1
|
Bai Z, Bai Y, Fang C, Chen W. Oxidative stress-related patterns determination for establishment of prognostic models, and characteristics of tumor microenvironment infiltration. Front Surg 2022; 9:1013794. [PMID: 36386530 PMCID: PMC9665876 DOI: 10.3389/fsurg.2022.1013794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress-mediated excessive accumulation of ROS in the body destroys cell homeostasis and participates in various diseases. However, the relationship between oxidative stress-related genes (ORGs) and tumor microenvironment (TME) in gastric cancer remains poorly understood. For improving the treatment strategy of GC, it is necessary to explore the relationship among them. We describe the changes of ORGs in 732 gastric cancer samples from two data sets. The two different molecular subtypes revealed that the changes of ORGs were associated with clinical features, prognosis, and TME. Subsequently, the OE_score was related to RFS, as confirmed by the correlation between OE_score and TME, TMB, MSI, immunotherapy, stem cell analysis, chemotherapeutic drugs, etc. OE_score can be used as an independent predictive marker for the treatment and prognosis of gastric cancer. Further, a Norman diagram was established to improve clinical practicability. Our research showed a potential role of ORGs in clinical features, prognosis, and tumor microenvironment of gastric cancer. Our research findings broaden the understanding of gastric cancer ORGs as a potential target for individualized treatment of gastric cancer and a new direction to evaluate the prognosis.
Collapse
Affiliation(s)
- Zihao Bai
- Graduate Department, Shanxi Medical University, Taiyuan, China
| | - Yihua Bai
- Graduate Department, Shanxi Medical University, Taiyuan, China
| | - Changzhong Fang
- Graduate Department, Shanxi Medical University, Taiyuan, China
| | - Wenliang Chen
- Department of General Surgery, The 2nd Affiliated Hospital of Shanxi Medical University, Taiyuan, China,Correspondence: Wenliang Chen
| |
Collapse
|
2
|
Hirata A, Utikal J, Yamashita S, Aoki H, Watanabe A, Yamamoto T, Okano H, Bardeesy N, Kunisada T, Ushijima T, Hara A, Jaenisch R, Hochedlinger K, Yamada Y. Dose-dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium. Development 2013; 140:66-75. [PMID: 23222438 DOI: 10.1242/dev.084103] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is a gradient of β-catenin expression along the colonic crypt axis with the highest levels at the crypt bottom. In addition, colorectal cancers show a heterogeneous subcellular pattern of β-catenin accumulation. However, it remains unclear whether different levels of Wnt signalling exert distinct roles in the colonic epithelium. Here, we investigated the dose-dependent effect of canonical Wnt activation on colonic epithelial differentiation by controlling the expression levels of stabilised β-catenin using a doxycycline-inducible transgenic system in mice. We show that elevated levels of Wnt signalling induce the amplification of Lgr5+ cells, which is accompanied by crypt fission and a reduction in cell proliferation among progenitor cells. By contrast, lower levels of β-catenin induction enhance cell proliferation rates of epithelial progenitors without affecting crypt fission rates. Notably, slow-cycling cells produced by β-catenin activation exhibit activation of Notch signalling. Consistent with the interpretation that the combination of Notch and Wnt signalling maintains crypt cells in a low proliferative state, the treatment of β-catenin-expressing mice with a Notch inhibitor turned such slow-cycling cells into actively proliferating cells. Our results indicate that the activation of the canonical Wnt signalling pathway is sufficient for de novo crypt formation, and suggest that different levels of canonical Wnt activations, in cooperation with Notch signalling, establish a hierarchy of slower-cycling stem cells and faster-cycling progenitor cells characteristic for the colonic epithelium.
Collapse
Affiliation(s)
- Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Chen L, Page GP, Mehta T, Feng R, Cui X. Single nucleotide polymorphisms affect both cis- and trans-eQTLs. Genomics 2009; 93:501-8. [PMID: 19248827 DOI: 10.1016/j.ygeno.2009.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/21/2009] [Accepted: 01/31/2009] [Indexed: 11/16/2022]
Abstract
Single nucleotide polymorphisms (SNPs) between microarray probes and RNA targets can affect the performance of expression array by weakening the hybridization. In this paper, we examined the effect of the SNPs on Affymetrix GeneChip probe set summaries and the expression quantitative trait loci (eQTL) mapping results in two eQTL datasets, one from mouse and one from human. We showed that removing SNP-containing probes significantly changed the probe set summaries and the more SNP-containing probes we removed the greater the change. Comparison of the eQTL mapping results between with and without SNP-containing probes showed that less than 70% of the significant eQTL peaks were concordant regardless of the significance threshold. These results indicate that SNPs do affect both probe set summaries and eQTLs (both cis and trans), thus SNP-containing probes should be filtered out to improve the performance of eQTL mapping.
