1
|
Przybylska P, Kuczaj M. The Effects of Two Selected Single Nucleotide Polymorphisms of the Fatty Acid Synthase Gene on the Fat Content and Fatty Acid Profile of Cow's Milk from the Polish Holstein-Friesian Red-and-White Breed versus Two Polish Red-and-White and Polish Red Conservation Breeds Kept in Poland. Animals (Basel) 2024; 14:2268. [PMID: 39123793 PMCID: PMC11311015 DOI: 10.3390/ani14152268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Fatty acid synthase (FASN) is a metabolic enzyme responsible for the synthesis of fatty acids in milk and meat. The SNPs g.841G/C and g.17924A/G of the FASN gene significantly influence the fat and fatty acid content of milk from cows of various breeds. Therefore, these SNPs were selected for this study. This study aimed to analyze the relationship of SNPs and their genotypes with the fat content and fatty acid profile of milk from Polish Red-and-White (ZR), Polish Red (RP), and Polish Holstein-Friesian Red-and-White (RW) cows. Milk samples were obtained during a milking trial. SNP genotyping was performed using the real-time PCR (HRM) method. It was shown that SNPs (with specific genotypes) were significantly associated with the presence of fatty acids such as C18:1n9t and C18:2n6c in milk. In addition, it was found that the milk fat from the ZR (genotypic variant A/G, AA) and RP (genotypic variant GG, A/G) breeds often exhibited a more attractive fatty acids profile than the milk fat from RW cows. This information can be used by both cattle breeders and people interested in consuming functional foods.
Collapse
Affiliation(s)
- Paulina Przybylska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 50-375 Wroclaw, Poland
| | - Marian Kuczaj
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 50-375 Wroclaw, Poland
| |
Collapse
|
2
|
Przybylska P, Kuczaj M. Relationship between Selected SNPs (g.16024A/G, g.16039T/C and g.16060A/C) of the FASN Gene and the Fat Content and Fatty Acid Profile in the Milk of Three Breeds of Cows. Animals (Basel) 2024; 14:1934. [PMID: 38998046 PMCID: PMC11240365 DOI: 10.3390/ani14131934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Fat is an important energy and nutritional component of milk and consists of fatty acids. FASN (fatty acid synthase) is an enzyme that regulates the synthesis of fatty acids in the milk and meat of cattle. It was hypothesized that knowing the relationships between the genotypes of the tested single nucleotide polymorphisms (SNPs) and the content of fat and specific fatty acids would make it possible to improve milk quality in the selection process during cattle breeding. This study aimed to analyze the relationships of SNPs (g.16024A/G, g.16039T/C) of the FASN gene and their genotypes with the fat and fatty acid content of the milk of the following breeds: Polish Red-White (ZR), Polish Red (RP), and Polish Holstein-Friesian Red-White (RW). The SNP g.16060A/C was included in the study, although its effect on the fat composition of cow's milk has not yet been widely studied. Milk was obtained during test milkings. SNP genotyping was performed using the real-time PCR (HRM) method. The milk from ZR and RP cows was more often characterized by a more favorable fatty acid profile than the milk from RW cows. This information can be used by cattle breeders and consumers of so-called functional food.
Collapse
Affiliation(s)
- Paulina Przybylska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 50-375 Wroclaw, Poland
| | - Marian Kuczaj
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 50-375 Wroclaw, Poland
| |
Collapse
|
3
|
Singh A, Malla WA, Kumar A, Jain A, Thakur MS, Khare V, Tiwari SP. Review: genetic background of milk fatty acid synthesis in bovines. Trop Anim Health Prod 2023; 55:328. [PMID: 37749432 DOI: 10.1007/s11250-023-03754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Milk fat composition is an important trait for the dairy industry as it directly influences the nutritional and technological properties of milk and other dairy products. The synthesis of milk fat is a complex process regulated by a network of genes. Thus, understanding the genetic variation and molecular mechanisms regulating milk fat synthesis will help to improve the nutritional quality of dairy products. In this review, we provide an overview of milk fat synthesis in bovines along with the candidate genes involved in the pathway. We also discuss de novo synthesis of fatty acids (ACSS, ACACA, FASN), uptake of FAs (FATP, FAT, LPL), intracellular activation and channelling of FAs (ACSL, FABP), elongation (EVOLV6), desaturation (SCD, FADS), formation of triglycerides (GPAM, AGPAT, LIPIN, DGAT), and milk lipid secretion (BTN1A1, XDH, PLIN2). The genetic variability of individual fatty acids will help to develop selection strategies for obtaining a healthier milk fat profile in bovines. Thus, this review will offer a potential understanding of the molecular mechanisms that regulate milk fat synthesis in bovines.
Collapse
Affiliation(s)
- Akansha Singh
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India.
| | - Waseem Akram Malla
- ICMR-National Institute of Malaria Research, Field Unit Guwahati, Assam, 781022, India
| | - Amit Kumar
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Asit Jain
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| | - Mohan Singh Thakur
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| | - Vaishali Khare
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| | - Sita Prasad Tiwari
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| |
Collapse
|
4
|
Wen Y, Li S, Bao G, Wang J, Liu X, Hu J, Zhao F, Zhao Z, Shi B, Luo Y. Comparative Transcriptome Analysis Reveals the Mechanism Associated With Dynamic Changes in Meat Quality of the Longissimus Thoracis Muscle in Tibetan Sheep at Different Growth Stages. Front Vet Sci 2022; 9:926725. [PMID: 35873690 PMCID: PMC9298548 DOI: 10.3389/fvets.2022.926725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Tibetan sheep are mainly distributed in the Qinghai–Tibet Plateau. Its meat is not only essential for the local people but also preferred by the non-inhabitant of this plateau also. To investigate the salient development features and molecular mechanism of the meat difference of LT muscle caused by different growth stages in Tibetan sheep, the carcass performance, meat quality, and comparative transcriptome analysis were performed for investigating the potential molecular mechanism of the meat quality difference of the LT muscle caused by four growth stages [4-months old (4 months), 1.5-years old (1.5 years), 3.5-years old (3.5 years), and 6-years old (6 years)] in the Tibetan sheep. The shear force increased with the increase of age (p < 0.05) while the intramuscular fat (IMF) was the highest at 1.5 y. The AMPK signaling pathway was significantly enriched in the four comparative groups. The weighted gene co-expression network analysis (WGCNA) results showed that the hub genes P4HA2, FBXL4, and PPARA were identified to regulate the meat quality. In summary, 1.5 years was found to be the most suitable slaughter age of the Tibetan sheep which ensured better meat tenderness and higher IMF content. Moreover, the genes LIPE, LEP, ADIPOQ, SCD, and FASN may regulate the transformation of the muscle fiber types through the AMPK signaling pathway, further affecting the meat quality.
