1
|
Li J, Chen W, Li D, Gu S, Liu X, Dong Y, Jin L, Zhang C, Li S. Conservation of Imprinting and Methylation of MKRN3, MAGEL2 and NDN Genes in Cattle. Animals (Basel) 2021; 11:1985. [PMID: 34359112 PMCID: PMC8300276 DOI: 10.3390/ani11071985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is the epigenetic mechanism of transcriptional regulation that involves differential DNA methylation modification. Comparative analysis of imprinted genes between species can help us to investigate the biological significance and regulatory mechanisms of genomic imprinting. MKRN3, MAGEL2 and NDN are three maternally imprinted genes identified in the human PWS/AS imprinted locus. This study aimed to assess the allelic expression of MKRN3, MAGEL2 and NDN and to examine the differentially methylated regions (DMRs) of bovine PWS/AS imprinted domains. An expressed single-nucleotide polymorphism (SNP)-based approach was used to investigate the allelic expression of MKRN3, MAGEL2 and NDN genes in bovine adult tissues and placenta. Consistent with the expression in humans and mice, we found that the MKRN3, MAGEL2 and NDN genes exhibit monoallelic expression in bovine somatic tissues and the paternal allele expressed in the bovine placenta. Three DMRs, PWS-IC, MKRN3 and NDN DMR, were identified in the bovine PWS/AS imprinted region by analysis of the DNA methylation status in bovine tissues using the bisulfite sequencing method and were located in the promoter and exon 1 of the SNRPN gene, NDN promoter and 5' untranslated region (5'UTR) of MKRN3 gene, respectively. The PWS-IC DMR is a primary DMR inherited from the male or female gamete, but NDN and MKRN3 DMR are secondary DMRs that occurred after fertilization by examining the methylation status in gametes.
Collapse
Affiliation(s)
- Junliang Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Weina Chen
- Department of Traditional Chinese Medicine, Hebei University, Baoding 071000, China;
| | - Dongjie Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050081, China;
| | - Shukai Gu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Xiaoqian Liu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Yanqiu Dong
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Lanjie Jin
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| |
Collapse
|
2
|
Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, Rodrigues T, Kochi C, Longui CA, Beckers D, de Zegher F, Montenegro LR, Mendonca BB, Carroll RS, Hirschhorn JN, Latronico AC, Kaiser UB. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 2013; 368:2467-75. [PMID: 23738509 PMCID: PMC3808195 DOI: 10.1056/nejmoa1302160] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Early activation of the hypothalamic-pituitary-gonadal axis results in central precocious puberty. The timing of pubertal development is driven in part by genetic factors, but only a few, rare molecular defects associated with central precocious puberty have been identified. METHODS We performed whole-exome sequencing in 40 members of 15 families with central precocious puberty. Candidate variants were confirmed with Sanger sequencing. We also performed quantitative real-time polymerase-chain-reaction assays to determine levels of messenger RNA (mRNA) in the hypothalami of mice at different ages. RESULTS We identified four novel heterozygous mutations in MKRN3, the gene encoding makorin RING-finger protein 3, in 5 of the 15 families; both sexes were affected. The mutations included three frameshift mutations, predicted to encode truncated proteins, and one missense mutation, predicted to disrupt protein function. MKRN3 is a paternally expressed, imprinted gene located in the Prader-Willi syndrome critical region (chromosome 15q11-q13). All affected persons inherited the mutations from their fathers, a finding that indicates perfect segregation with the mode of inheritance expected for an imprinted gene. Levels of Mkrn3 mRNA were high in the arcuate nucleus of prepubertal mice, decreased immediately before puberty, and remained low after puberty. CONCLUSIONS Deficiency of MKRN3 causes central precocious puberty in humans. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Ana Paula Abreu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
4
|
Guo L, Qiao M, Wang C, Zheng R, Xiong YZ, Deng CY. Imprinting analysis of porcine MAGEL2 gene in two fetal stages and association analysis with carcass traits. Mol Biol Rep 2011; 39:147-55. [PMID: 21633897 DOI: 10.1007/s11033-011-0719-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
Abstract