Collapse
Affiliation(s)
- Lang Chen
- Department of Biostatistics, Section on Statistical Genetics, School of Public Health, University of Alabama at Birmingham, AL 35209, USA
| | | | | | | | | |
Collapse
|
4
|
Yamashita S, Wakazono K, Nomoto T, Tsujino Y, Kuramoto T, Ushijima T. Expression quantitative trait loci analysis of 13 genes in the rat prostate. Genetics 2005; 171:1231-8. [PMID: 16079240 PMCID: PMC1456825 DOI: 10.1534/genetics.104.038174] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Differential expression of mRNA among animal strains is one of the mechanisms for their diversity. cDNA microarray analysis of the prostates of BUF/Nac (BUF) and ACI/N (ACI) rats, which show different susceptibility to prostate cancers, found 195 differentially expressed genes. To identify loci that control differential expression of 13 genes with diverse expression levels, their expression levels were measured by quantitative RT-PCR in 89 backcross rats, and expression quantitative trait locus (eQTL) analysis was performed. Nine genes [Aldh1a1, Aldr1, Bmp6, Cdkn1a (p21), Cntn6, Ghr, Jund, Nupr1, and RT1-M3] were controlled by cis-acting loci. Cdkn1a, a cell cycle regulator and a candidate for a prostate cancer susceptibility gene, was mapped to its own locus and had polymorphisms, including a 119-bp insertion in the 5' upstream region in BUF rats. Four genes (Kclr, Pbsn, Psat1, and Ptn) were controlled by trans-acting loci. Pbsn, a prostate-specific gene on chromosome X, was controlled by a QTL on chromosome 8. Depending upon which gene that we selected from the genes widely used for normalization (Actb, Gapd, or Ppia), different QTL were mapped for Kclr, Psat1, and Ptn. Normalization using Actb most appropriately explained the expression levels in a congenic strain for chromosome 3. eQTL analysis with precise measurement of expression levels and appropriate normalization was shown to be effective for mapping loci that control gene expression in vivo.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Yamashita S, Suzuki S, Nomoto T, Kondo Y, Wakazono K, Tsujino Y, Sugimura T, Shirai T, Homma Y, Ushijima T. Linkage and microarray analyses of susceptibility genes in ACI/Seg rats: a model for prostate cancers in the aged. Cancer Res 2005; 65:2610-6. [PMID: 15805257 DOI: 10.1158/0008-5472.can-04-2932] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ACI/Seg (ACI) rats develop prostate cancers spontaneously with aging, similar to humans. Here, to identify genes involved in prostate cancer susceptibility, we did linkage analysis and oligonucleotide microarray analysis. Linkage analysis was done using 118 effective rats, and prostate cancer susceptibility 1 (Pcs1), whose ACI allele dominantly induced prostate cancers, was mapped on chromosome 19 [logarithm of odds (LOD) score of 5.0]. PC resistance 1 (Pcr1), whose ACI allele dominantly and paradoxically suppressed the size of prostate cancers, was mapped on chromosome 2 (LOD score of 5.0). When linkage analysis was done in 51 rats with single or no macroscopic testicular tumors, which had larger prostates and higher testosterone levels than those with bilateral testicular tumors, Pcs2 and Pcr2 were mapped on chromosomes 20 and 1, respectively. By oligonucleotide microarray analysis with 8,800 probe sets and confirmation by quantitative reverse transcription-PCR, only two genes within these four loci were found to be differentially expressed >1.8-fold. Membrane metalloendopeptidase (Mme), known to inhibit androgen-independent growth of prostate cancers, on Pcr1 was expressed 2.0- to 5.5-fold higher in the ACI prostate, in accordance with its paradoxical effect. Cdkn1a on Pcs2 was expressed 1.5- to 4.5-fold lower in the ACI prostate. Additionally, genes responsible for testicular tumors and unilateral renal agenesis were mapped on chromosomes 11 and 14, respectively. These results showed that prostate cancer susceptibility of ACI rats involves at least four loci, and suggested Mme and Cdkn1a as candidates for Pcr1 and Pcs2.