Collapse
Affiliation(s)
- Yuliang Wen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Towards Sustainable Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids in Northern Australian Tropical Crossbred Beef Steers through Single Nucleotide Polymorphisms in Lipogenic Genes for Meat Eating Quality. SUSTAINABILITY 2022. [DOI: 10.3390/su14148409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to identify single nucleotide polymorphisms (SNP) in lipogenic genes of northern Australian tropically adapted crossbred beef cattle and to evaluate associations with healthy lipid traits of the Longissimus dorsi (loin eye) muscle. The hypothesis tested was that there are significant associations between SNP loci encoding for the fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD) and fatty acid synthase (FASN) genes and human health beneficial omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA) within the loin eye muscle of northern Australian crossbred beef cattle. Brahman, Charbray, and Droughtmaster crossbred steers were fed on Rhodes grass hay augmented with desmanthus, lucerne, or both, for 140 days and the loin eye muscle sampled for intramuscular fat (IMF), fat melting point (FMP), and fatty acid composition. Polymorphisms in FABP4, SCD, and FASN genes with significant effects on lipid traits were identified with next-generation sequencing. The GG genotype at the FABP4 g.44677239C>G locus was associated with higher proportion of linoleic acid than the CC and CG genotypes (p < 0.05). Multiple comparisons of genotypes at the SCD g.21266629G>T locus indicated that the TT genotype had significantly higher eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids than GG genotype (p < 0.05). Significant correlations (p < 0.05) between FASN SNP and IMF, saturated and monounsaturated fatty acids were observed. These results provide insights into the contribution of lipogenic genes to intramuscular fat deposition and SNP marker-assisted selection for improvement of meat-eating quality, with emphasis on alternate and sustainable sources of ω3 LC-PUFA, in northern Australian tropical crossbred beef cattle, hence an acceptance of the tested hypothesis.
Collapse
|
6
|
Association of variants in FABP4, FASN, SCD, SREBP1 and TCAP genes with intramuscular fat, carcass traits and body size in Chinese Qinchuan cattle. Meat Sci 2022; 192:108882. [PMID: 35714427 DOI: 10.1016/j.meatsci.2022.108882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/17/2022]
Abstract
This study aimed to genotype the variants in FABP4, FASN, SCD, SREBP1 and TCAP genes, and to analyze their associations with intramuscular fat (IMF) content, carcass traits and body size in Chinese Qinchuan cattle (QC). The association studies showed that the FABP4 c.220A > G polymorphism was significantly associated with ultrasound longissimus muscle depth (ULMD) and IMF, the FASN g.16024A > G polymorphism was significantly associated with ULMD and some body size traits, the SREBP1 84 bp indel was significantly associated with back fat thickness, ULMD and some body size traits. The frequencies of well-characterized A allele in FABP4 c.220A > G in Korean cattle (KOR) and Japanese Black cattle (JB), T allele in SCD g.8586C > T in KOR, SS genotype in SREBP1 84 bp indel in KOR and JB, DELDEL genotype in TCAP g.592-597CTGCAGinsdel in KOR were significantly higher than in Chinese cattle breeds. Thus, the associated four polymorphisms were expected to be genetic selection markers for meat quality, carcass traits and body size of QC.
Collapse
|
7
|
Yao W, Luo J, Tian H, Niu H, An X, Wang X, Zang S. Malonyl/Acetyltransferase (MAT) Knockout Decreases Triacylglycerol and Medium-Chain Fatty Acid Contents in Goat Mammary Epithelial Cells. Foods 2022; 11:foods11091291. [PMID: 35564013 PMCID: PMC9104349 DOI: 10.3390/foods11091291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Malonyl/acetyltransferase (MAT) is a crucial functional domain of fatty acid synthase (FASN), which plays a vital role in the de novo synthesis of fatty acids in vivo. Milk fatty acids are secreted by mammary epithelial cells. Mammary epithelial cells are the units of mammary gland development and function, and it is a common model for the study of mammary gland tissue development and lactation. This study aimed to investigate the effects of MAT deletion on the synthesis of triacylglycerol and medium-chain fatty acids. The MAT domain was knocked out by CRISPR/Cas9 in the goat mammary epithelial cells (GMECs), and in MAT knockout GMECs, the mRNA level of FASN was decreased by approximately 91.19% and the protein level decreased by 51.83%. The results showed that MAT deletion downregulated the contents of triacylglycerol and medium-chain fatty acids (p < 0.05) and increased the content of acetyl-Coenzyme A (acetyl-CoA) (p < 0.001). Explicit deletion of MAT resulted in significant drop of FASN, which resulted in downregulation of LPL, GPAM, DGAT2, PLIN2, XDH, ATGL, LXRα, and PPARγ genes in GMECs (p < 0.05). Meanwhile, mRNA expression levels of ACC, FASN, DGAT2, SREBP1, and LXRα decreased following treatment with acetyl-CoA (p < 0.05). Our data reveals that FASN plays critical roles in the synthesis of medium-chain fatty acids and triacylglycerol in GMECs.
Collapse
|
8
|
Salgado Pardo JI, Delgado Bermejo JV, González Ariza A, León Jurado JM, Marín Navas C, Iglesias Pastrana C, Martínez Martínez MDA, Navas González FJ. Candidate Genes and Their Expressions Involved in the Regulation of Milk and Meat Production and Quality in Goats ( Capra hircus). Animals (Basel) 2022; 12:ani12080988. [PMID: 35454235 PMCID: PMC9026325 DOI: 10.3390/ani12080988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary During the present decade, highly selected caprine farming has increased in popularity due to the hardiness and adaptability inherent to goats. Recent advances in genetics have enabled the improvement in goat selection efficiency. The present review explores how genetic technologies have been applied to the goat-farming sector in the last century. The main candidate genes related to economically relevant traits are reported. The major source of income in goat farming derives from the sale of milk and meat. Consequently, yield and quality must be specially considered. Meat-related traits were evaluated considering three functional groups (weight gain, carcass quality and fat profile). Milk traits were assessed in three additional functional groups (milk production, protein and fat content). Abstract Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered an appropriate approach to elucidate the physiological mechanisms involved in the regulation of the expression of functional traits. This is especially relevant when such functional traits are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic map and the specific phenotypic outcomes that may arise due to the regulation of their expression act as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of the available literature regarding the main candidate genes involved in meat and milk production and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research, given that the assessment, determination and characterization of the genes associated with desirable phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding programs in future and ensure their sustainability.
Collapse
Affiliation(s)
- Jose Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - José Manuel León Jurado
- Agropecuary Provincial Center of Córdoba, Provincial Council of Córdoba, 14014 Córdoba, Spain;
| | - Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Carlos Iglesias Pastrana
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - María del Amparo Martínez Martínez
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
- Institute of Agricultural Research and Training (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-63-853-5046 (ext. 621262)
| |
Collapse
|
9
|
Bao G, Li S, Zhao F, Wang J, Liu X, Hu J, Shi B, Wen Y, Zhao L, Luo Y. Comprehensive Transcriptome Analysis Reveals the Role of lncRNA in Fatty Acid Metabolism in the Longissimus Thoracis Muscle of Tibetan Sheep at Different Ages. Front Nutr 2022; 9:847077. [PMID: 35369085 PMCID: PMC8964427 DOI: 10.3389/fnut.2022.847077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays an important regulatory role in mammalian adipogenesis and lipid metabolism. However, their function in the longissimus thoracis (LT) muscle of fatty acid metabolism of Tibetan sheep remains undefined. In this study, fatty acid and fat content in LT muscle of Tibetan sheep were determined, and RNA sequencing was performed to reveal the temporal regularity of lncRNA expression and the effect of lncRNA-miRNA-mRNA ceRNA regulatory network on lipid metabolism of LT muscle in Tibetan sheep at four growth stages (4-month-old, 4 m; 1.5-year-old, 1.5 y; 3.5-year-old, 3.5 y; 6-year-old, 6 y). The results indicated that the intramuscular fat (IMF) content was highest at 1.5 y. Moreover, the monounsaturated fatty acid (MUFA) content in 1.5 y of Tibetan sheep is significantly higher than those of the other groups (P < 0.05), and it was also rich in a variety of polyunsaturated fatty acids (PUFA). A total of 360 differentially expressed lncRNAs (DE lncRNAs) were identified from contiguous period transcriptome comparative groups of 4 m vs. 1.5 y, 1.5 y vs. 3.5 y, 3.5 y vs. 6 y, and 4 m vs. 6 y, respectively. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis found that the target genes in lncRNA trans-mRNA were significantly related to the protein digestion, absorption, and fatty acid biosynthesis pathways (P < 0.05), which demonstrated that DE lncRNA trans-regulated the target genes, and further regulated the growth and development of the LT muscle and intramuscular fatty acid metabolism in Tibetan sheep. We further analyzed the role of the lncRNA-miRNA-mRNA regulatory network in the lipid metabolism of Tibetan sheep. Additionally, GPD2, LIPE (lipase E hormone-sensitive enzyme), TFDP2, CPT1A, ACACB, ADIPOQ, and other mRNA related to fatty acid and lipid metabolism and the corresponding lncRNA-miRNA regulatory pairs were identified. The enrichment analysis of mRNA in the regulatory network found that the AMPK signaling pathway was the most significantly enriched (P = 0.0000112361). Comprehensive transcriptome analysis found that the LIPE, ADIPOQ, ACACB, and CPT1A that were regulated by lncRNA might change the formation of energy metabolism in Tibetan sheep muscle through the AMPK signaling pathway, and oxidized muscle fibers are transformed into glycolytic muscle fibers, reduced IMF content, and the fatty acid profile also changed.