Imprinted genes play an essential role in the regulation of fetal growth, development and function of the placenta, however only a limited number of imprinted genes have been studied in swine. In this study, we cloned and characterized porcine MAGEL2 (melanoma antigen-like gene 2), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 1,193 amino acids was isolated and two single nucleotide polymorphisms (SNPs) (g.2592A>C and g.3277T>C) in the coding region were identified. The reciprocal Yorkshire×Meishan F1 hybrid model and the RT-PCR/RFLP method were used to detect the imprinting status of porcine MAGEL2 gene at two developmental stages of day 30 and 65 of gestation. Imprinting analysis showed that porcine MAGEL2 was paternally expressed in day 65 fetal tissues, including heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, brain and placenta. Interestingly, we observed an imprinting variance of MAGEL2 gene in 30 dpc fetuses produced by the cross of Yorkshire boar×Meishan sow, in which seven heterozygous fetuses were monoallelically expressed from the paternal allele but two were biallelically expressed from both the paternal and maternal alleles. Association analysis in a Yorkshire×Meishan F2 resource population showed that the mutation of g.2592A>C was significantly associated with dressed carcass percentage (P<0.05) and buttock fat thickness (P<0.05). Our results suggest that MAGEL2, as a novel imprinted gene in pig, might be a candidate gene affecting carcass traits and could provide important information for the functional study of imprinted genes during porcine development.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Bressan FF, De Bem THC, Perecin F, Lopes FL, Ambrosio CE, Meirelles FV, Miglino MA. Unearthing the roles of imprinted genes in the placenta. Placenta 2009; 30:823-34. [PMID: 19679348 DOI: 10.1016/j.placenta.2009.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
Mammalian fetal survival and growth are dependent on a well-established and functional placenta. Although transient, the placenta is the first organ to be formed during pregnancy and is responsible for important functions during development, such as the control of metabolism and fetal nutrition, gas and metabolite exchange, and endocrine control. Epigenetic marks and gene expression patterns in early development play an essential role in embryo and fetal development. Specifically, the epigenetic phenomenon known as genomic imprinting, represented by the non-equivalence of the paternal and maternal genome, may be one of the most important regulatory pathways involved in the development and function of the placenta in eutherian mammals. A lack of pattern or an imprecise pattern of genomic imprinting can lead to either embryonic losses or a disruption in fetal and placental development. Genetically modified animals present a powerful approach for revealing the interplay between gene expression and placental function in vivo and allow a single gene disruption to be analyzed, particularly focusing on its role in placenta function. In this paper, we review the recent transgenic strategies that have been successfully created in order to provide a better understanding of the epigenetic patterns of the placenta, with a special focus on imprinted genes. We summarize a number of phenotypes derived from the genetic manipulation of imprinted genes and other epigenetic modulators in an attempt to demonstrate that gene-targeting studies have contributed considerably to the knowledge of placentation and conceptus development.
Collapse
Affiliation(s)
- F F Bressan
- Department of Basic Sciences, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Miri K, Varmuza S. Chapter 5 Imprinting and Extraembryonic Tissues—Mom Takes Control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:215-62. [DOI: 10.1016/s1937-6448(09)76005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Bowers CW, Singer-Sam J. Unique retrotransposon LINE-1 distribution at the Prader-Willi Angelman syndrome locus. J Mol Evol 2007; 65:475-84. [PMID: 17932619 DOI: 10.1007/s00239-007-9043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/13/2007] [Accepted: 09/18/2007] [Indexed: 11/27/2022]
Abstract
We analyzed the distribution of long interspersed nuclear elements (LINE)-1 (L1) along mouse autosomes at a 1-Mb scale, and found a unique combination of high density and strand asymmetry of L1 elements at the imprinted Prader-Willi syndrome/Angelman syndrome (PWS/AS) locus on mouse chromosome 7. This L1 signature overlaps the paternally expressed domain of the locus, excluding the maternally expressed Ube3a gene, and is conserved in rat and human. Unlike the PWS/AS locus, other instances of high L1 density and strand asymmetry in the mouse are not associated with imprinted regions and are not evolutionarily conserved in human. The evolutionary conservation of the L1 signature at the PWS/AS locus despite differences in composition of L1 elements between rodent and human, requires a mechanism for active perpetuation of L1 asymmetry during bursts of L1 activity, and indicates a possible functional role for L1 elements at this locus. Aside from the PWS/AS locus, rodents have a far greater correlation of L1 densities between DNA strands than do humans; we provide evidence that this difference in interstrand correlation between the two taxa is due largely to the difference in average age of the dominant L1 families.