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Carcinogenesis Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shutoh M, Oue N, Aung PP, Noguchi T, Kuraoka K, Nakayama H, Kawahara K, Yasui W. DNA methylation of genes linked with retinoid signaling in gastric carcinoma. Cancer 2005; 104:1609-19. [PMID: 16134180 DOI: 10.1002/cncr.21392] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypermethylation of CpG islands has been associated with silencing of various tumor suppressor genes, and the retinoid acid receptor beta (RARbeta), cellular retinol-binding protein 1 (CRBP1), and tazarotene-induced gene 1 (TIG1) genes have been associated with retinoic acid signaling. To the authors' knowledge, little is known regarding the involvement of these three genes in gastric carcinoma (GC). In this study, the authors investigated the methylation status of these genes and analyzed the role of their DNA methylation in GC. METHODS DNA methylation of 3 retinoic acid-associated genes was analyzed in 42 samples of GC from 42 patients and in 8 GC cell lines by methylation-specific polymerase chain reaction (PCR) analysis. The mRNA expression levels for these three genes were measured by quantitative reverse transcription-PCR. RESULTS In 7 of 8 GC cell lines, the CRBP1 gene was hypermethylated, and CRBP1 transcription was inactive. In 6 of 8 GC cell lines, the TIG1 gene was hypermethylated, and TIG1 transcription was inactive. Treatment with demethylating agent 5-aza-2'-deoxycytidine restored both CRBP1 and TIG1 transcription. DNA methylation of the RARbeta, CRBP1, and TIG1 genes was detected in 15 of 42 GC samples (36%), 14 of 42 GC samples (33%), and 4 of 42 GC samples (10%), respectively, and in 6 of 30 samples (20%), 0 of 30 samples (0%), and 1 of 30 samples (3%) of corresponding nonneoplastic mucosa. None of the 10 normal gastric mucosa samples from young, healthy individuals demonstrated hypermethylation of any of these genes. DNA methylation of each gene was associated significantly with low mRNA expression of the respective gene. Twenty-four of 42 GC samples (57%) demonstrated hypermethylation of at least 1 of the 3 genes. However, no significant, concordant hypermethylation of these genes was observed. CONCLUSIONS The results suggested that gastric carcinogenesis involves transcriptional inactivation by aberrant DNA methylation of genes related to retinoid signaling.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Azacitidine/pharmacology
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/pathology
- DNA Methylation
- Female
- Gastric Mucosa/metabolism
- Gastric Mucosa/pathology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Intestinal Neoplasms/genetics
- Intestinal Neoplasms/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Metaplasia/genetics
- Metaplasia/pathology
- Middle Aged
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoids/pharmacology
- Retinol-Binding Proteins/genetics
- Retinol-Binding Proteins/metabolism
- Retinol-Binding Proteins, Cellular
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mariko Shutoh
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Kasumi, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamashita S, Nomoto T, Abe M, Tatematsu M, Sugimura T, Ushijima T. Persistence of gene expression changes in stomach mucosae induced by short-term N-methyl-N'-nitro-N-nitrosoguanidine treatment and their presence in stomach cancers. Mutat Res 2004; 549:185-93. [PMID: 15120970 DOI: 10.1016/j.mrfmmm.2003.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 11/22/2022]
Abstract
Cancers induced by different carcinogens show distinct expression profiles. In addition to the specific alterations of tumor-related genes induced by specific carcinogens, it is possible that some initial responses induced by a carcinogen could persist for long periods and are consistently present in the cancers induced. We have analyzed the initial responses in the rat pyloric mucosae after treatment for 2 weeks with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Gene expression was monitored 1 day, 2 weeks and 4 weeks after MNNG treatment by oligonucleotide microarray analysis. Of the differentially expressed genes showing greater than three-fold difference 1 day after MNNG treatment, 143 and 26 genes were up- and down-regulated, respectively, in MNNG-induced stomach cancers. Among these genes, 25 and 6 genes were up- and down-regulated, respectively, in the histologically normal pyloric mucosae, even 4 weeks after cessation of MNNG treatment. Among the up-regulated genes, many genes involved in tissue remodeling (Spi15, Serpine1 and Fst) and cellular growth (Bdnf, Ros1 and Fgf10) were present. The six down-regulated genes included TGF-beta-inducible early growth response gene. These findings demonstrate that some expression changes induced by MNNG persist for a prolonged period and are present in cancers. Persistent expression changes are considered to be important for prediction of past carcinogen exposure, and could provide a molecular environment favorable for malignant transformation.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Carcinogenesis Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|