Collapse
Affiliation(s)
- Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuliang Wen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Bao G, Zhao F, Wang J, Liu X, Hu J, Shi B, Wen Y, Zhao L, Luo Y, Li S. Characterization of the circRNA–miRNA–mRNA Network to Reveal the Potential Functional ceRNAs Associated With Dynamic Changes in the Meat Quality of the Longissimus Thoracis Muscle in Tibetan Sheep at Different Growth Stages. Front Vet Sci 2022; 9:803758. [PMID: 35433904 PMCID: PMC9011000 DOI: 10.3389/fvets.2022.803758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/23/2022] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) have a regulatory role in animal skeletal muscle development. In this study, RNA sequencing was performed to reveal the temporal regularity of circRNA expression and the effect of the circRNA–miRNA–mRNA ceRNA regulatory network on the meat quality of longissimus thoracis (LT) muscle in Tibetan sheep at different growth stages (4 months old, 4 m; 1.5 years old, 1.5 y; 3.5 years old, 3.5 y; 6 years old, 6 y). There were differences in the carcass performance and meat quality of Tibetan sheep at different ages. Especially, the meat tenderness significantly decreased (p < 0.05) with the increase of age. GO functional enrichment indicated that the source genes of the DE circRNAs were mainly involved in the protein binding, and myofibril and organelle assembly. Moreover, there was a significant KEGG enrichment in the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, as well as the calcium signaling pathway, regulating the pluripotency of the stem cells. The circRNA–miRNA–mRNA ceRNA interaction network analysis indicated that circRNAs such as circ_000631, circ_000281, and circ_003400 combined with miR-29-3p and miR-185-5p regulate the expression of LEP, SCD, and FASN related to the transformation of muscle fiber types in the AMPK signaling pathway. The oxidized muscle fibers were transformed into the glycolytic muscle fibers with the increase of age, the content of intramuscular fat (IMF) was lowered, and the diameter of the muscle fiber was larger in the glycolytic muscle fibers, ultimately increasing the meat tenderness. The study revealed the role of the circRNAs in the transformation of skeletal muscle fiber types in Tibetan sheep and its influence on meat quality. It improves our understanding of the role of circRNAs in Tibetan sheep muscle development.
Collapse
Affiliation(s)
- Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuliang Wen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Lv H, Meng Q, Wang N, Duan X, Hou X, Lin Y. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) regulates acetate- and β-hydroxybutyrate-induced milk fat synthesis by increasing FASN expression in mammary epithelial cells of dairy cows. J Dairy Sci 2021; 104:6212-6221. [PMID: 33663853 DOI: 10.3168/jds.2020-18975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
Increasing acetate and β-hydroxybutyrate (BHB) supply to lactating cows will increase milk fat synthesis. However, the underlying molecular mechanism remains largely unknown. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) is a lipid droplet-associated protein that promotes intracellular triacylglycerol accumulation. In the present study, using gene overexpression and knockdown, we detected the contributions of CIDEC on milk fat synthesis in mammary epithelial cells of dairy cows in the presence of acetate and BHB. The results showed that knockdown of CIDEC decreased fatty acid synthase (FASN) expression and intracellular triacylglycerol content, whereas overexpression of CIDEC had the opposite effect. The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) regulates cell growth and differentiation in the mammary gland. We demonstrated that the FASN promoter had a canonical C/EBPβ binding sequence. CEBPB overexpression upregulated FASN expression and milk fat synthesis, whereas CEBPB knockdown had the opposite effect. Moreover, knockdown of CEBPB attenuated the promoting effects of CIDEC on acetate- and BHB-induced FASN transcription. Taken together, our data showed that acetate and BHB induced FASN expression in mammary epithelial cells of dairy cows in a CIDEC-C/EBPβ-dependent manner, which provides new insights into the understanding of the molecular events involved in milk fat synthesis.
Collapse
Affiliation(s)
- He Lv
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Qingyu Meng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Nan Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Duan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ye Lin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
A Non-Synonymous Single Nucleotide Polymorphism in FASN Gene Alters FASN Enzyme Activity in Subcutaneous and Intramuscular Adipose Tissue in Holstein Friesian Steers. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The FASN enzyme plays a key role in fatty acids synthesis as the main long-chain fatty acid synthesizer. A non-synonymous SNP (single nucleotide polymorphism) (g.17925A>G) located in the thioesterase domain of this enzyme and an effect in fat deposition has been observed, but has not been evaluated in this breed and, moreover, the reason whereby this occurs remains unclear. The objective of this study was to evaluate the effect of this SNP on the activity of FASN enzyme in subcutaneous and intramuscular adipose tissue from Holstein Friesian steers. To achieve this, 196 animals were sampled in a local abattoir, genotyped for the FASN g.17924A>G SNP and characterized for fatty acid profile. Then a sub-sample of 20 animals per genotype were selected to extract the total protein from subcutaneous and intramuscular adipose tissue to estimate the FASN enzyme activity. The FASN activity for each genotyped animal was assessed indirectly by measuring the decrease in the absorbance of NADPH at 340 nm by spectrophotometry in a 24 well plate in the presence of Acetyl-CoA, Malonyl-CoA, and NADPH. To assess the impact of SNP induced amino acid changes in FASN protein structure, in-silico simulations were performed. Our results indicated that FASN g.17924A>G SNP induces a change in the enzyme activity in subcutaneous adipose tissue, which is higher when the AA genotype is present and lower in the presence of the AG genotype. The in-silico analysis of the amino acid substitution shows that there was a structural change in the dimeric form of the protein between genotypes. Moreover, the global energy between subunits is lower and more favorable when the AA genotype is present and higher and less favorable for the AG genotype. It was also found that the fatty acid profile of subcutaneous adipose tissue was affected when the AG genotype was present, decreasing the C16:0 fatty acid levels and increasing the C18:0 fatty acid levels. The FASN g.17924A>G SNP alters the FASN enzyme structure and activity, leading to a variation in the fatty acid composition of subcutaneous adipose tissue in Holstein Friesian steers. Implications: This SNP could be considered as a tool to improve the fat deposition or marbling and the fatty acid profile in cattle.