Collapse
Affiliation(s)
- Chauncey W Bowers
- Division of Neurosciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
8
|
Abstract
Imprinted genes are monoallelically expressed in a parent-of-origin-specific manner, but for many genes reported to be imprinted, the occurrence of preferential expression--where both alleles are expressed but one is expressed more strongly than the other in a parent-of-origin-specific way--has been reported. This preferential expression found in genes described as imprinted has not been thoroughly addressed in genomic imprinting studies. To study this phenomenon, 50 genes, reported to be imprinted in the mouse, were chosen for investigation. Preferential expression was observed for 21 of 27 maternally expressed genes. However, only 5 of 23 paternally expressed genes showed preferential expression. Recently, it has been reported that a remarkable proportion of non-imprinted genes show differential allelic expression. If there is overlap between non-imprinted genes that are differentially expressed and imprinted genes that are preferentially expressed, we need to set new definitions of imprinted genes that, in turn, would probably lead to reassessments of the total number of imprinted genes in mammalian species.
Collapse
Affiliation(s)
- Hasan Khatib
- Department of Dairy Science, 1675 Observatory Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
9
|
Schulz R, Menheniott TR, Woodfine K, Wood AJ, Choi JD, Oakey RJ. Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies. Nucleic Acids Res 2006; 34:e88. [PMID: 16855283 PMCID: PMC1524921 DOI: 10.1093/nar/gkl461] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/26/2006] [Accepted: 06/15/2006] [Indexed: 01/06/2023] Open
Abstract
Genomic imprinting refers to a specialized form of epigenetic gene regulation whereby the expression of a given allele is dictated by parental origin. Defining the extent and distribution of imprinting across genomes will be crucial for understanding the roles played by imprinting in normal mammalian growth and development. Using mice carrying uniparental disomies or duplications, microarray screening and stringent bioinformatics, we have developed the first large-scale tissue-specific screen for imprinted gene detection. We quantify the stringency of our methodology and relate it to previous non-tissue-specific large-scale studies. We report the identification in mouse of four brain-specific novel paternally expressed transcripts and an additional three genes that show maternal expression in the placenta. The regions of conserved linkage in the human genome are associated with the Prader-Willi Syndrome (PWS) and Beckwith-Wiedemann Syndrome (BWS) where imprinting is known to be a contributing factor. We conclude that large-scale systematic analyses of this genre are necessary for the full impact of genomic imprinting on mammalian gene expression and phenotype to be elucidated.
Collapse
Affiliation(s)
- Reiner Schulz
- King's College London, School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Medical and Molecular Genetics8th Floor Guy's Tower, London SE1 9RT, UK
| | - Trevelyan R. Menheniott
- King's College London, School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Medical and Molecular Genetics8th Floor Guy's Tower, London SE1 9RT, UK
| | - Kathryn Woodfine
- King's College London, School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Medical and Molecular Genetics8th Floor Guy's Tower, London SE1 9RT, UK
| | - Andrew J. Wood
- King's College London, School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Medical and Molecular Genetics8th Floor Guy's Tower, London SE1 9RT, UK
| | - Jonathan D. Choi
- King's College London, School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Medical and Molecular Genetics8th Floor Guy's Tower, London SE1 9RT, UK
| | - Rebecca J. Oakey
- King's College London, School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Medical and Molecular Genetics8th Floor Guy's Tower, London SE1 9RT, UK
| |
Collapse
|