positron Emission Tomography in Inflammatory and Infectious Diseases: An Updated Systematic Review. Pharmaceuticals (Basel) 2024; 17:716. [PMID: 38931383 PMCID: PMC11206476 DOI: 10.3390/ph17060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The role of fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) is emerging for the assessment of non-oncological diseases, such as inflammatory and infectious diseases, even if the evidence in the literature is still in its initial phases. We conducted a systematic search of Scopus, PubMed/MEDLINE, Embase, and Cochrane library databases for studies published before 31 December 2023 reporting infectious and inflammatory disease imaging with FAPI PET/CT. We included twenty-one studies for a total of 1046 patients. The most frequent disease studied was lung interstitial disease, investigated in six studies for a total of 200 patients, followed by bone and joint diseases in two studies and 185 patients, IgG4-related disease in 53 patients, and Crohn's disease in 30 patients. Despite the heterogeneity of studies in terms of study design and technical features, FAPI PET/CT showed a high detection rate and diagnostic role. Moreover, when compared with 2-[18F]FDG PET/CT (n = 7 studies), FAPI PET/CT seems to have better diagnostic performances. The presence of chronic inflammation and tissue remodeling, typical of immune-mediated inflammatory conditions, may be the underlying mechanism of FAPI uptake.
Collapse
Affiliation(s)
- Domenico Albano
- Nuclear Medicine, ASST Spedali Civili Brescia, 25128 Brescia, Italy;
- Nuclear Medicine Department, University of Brescia, 25121 Brescia, Italy
| | - Alessio Rizzo
- Nuclear Medicine Division, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (R.H.J.A.S.); (A.W.J.M.G.)
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Søren Hess
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Edel Noriega-Álvarez
- Department of Nuclear Medicine, University Hospital of Guadalajara, 19002 Guadalajara, Spain;
| | - Cristina Gamila Wakfie-Corieh
- Department of Nuclear Medicine, Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Lucia Leccisotti
- Section of Nuclear Medicine, Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Unit of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (R.H.J.A.S.); (A.W.J.M.G.)
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Giorgio Treglia
- Division of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Novruzov E, Mori Y, Alavi A, Giesel FL. The impact of FAP imaging in lung cancer and beyond: a new chapter. Eur Radiol 2024; 34:1946-1947. [PMID: 37943314 PMCID: PMC10873428 DOI: 10.1007/s00330-023-10398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225, Düsseldorf, Germany, Moorenstrasse 5.
| | - Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225, Düsseldorf, Germany, Moorenstrasse 5
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225, Düsseldorf, Germany, Moorenstrasse 5
| |
Collapse
|
7
|
Cheng K, Li W, Wu H, Li C. Mapping knowledge structure and themes trends of cancer-associated fibroblasts: a text-mining study. Front Mol Biosci 2023; 10:1302016. [PMID: 38111465 PMCID: PMC10725992 DOI: 10.3389/fmolb.2023.1302016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: Cancer-associated fibroblasts (CAFs) constitute an important component of the tumor microenvironment, participating in various facets of cancer advancement and being recognized as contributors to tumor immune evasion. The role of CAFs in various tumor types has attracted increasing attention recently. In this work, we conducted a comprehensive bibliometric analysis to uncover research trajectories and highlight emerging areas in the field of CAFs. Methods: A systematic search was performed within the Web of Science Core Collection to identify articles/reviews on CAFs published between 2000 and 2023. Leveraging advanced bibliometric tools such as VOSviewer, CiteSpace, and online website, we examined and visualized publication trends, geographic contributions, institutional affiliations, journal prominence, author collaborations, and noteworthy references, keywords, and genes. Results: Our analysis included 5,190 publications, indicating a rapid growth trend in both annual publications and citations related to CAFs. China and the United States emerged as the foremost contributors in terms of publications, funding agencies, and international collaborations. Breast cancer was the most studied tumor, followed by colorectal cancer, pancreatic cancer, prostate cancer, and gastric cancer. Based on co-occurrence and bursting keywords, we identified the following research topics including immune cells (T cells, B-cells, tumor-associated macrophages), tumor immune microenvironment (antitumor immunity, immune infiltration, immunosuppression), immunotherapy (PD-L1), microRNAs (miRNA), extracellular vesicles (exosome), multiple tumors (pancreatic ductal adenocarcinoma, bladder cancer, head and neck squamous cell carcinoma), antitumor agents (gemcitabine, cisplatin resistance), bioinformatics (pan-cancer), epithelial-mesenchymal transition (stemness), FAPI PET/CT, DNA methylation, etc., may receive sustained attention in the future. Furthermore, TGFB1, IL-6, TNF, TP53, and VEGFA emerged as the top 5 genes that have garnered the greatest research attention in the field of CAFs. The KEGG enrichment analysis highlighted that the top 20 most studied genes were mainly associated with HIF-1 and Toll-like receptor signaling pathways. Discussion: In sum, our bibliometric analysis offers a comprehensive overview of the research landscape in the field of CAFs. It encompasses the current state, evolving patterns, and prospective avenues of exploration, with special attention to the potential advancements in tumor immune microenvironment.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanqing Li
- Department of Operating Room, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Cheng Li
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Zeng X, Zhao R, Wu Z, Ma Z, Cen C, Gao S, Hong W, Yao Y, Wen K, Ding S, Wang J, Lu W, Wang X, Wang T. [ 18 F] -FAPI-42 PET/CT assessment of Progressive right ventricle fibrosis under pressure overload. Respir Res 2023; 24:270. [PMID: 37932744 PMCID: PMC10626814 DOI: 10.1186/s12931-023-02565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Right heart failure (RHF) is a complication of pulmonary hypertension (PH) and increases the mortality independently of the underlying disease. However, the process of RHF development and progression is not fully understood. We aimed to develop effective approaches for early diagnosis and precise evaluation of RHF. METHODS Right ventricle (RV) pressure overload was performed via pulmonary artery banding (PAB) surgery in Sprague-Dawley (SD) rats to induce RHF. Echocardiography, right heart catheterization, histological staining, fibroblast activation protein (FAP) immunofluorescence and 18 F-labelled FAP inhibitor-42 ([18 F] -FAPI-42) positron emission tomography/computed tomography (PET/CT) were performed at day 3, week 1, 2, 4 and 8 after PAB. RNA sequencing was performed to explore molecular alterations between PAB and sham group at week 2 and week 4 after PAB respectively. RESULTS RV hemodynamic disorders were aggravated, and RV function was declined based on right heart catheterization and echocardiography at week 2, 4 and 8 after PAB. Progressive cardiac hypertrophy, fibrosis and capillary rarefaction could be observed in RV from 2 to 8 weeks after PAB. RNA sequencing indicated 80 upregulated genes and 43 downregulated genes in the RV at both week 2 and week 4 after PAB; Gene Ontology (GO) analysis revealed that fibrosis as the most significant biological process in the RV under pressure overload. Immunofluorescence indicated that FAP was upregulated in the RV from week 2 to week 8 after PAB; and [18 F] -FAPI-42 PET/CT revealed FAPI uptake was significantly higher in RV at week 2 and further increased at week 4 and 8 after PAB. CONCLUSION RV function is progressively declined with fibrosis as the most prominent molecular change after pressure overload, and [18 F] -FAPI-42 PET/CT is as sensitive and accurate as histopathology in RV fibrosis evaluation.
Collapse
Affiliation(s)
- Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhixiong Wu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxian Cen
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Gao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanxian Hong
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanrong Yao
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kexin Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shangwei Ding
- Department of Ultrasound, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinlu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|