Collapse
|
13
|
Pećina M, Ivanković A. Candidate genes and fatty acids in beef meat, a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1991240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mateja Pećina
- Zavod za specijalno stočarstvo, Sveučilište u Zagrebu Agronomski fakultet, Zagreb, Hrvatska
| | - Ante Ivanković
- Zavod za specijalno stočarstvo, Sveučilište u Zagrebu Agronomski fakultet, Zagreb, Hrvatska
| |
Collapse
|
14
|
Li C, Zhu J, Shi H, Luo J, Zhao W, Shi H, Xu H, Wang H, Loor JJ. Comprehensive Transcriptome Profiling of Dairy Goat Mammary Gland Identifies Genes and Networks Crucial for Lactation and Fatty Acid Metabolism. Front Genet 2020; 11:878. [PMID: 33101357 PMCID: PMC7545057 DOI: 10.3389/fgene.2020.00878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022] Open
Abstract
Milk fatty acids secreted by the mammary gland are one of the most important determinants of the nutritional value of goat milk. Unlike cow milk, limited data are available on the transcriptome-wide changes across stages of lactation in dairy goats. In this study, goat mammary gland tissue collected at peak lactation, cessation of milking, and involution were analyzed with digital gene expression (DGE) sequencing to generate longitudinal transcript profiles. A total of 51,299 unigenes were identified and further annotated to 12,763 genes, of which 9,131 were differentially expressed across various stages of lactation. Most abundant genes and differentially expressed genes (DEGs) were functionally classified through clusters of euKaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 16 possible expression patterns were uncovered, and 13 genes were deemed novel candidates for regulation of lactation in the goat: POLG, SPTA1, KLC, GIT2, COPS3, PDP, CD31, USP16/29/37, TLL1, NCAPH, ABI2, DNAJC4, and MAPK8IP3. In addition, PLA2, CPT1, PLD, GGA, SRPRB, and AP4S1 are proposed as novel and promising candidates regulating mammary fatty acid metabolism. “Butirosin and neomycin biosynthesis” and “Glyoxylate and dicarboxylate metabolism” were the most impacted pathways, and revealed novel metabolic alterations in lipid metabolism as lactation progressed. Overall, the present study provides new insights into the synthesis and metabolism of fatty acids and lipid species in the mammary gland along with more detailed information on molecular regulation of lactogenesis. The major findings will benefit efforts to further improve milk quality in dairy goats.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangjiang Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hengbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wangsheng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huifen Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
15
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes (Basel) 2020; 11:E587. [PMID: 32466330 PMCID: PMC7288343 DOI: 10.3390/genes11050587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28-39°C), high n-3 LC-PUFA EPA+DHA content (33-69mg/100g), marbling (3.4-8.2%), tenderness (20.0-38.5N) and overall consumer liking (7.9-8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition-genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, New South Wales 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| |
Collapse
|
16
|
Wang Q, Bovenhuis H. Combined use of milk infrared spectra and genotypes can improve prediction of milk fat composition. J Dairy Sci 2019; 103:2514-2522. [PMID: 31882213 DOI: 10.3168/jds.2019-16784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
It has been shown that milk infrared (IR) spectroscopy can be used to predict detailed milk fat composition. In addition, polymorphisms with substantial effects on milk fat composition have been identified. In this study, we investigated the combined use of milk IR spectroscopy and genotypes of dairy cows on the accuracy of predicting milk fat composition. Milk fat composition data based on gas chromatography and milk IR spectra were available for 1,456 Dutch Holstein Friesian cows. In addition, genotypes for the diacylglycerol acyltransferase 1 (DGAT1) K232A and stearoyl-CoA desaturase 1 (SCD1) A293V polymorphisms and a SNP located in an intron of the fatty acid synthase (FASN) gene were available. Adding SCD1 genotypes to the milk IR spectra resulted in a considerable improvement of the prediction accuracy for the unsaturated fatty acids C10:1, C12:1, C14:1 cis-9, and C16:1 cis-9 and their corresponding unsaturation indices. Adding DGAT1 genotypes to the milk IR spectra resulted in an improvement of the prediction accuracy for C16:1 cis-9 and C16 index. Adding genotypes of the FASN SNP to the IR spectra did not improve prediction of milk fat composition. This study demonstrated the potential of combining milk IR spectra with genotypic information from 3 polymorphisms to predict milk fat composition. We hypothesize that prediction accuracy of milk fat composition can be further improved by combining milk IR spectra with genomic breeding values.
Collapse
Affiliation(s)
- Qiuyu Wang
- Animal Breeding and Genomics, Wageningen University, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
17
|
Mwangi FW, Charmley E, Gardiner CP, Malau-Aduli BS, Kinobe RT, Malau-Aduli AEO. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. Foods 2019; 8:E648. [PMID: 31817572 PMCID: PMC6963535 DOI: 10.3390/foods8120648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
A comprehensive review of the impact of tropical pasture grazing, nutritional supplementation during feedlot finishing and fat metabolism-related genes on beef cattle performance and meat-eating traits is presented. Grazing beef cattle on low quality tropical forages with less than 5.6% crude protein, 10% soluble starches and 55% digestibility experience liveweight loss. However, backgrounding beef cattle on high quality leguminous forages and feedlot finishing on high-energy diets increase meat flavour, tenderness and juiciness due to improved intramuscular fat deposition and enhanced mono- and polyunsaturated fatty acids. This paper also reviews the roles of stearoyl-CoA desaturase, fatty acid binding protein 4 and fatty acid synthase genes and correlations with meat traits. The review argues that backgrounding of beef cattle on Desmanthus, an environmentally well-adapted and vigorous tropical legume that can persistently survive under harsh tropical and subtropical conditions, has the potential to improve animal performance. It also identifies existing knowledge gaps and research opportunities in nutrition-genetics interactions aimed at a greater understanding of grazing nutrition, feedlot finishing performance, and carcass traits of northern Australian tropical beef cattle to enable red meat industry players to work on marbling, juiciness, tenderness and overall meat-eating characteristics.
Collapse
Affiliation(s)
- Felista W. Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (F.W.M.); (C.P.G.); (R.T.K.)
| | - Edward Charmley
- CSIRO Agriculture and Food, Private Mail Bag Aitkenvale, Australian Tropical Sciences and Innovation Precinct, James Cook University, Townsville, QLD 4811, Australia;
| | - Christopher P. Gardiner
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (F.W.M.); (C.P.G.); (R.T.K.)
| | - Bunmi S. Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert T. Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (F.W.M.); (C.P.G.); (R.T.K.)
| | - Aduli E. O. Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (F.W.M.); (C.P.G.); (R.T.K.)
| |
Collapse
|
18
|
Zhou J, Liu L, Chen CJ, Zhang M, Lu X, Zhang Z, Huang X, Shi Y. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genomics 2019; 20:827. [PMID: 31703627 PMCID: PMC6842163 DOI: 10.1186/s12864-019-6224-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Background Dual-purpose cattle are more adaptive to environmental challenges than single-purpose dairy or beef cattle. Balance among milk, reproductive, and mastitis resistance traits in breeding programs is therefore more critical for dual-purpose cattle to increase net income and maintain well-being. With dual-purpose Xinjiang Brown cattle adapted to the Xinjiang Region in northwestern China, we conducted genome-wide association studies (GWAS) to dissect the genetic architecture related to milk, reproductive, and mastitis resistance traits. Phenotypic data were collected for 2410 individuals measured during 1995–2017. By adding another 445 ancestors, a total of 2855 related individuals were used to derive estimated breeding values for all individuals, including the 2410 individuals with phenotypes. Among phenotyped individuals, we genotyped 403 cows with the Illumina 150 K Bovine BeadChip. Results GWAS were conducted with the FarmCPU (Fixed and random model circulating probability unification) method. We identified 12 markers significantly associated with six of the 10 traits under the threshold of 5% after a Bonferroni multiple test correction. Seven of these SNPs were in QTL regions previously identified to be associated with related traits. One identified SNP, BovineHD1600006691, was significantly associated with both age at first service and age at first calving. This SNP directly overlapped a QTL previously reported to be associated with calving ease. Within 160 Kb upstream and downstream of each significant SNP identified, we speculated candidate genes based on functionality. Four of the SNPs were located within four candidate genes, including CDH2, which is linked to milk fat percentage, and GABRG2, which is associated with milk protein yield. Conclusions These findings are beneficial not only for breeding through marker-assisted selection, but also for genome editing underlying the related traits to enhance the overall performance of dual-purpose cattle.
Collapse
Affiliation(s)
- Jinghang Zhou
- School of Agriculture, Ningxia University, Yinchuan, China.,Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Liyuan Liu
- School of Agriculture, Ningxia University, Yinchuan, China.,Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Chunpeng James Chen
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xin Lu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA.
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| | - Yuangang Shi
- School of Agriculture, Ningxia University, Yinchuan, China.
| |
Collapse
|
19
|
Shi B, Jiang Y, Chen Y, Zhao Z, Zhou H, Luo Y, Hu J, Hickford JGH. Variation in the Fatty Acid Synthase Gene ( FASN) and Its Association with Milk Traits in Gannan Yaks. Animals (Basel) 2019; 9:ani9090613. [PMID: 31461906 PMCID: PMC6770907 DOI: 10.3390/ani9090613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022] Open
Abstract
Fatty acid synthase (FASN) is an enzyme involved in the synthesis of fatty acids (FA) and plays a central role in de novo lipogenesis in mammals. This study was conducted to ascertain the relative level of expression of the FASN gene (FASN) in tissues from the yak (Bos grunniens), and to search for variation in two regions of yak FASN using polymerase chain reaction single-stranded conformational polymorphism (PCR-SSCP) analyses; it also ascertains whether that variation is associated with yak milk traits. The gene was found to be expressed in twelve tissues, with the highest expression detected in the mammary gland, followed by subcutaneous fat tissue. Two regions of the gene were analyzed in 290 Gannan yaks: A region spanning exon 24-intron 24 and a region spanning exon 34. These regions both produced two PCR-SSCP patterns, which, upon sequencing, represented different DNA sequences. This sequence variation resulted from the presence of three nucleotide substitutions: c.4296+38C/T (intron 24), c.5884A/G, and c.5903G/A, both located in exon 34. The exon 34 substitutions would result in the amino acid substitutions p.Thr1962Ala and p.Gly1968Glu if expressed. Four haplotypes spanning from the exon 24-intron 24 region to exon 34 were identified. Of these, two were common (A1-A2 and B1-A2), and two were rare (A1-B2 and B1-B2) in the yaks investigated. The presence of A1-A2 was associated with an increase in milk fat content (p = 0.050) and total milk solid content (p = 0.037), while diplotype A1-A2/B1-A2 had a higher milk fat content (p = 0.038) than the other diplotypes. This study suggests that further characterization of the FASN gene might provide for an improved understanding of milk traits in yaks.
Collapse
Affiliation(s)
- Bingang Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanyan Jiang
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanli Chen
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Yuzhu Luo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
20
|
Matsumoto H, Kawaguchi F, Itoh S, Yotsu S, Fukuda K, Oyama K, Mannen H, Sasazaki S. The SNPs in bovine MMP14 promoter influence on fat-related traits. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Wang Q, Bovenhuis H. Genome-wide association study for milk infrared wavenumbers. J Dairy Sci 2018; 101:2260-2272. [DOI: 10.3168/jds.2017-13457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022]
|
22
|
Guo J, Niu Y, Shin K, Kwon J, Kim N, Cui X. Fatty acid synthase knockout impairs early embryonic development via induction of endoplasmic reticulum stress in pigs. J Cell Physiol 2017; 233:4225-4234. [DOI: 10.1002/jcp.26241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Guo
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative MedicineHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbinChina
| | - Ying‐Jie Niu
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Kyung‐Tae Shin
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Jeong‐Woo Kwon
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Xiang‐Shun Cui
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| |
Collapse
|
23
|
Raza SHA, Gui L, Khan R, Schreurs NM, Xiaoyu W, Wu S, Mei C, Wang L, Ma X, Wei D, Guo H, Zhang S, Wang X, Kaleri HA, Zan L. Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle. Gene 2017; 645:55-59. [PMID: 29273553 DOI: 10.1016/j.gene.2017.12.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 11/18/2022]
Abstract
Fatty acid synthase (FASN) is an enzyme involved with fat deposition and fatty acid composition in cattle. This study was conducted to detect single nucleotide polymorphisms (SNPs) of the FASN gene and explore their relationships with ultrasound carcass traits in order to assess the potential use of the FASN gene for the breeding selection of Qinchuan cattle for desirable carcass traits. The frequencies of SNP g.12740C>T, g.13192T>C and g.13232C>T were identified in 525 individual Qinchuan cattle which were also assessed for backfat depth, eye muscle area and intramuscular fat by ultrasound. According to the PIC values, g.13192T>C possessed an intermediate polymorphism (0.25<PIC<0.5). The SNPs of g.13232C>T, g.12740C>T possessed low polymorphism (PIC<0.25). Chi-square tests showed that g.13192T>C were in Hardy-Weinberg disequilibrium (c2<c0.052). Two SNPs were found to be associated with variation in ultrasound carcass traits. The H2H2 diplotypes had a greater back fat depth than H1H1, H1H4 and H1H2 (P<0.01). The TT genotype at g.13192T>C was associated with a greater eye muscle area and the TT genotype at g.13232C>T was associated with greater intramuscular fat. When these genotypes were combined there was no difference in eye muscle area and intramuscular fat between the diplotypes. The H2H2 diplotype was associated with carcass traits that are likely to provide economic advantage in Qinchuan cattle. Variations in the FASN genes and their corresponding genotypes may be considered as molecular markers for economic traits in cattle breeding.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling 712100, PR China
| | - Linsheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nicola M Schreurs
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Wang Xiaoyu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sen Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xueyao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dawei Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hongfang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xingping Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hubdar Ali Kaleri
- Department of Animal Science and Aquaculture, Dalhousie University, Canada
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
24
|
Goddard ME, Kemper KE, MacLeod IM, Chamberlain AJ, Hayes BJ. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proc Biol Sci 2017; 283:rspb.2016.0569. [PMID: 27440663 DOI: 10.1098/rspb.2016.0569] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023] Open
Abstract
Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.
Collapse
Affiliation(s)
- M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia
| | - K E Kemper
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - I M MacLeod
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia Dairy Futures Cooperative Research Centre, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia
| | - B J Hayes
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia School of Applied System Biology, La Trobe University, Agribiosciences Building, Bundoora, Australia
| |
Collapse
|
25
|
GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7394869. [PMID: 29181403 PMCID: PMC5664265 DOI: 10.1155/2017/7394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/26/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022]
Abstract
It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), diacylglycerol acyltransferase 1 (DGAT1), perilipin 2 (PLIN2), perilipin 3 (PLIN3), and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPARγ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPARγ in mouse mammary glands.
Collapse
|
26
|
Wei X, Li H, Zhao G, Yang J, Li L, Huang Y, Lan X, Ma Y, Hu L, Zheng H, Chen H. ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. J Cell Physiol 2017; 233:9284-9298. [PMID: 29154466 DOI: 10.1002/jcp.26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Rosiglitazone induces adipogenesis in adipocyte and regulates cell survival and differentiation in number of cell types. However, whether PPARγ regulates the synthesis of milk fat and cell survival in goat mammary gland remains unknown. Rosiglitazone strongly enhanced cellular triacylglycerol content and accumulation of lipid droplet in goat mammary epithelial cells (GMEC). Furthermore, ΔFosB decreased the expression of PPARγ at both mRNA and protein levels, and rosiglitazone-induced milk fat synthesis was abolished by ΔFosB overexpression. ΔFosB reduced milk fat synthesis and enhanced saturated fatty acid concentration. Rosiglitazone increased the number of GMEC in G0/G1 phase and inhibited cell proliferation, and these effects were improved by overexpression of ΔFosB. ΔFosB was found to promote the expression of Bcl-2 and suppress the expression of Bax, and protected GMEC from apoptosis induced by rosiglitazone. Intracellular calcium trafficking assay revealed that rosiglitazone markedly increased intracellular calcium concentration. ΔFosB protected GMEC from apoptosis induced by intracellular Ca2+ overload. ΔFosB increased MMP-9 gelatinolytic activity. SB-3CT, an MMP-9 inhibitor, suppressed the expression of Bcl-2, and increased intracellular calcium levels, and this effect was abolished by ΔFosB overexpression. SB-3CT induced GMEC apoptosis and this effect was inhibited by ΔFosB overexpression. These findings suggest that ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. Therefore, ΔFosB may be an important checkpoint to control milk fat synthesis and cell apoptosis.
Collapse
Affiliation(s)
- Xuefeng Wei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hui Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Guangwei Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiameng Yang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Lihui Li
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yongzhen Huang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Xianyong Lan
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yun Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Huiling Zheng
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| |
Collapse
|
27
|
Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics 2017; 18:464. [PMID: 28615065 PMCID: PMC5471809 DOI: 10.1186/s12864-017-3847-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. RESULTS Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. CONCLUSIONS We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.
Collapse
|
28
|
Martin P, Palhière I, Maroteau C, Bardou P, Canale-Tabet K, Sarry J, Woloszyn F, Bertrand-Michel J, Racke I, Besir H, Rupp R, Tosser-Klopp G. A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Sci Rep 2017; 7:1872. [PMID: 28500343 PMCID: PMC5431851 DOI: 10.1038/s41598-017-02052-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program.
Collapse
Affiliation(s)
- Pauline Martin
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Isabelle Palhière
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Cyrielle Maroteau
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
- Division of Molecular and Clinical Medecine, School of Medecine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
- INRA, Sigenae, Castanet-Tolosan, France
| | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | | - Ines Racke
- Protein Expression and Purification Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Hüseyin Besir
- Protein Expression and Purification Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Rachel Rupp
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | |
Collapse
|
29
|
Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito T, Sakuma H, Miyashita S, Arata S, Suzuki K. Genome-wide association studies reveal additional related loci for fatty acid composition in a Duroc pig multigenerational population. Anim Sci J 2017; 88:1482-1490. [PMID: 28402008 DOI: 10.1111/asj.12793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/15/2017] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to detect quantitative trait loci affecting fatty acid composition in back fat and intramuscular fat in a Duroc pig population comprising seventh-generation pedigrees using genome-wide association studies (GWAS). In total, 305 animals were genotyped using single nucleotide polymorphisms (SNPs) array and five selected SNPs from regions containing known candidate genes related to fatty acid synthesis or metabolism. In total, 24 genome-wide significant SNP regions were detected in 12 traits, and 76 genome-wide suggestive SNP regions were detected in 33 traits. The Sus scrofa chromosome (SSC) 7 at 10.3 Mb was significantly associated with C17:0 in intramuscular fat, while the SSC9 at 13.6 Mb was significantly associated with C14:0 in intramuscular fat. The SSC12 at 1.0 Mb was significantly associated with C14:0 in back fat and the SSC14 at 121.0 Mb was significantly associated with C18:0 in intramuscular fat. These regions not only replicated previously reported loci containing some candidate genes involved in fatty acid composition (fatty acid synthase and stearoyl-CoA desaturase) but also included several additional related loci.
Collapse
Affiliation(s)
- Shuji Sato
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | | | - Takashi Kikuchi
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Sachiko Egawa
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, Japan
| | - Kimiko Kohira
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Tomomi Saito
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Hironori Sakuma
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Satoshi Miyashita
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, Japan
| | - Shinji Arata
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Suárez-Vega A, Gutiérrez-Gil B, Klopp C, Tosser-Klopp G, Arranz JJ. Variant discovery in the sheep milk transcriptome using RNA sequencing. BMC Genomics 2017; 18:170. [PMID: 28202015 PMCID: PMC5312585 DOI: 10.1186/s12864-017-3581-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The identification of genetic variation underlying desired phenotypes is one of the main challenges of current livestock genetic research. High-throughput transcriptome sequencing (RNA-Seq) offers new opportunities for the detection of transcriptome variants (SNPs and short indels) in different tissues and species. In this study, we used RNA-Seq on Milk Sheep Somatic Cells (MSCs) with the goal of characterizing the genetic variation within the coding regions of the milk transcriptome in Churra and Assaf sheep, two common dairy sheep breeds farmed in Spain. RESULTS A total of 216,637 variants were detected in the MSCs transcriptome of the eight ewes analyzed. Among them, a total of 57,795 variants were detected in the regions harboring Quantitative Trait Loci (QTL) for milk yield, protein percentage and fat percentage, of which 21.44% were novel variants. Among the total variants detected, 561 (2.52%) and 1,649 (7.42%) were predicted to produce high or moderate impact changes in the corresponding transcriptional unit, respectively. In the functional enrichment analysis of the genes positioned within selected QTL regions harboring novel relevant functional variants (high and moderate impact), the KEGG pathway with the highest enrichment was "protein processing in endoplasmic reticulum". Additionally, a total of 504 and 1,063 variants were identified in the genes encoding principal milk proteins and molecules involved in the lipid metabolism, respectively. Of these variants, 20 mutations were found to have putative relevant effects on the encoded proteins. CONCLUSIONS We present herein the first transcriptomic approach aimed at identifying genetic variants of the genes expressed in the lactating mammary gland of sheep. Through the transcriptome analysis of variability within regions harboring QTL for milk yield, protein percentage and fat percentage, we have found several pathways and genes that harbor mutations that could affect dairy production traits. Moreover, remarkable variants were also found in candidate genes coding for major milk proteins and proteins related to milk fat metabolism. Several of the SNPs found in this study could be included as suitable markers in genotyping platforms or custom SNP arrays to perform association analyses in commercial populations and apply genomic selection protocols in the dairy production industry.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - Christophe Klopp
- INRA, Plateforme bioinformatique Toulouse Midi-Pyrénées, UR875 Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | | | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| |
Collapse
|
31
|
Lee JY, Oh DY, Kim HJ, Jang GS, Lee SU. Detection of superior genotype of fatty acid synthase in Korean native cattle by an environment-adjusted statistical model. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:765-772. [PMID: 28183167 PMCID: PMC5411838 DOI: 10.5713/ajas.16.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/27/2016] [Accepted: 02/01/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study examines the genetic factors influencing the phenotypes (four economic traits:oleic acid [C18:1], monounsaturated fatty acids, carcass weight, and marbling score) of Hanwoo. METHODS To enhance the accuracy of the genetic analysis, the study proposes a new statistical model that excludes environmental factors. A statistically adjusted, analysis of covariance model of environmental and genetic factors was developed, and estimated environmental effects (covariate effects of age and effects of calving farms) were excluded from the model. RESULTS The accuracy was compared before and after adjustment. The accuracy of the best single nucleotide polymorphism (SNP) in C18:1 increased from 60.16% to 74.26%, and that of the two-factor interaction increased from 58.69% to 87.19%. Also, superior SNPs and SNP interactions were identified using the multifactor dimensionality reduction method in Table 1 to 4. Finally, high- and low-risk genotypes were compared based on their mean scores for each trait. CONCLUSION The proposed method significantly improved the analysis accuracy and identified superior gene-gene interactions and genotypes for each of the four economic traits of Hanwoo.
Collapse
Affiliation(s)
- Jea-Young Lee
- Department of Statistics, Yeungnam University, Gyeongsan 712-749, Korea
| | - Dong-Yep Oh
- Livestock Research institute, Yeongju 750-871, Korea
| | - Hyun-Ji Kim
- Department of Statistics, Yeungnam University, Gyeongsan 712-749, Korea
| | - Gab-Sue Jang
- Department of Life Sciences, Yeungnam University, Gyeongsan 712-749, Korea
| | - Seung-Uk Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
32
|
High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci Rep 2016; 6:31109. [PMID: 27506634 PMCID: PMC4979022 DOI: 10.1038/srep31109] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022] Open
Abstract
High-throughput sequencing technologies have increased the ability to detect sequence variations for complex trait improvement. A high throughput genome wide genotyping-by-sequencing (GBS) method was used to generate 515,787 single nucleotide polymorphisms (SNPs), from which 76,355 SNPs with call rates >85% and minor allele frequency ≥1.5% were used in genome wide association study (GWAS) of 44 milk traits in 1,246 Canadian Holstein cows. GWAS was accomplished with a mixed linear model procedure implementing the additive and dominant models. A strong signal within the centromeric region of bovine chromosome 14 was associated with test day fat percentage. Several SNPs were associated with eicosapentaenoic acid, docosapentaenoic acid, arachidonic acid, CLA:9c11t and gamma linolenic acid. Most of the significant SNPs for 44 traits studied are novel and located in intergenic regions or introns of genes. Novel potential candidate genes for milk traits or mammary gland functions include ERCC6, TONSL, NPAS2, ACER3, ITGB4, GGT6, ACOX3, MECR, ADAM12, ACHE, LRRC14, FUK, NPRL3, EVL, SLCO3A1, PSMA4, FTO, ADCK5, PP1R16A and TEP1. Our study further demonstrates the utility of the GBS approach for identifying population-specific SNPs for use in improvement of complex dairy traits.
Collapse
|
33
|
Li C, Sun D, Zhang S, Yang S, Alim MA, Zhang Q, Li Y, Liu L. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC Genet 2016; 17:110. [PMID: 27468856 PMCID: PMC4963957 DOI: 10.1186/s12863-016-0418-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/20/2016] [Indexed: 02/01/2023] Open
Abstract
Background A previous genome-wide association study deduced that one (ARS-BFGL-NGS-39328), two (Hapmap26001-BTC-038813 and Hapmap31284-BTC-039204), two (Hapmap26001-BTC-038813 and BTB-00246150), and one (Hapmap50366-BTA-46960) genome-wide significant single nucleotide polymorphisms (SNPs) associated with milk fatty acids were close to or within the fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A), ATP-binding cassette, sub-family G, member 2 (ABCG2) and insulin-like growth factor 1 (IGF1) genes. To further confirm the linkage and reveal the genetic effects of these four candidate genes on milk fatty acid composition, genetic polymorphisms were identified and genotype-phenotype associations were performed in a Chinese Holstein cattle population. Results Nine SNPs were identified in FASN, among which SNP rs41919985 was predicted to result in an amino acid substitution from threonine (ACC) to alanine (GCC), five SNPs (rs136947640, rs134340637, rs41919992, rs41919984 and rs41919986) were synonymous mutations, and the remaining three (rs41919999, rs132865003 and rs133498277) were found in FASN introns. Only one SNP each was identified for PPARGC1A, ABCG2 and IGF1. Association studies revealed that FASN, PPARGC1A, ABCG2 and IGF1 were mainly associated with medium-chain saturated fatty acids and long-chain unsaturated fatty acids, especially FASN for C10:0, C12:0 and C14:0. Strong linkage disequilibrium was observed among ARS-BFGL-NGS-39328 and rs132865003 and rs134340637 in FASN (D´ > 0.9), and among Hapmap26001-BTC-038813 and Hapmap31284-BTC-039204 and rs109579682 in PPARGC1A (D´ > 0.9). Subsequently, haplotype-based analysis revealed significant associations of the haplotypes encompassing eight FASN SNPs (rs41919999, rs132865003, rs134340637, rs41919992, rs133498277, rs41919984, rs41919985 and rs41919986) with C10:0, C12:0, C14:0, C18:1n9c, saturated fatty acids (SFA) and unsaturated fatty acids (UFA) (P = 0.0204 to P < 0.0001). Conclusion Our study confirmed the linkage between the significant SNPs in our previous genome-wide association study and variants in FASN and PPARGC1A. SNPs within FASN, PPARGC1A, ABCG2 and IGF1 showed significant genetic effects on milk fatty acid composition in dairy cattle, indicating their potential functions in milk fatty acids synthesis and metabolism. The findings presented here provide evidence for the selection of dairy cows with healthier milk fatty acid composition by marker-assisted breeding or genomic selection schemes, as well as furthering our understanding of technological processing aspects of cows’ milk. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0418-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Shaohua Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - M A Alim
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100085, China
| |
Collapse
|
34
|
Haile AB, Zhang W, Wang W, Yang D, Yi Y, Luo J. Fatty acid synthase (FASN) gene polymorphism and early lactation milk fat composition in Xinong Saanen goats. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Inoue K, Shoji N, Honda T, Oyama K. Genetic relationships between meat quality traits and fatty acid composition in Japanese black cattle. Anim Sci J 2016; 88:11-18. [DOI: 10.1111/asj.12613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/02/2016] [Accepted: 01/14/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Keiichi Inoue
- National Livestock Breeding Center; Nishigo Fukushima Japan
- Food Resources Education and Research Center, Graduate School of Agricultural Science; Kobe University; Kasai Hyogo Japan
| | - Noriaki Shoji
- Yamagata Integrated Agricultural Research Center, Shinjo; Yamagata Japan
| | - Takeshi Honda
- Food Resources Education and Research Center, Graduate School of Agricultural Science; Kobe University; Kasai Hyogo Japan
| | - Kenji Oyama
- Food Resources Education and Research Center, Graduate School of Agricultural Science; Kobe University; Kasai Hyogo Japan
| |
Collapse
|
36
|
Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism. Meat Sci 2016; 114:121-129. [DOI: 10.1016/j.meatsci.2015.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/11/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022]
|
37
|
Li C, Sun D, Zhang S, Liu L, Alim MA, Zhang Q. A post-GWAS confirming the SCD gene associated with milk medium- and long-chain unsaturated fatty acids in Chinese Holstein population. Anim Genet 2016; 47:483-90. [PMID: 26970560 DOI: 10.1111/age.12432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2016] [Indexed: 12/12/2022]
Abstract
The stearoyl-CoA desaturase (delta-9-desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome-wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8-Mb region (20.3-22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium- and long-chain unsaturated fatty acids (P = 0.0457 to P < 0.0001), specifically for C14:1 and C14 index (P = 0.0005 to P < 0.0001). Subsequently, strong linkage disequilibrium (D' = 0.88-1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8-Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8-Mb chromosome region in GWAS. Haplotype-based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (P = 0.0011 to P < 0.0001). In summary, our findings provide replicate evidence for our previous GWAS and demonstrate that variants in the SCD gene are significantly associated with milk fatty acid composition in dairy cattle, which provides clear evidence for an increased understanding of milk fatty acid synthesis and enhances opportunities to improve milk-fat composition in dairy cattle.
Collapse
Affiliation(s)
- C Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - D Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - S Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - M A Alim
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Q Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Chen L, Ekine-Dzivenu C, Vinsky M, Basarab J, Aalhus J, Dugan MER, Fitzsimmons C, Stothard P, Li C. Genome-wide association and genomic prediction of breeding values for fatty acid composition in subcutaneous adipose and longissimus lumborum muscle of beef cattle. BMC Genet 2015; 16:135. [PMID: 26589139 PMCID: PMC4654876 DOI: 10.1186/s12863-015-0290-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/30/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Identification of genetic variants that are associated with fatty acid composition in beef will enhance our understanding of host genetic influence on the trait and also allow for more effective improvement of beef fatty acid profiles through genomic selection and marker-assisted diet management. In this study, 81 and 83 fatty acid traits were measured in subcutaneous adipose (SQ) and longissimus lumborum muscle (LL), respectively, from 1366 purebred and crossbred beef steers and heifers that were genotyped on the Illumina BovineSNP50 Beadchip. The objective was to conduct genome-wide association studies (GWAS) for the fatty acid traits and to evaluate the accuracy of genomic prediction for fatty acid composition using genomic best linear unbiased prediction (GBLUP) and Bayesian methods. RESULTS In total, 302 and 360 significant SNPs spanning all autosomal chromosomes were identified to be associated with fatty acid composition in SQ and LL tissues, respectively. Proportions of total genetic variance explained by individual significant SNPs ranged from 0.03 to 11.06% in SQ, and from 0.005 to 24.28% in the LL muscle. Markers with relatively large effects were located near fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), and thyroid hormone responsive (THRSP) genes. For the majority of the fatty acid traits studied, the accuracy of genomic prediction was relatively low (<0.40). Relatively high accuracies (> = 0.50) were achieved for 10:0, 12:0, 14:0, 15:0, 16:0, 9c-14:1, 12c-16:1, 13c-18:1, and health index (HI) in LL, and for 12:0, 14:0, 15:0, 10 t,12c-18:2, and 11 t,13c + 11c,13 t-18:2 in SQ. The Bayesian method performed similarly as GBLUP for most of the traits but substantially better for traits that were affected by SNPs of large effects as identified by GWAS. CONCLUSIONS Fatty acid composition in beef is influenced by a few host genes with major effects and many genes of smaller effects. With the current training population size and marker density, genomic prediction has the potential to predict the breeding values of fatty acid composition in beef cattle at a moderate to relatively high accuracy for fatty acids that have moderate to high heritability.
Collapse
Affiliation(s)
- Liuhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L 1 W1, Canada.
| | - Chinyere Ekine-Dzivenu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Michael Vinsky
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L 1 W1, Canada.
| | - John Basarab
- Lacombe Research Centre, Alberta Agriculture and Forestry, 6000 C & E Trail, Lacombe, AB, T4L 1 W1, Canada.
| | - Jennifer Aalhus
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L 1 W1, Canada.
| | - Mike E R Dugan
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L 1 W1, Canada.
| | - Carolyn Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L 1 W1, Canada.
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L 1 W1, Canada.
| |
Collapse
|
39
|
Genetic diversity analysis of buffalo fatty acid synthase (FASN) gene and its differential expression among bovines. Gene 2015; 575:506-512. [PMID: 26376068 DOI: 10.1016/j.gene.2015.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022]
Abstract
Fatty Acid Synthase (FASN) gene seems to be structurally and functionally different in bovines in view of their distinctive fatty acid synthesis process. Structural variation and differential expression of FASN gene is reported in buffalo (Bubalus bubalis), a bovine species close to cattle, in this study. Amino acid sequence and phylogenetic analysis of functionally important thioesterase (TE) domain of FASN revealed its conserved nature across mammals. Amino acid residues at TE domain, responsible for substrate binding and processing, were found to be invariant in all the mammalian species. A total of seven polymorphic nucleotide sites, including two in coding region of TE domain were identified across the 10 buffalo populations of riverine and swamp types. G and C alleles were found almost fixed at g18996 and g19056 loci, respectively in riverine buffaloes. Principal component analysis of three SNPs (g18433, g18996 and g19056) revealed distinct classification of riverine and swamp buffalo populations. Reverse Transcription-PCR amplification of mRNA corresponding to exon 8-10 region of buffalo FASN helped in identification of two transcript variants; one transcript of 565 nucleotides and another alternate transcript of 207 nucleotides, seems to have arisen through alternative splicing. Both the transcripts were found to be expressed in most of the vital tissues of buffalo with the highest expression in mammary gland. Semi-quantitative and real-time expression analysis across 13 different buffalo tissues revealed its highest expression in lactating mammary gland. When compared, expression of FASN was also found to be higher in liver, adipose and skeletal muscle of buffalo tissues, than cattle. However, the FASN expression was highest in adipose among the three tissues in both the species. Results indicate structural and functional distinctiveness of bovine FASN. Presence of alternate splicing in buffalo FASN also seems to be a unique phenomenon to the bovines, probably associated with mRNA based regulation of the biological functions of FASN in these species.
Collapse
|
40
|
Vahmani P, Mapiye C, Prieto N, Rolland DC, McAllister TA, Aalhus JL, Dugan MER. The scope for manipulating the polyunsaturated fatty acid content of beef: a review. J Anim Sci Biotechnol 2015. [PMID: 26199725 PMCID: PMC4509462 DOI: 10.1186/s40104-015-0026-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since 1950, links between intake of saturated fatty acids and heart disease have led to recommendations to limit consumption of saturated fatty acid-rich foods, including beef. Over this time, changes in food consumption patterns in several countries including Canada and the USA have not led to improvements in health. Instead, the incidence of obesity, type II diabetes and associated diseases have reached epidemic proportions owing in part to replacement of dietary fat with refined carbohydrates. Despite the content of saturated fatty acids in beef, it is also rich in heart healthy cis-monounsaturated fatty acids, and can be an important source of long-chain omega-3 (n-3) fatty acids in populations where little or no oily fish is consumed. Beef also contains polyunsaturated fatty acid biohydrogenation products, including vaccenic and rumenic acids, which have been shown to have anticarcinogenic and hypolipidemic properties in cell culture and animal models. Beef can be enriched with these beneficial fatty acids through manipulation of beef cattle diets, which is now more important than ever because of increasing public understanding of the relationships between diet and health. The present review examines recommendations for beef in human diets, the need to recognize the complex nature of beef fat, how cattle diets and management can alter the fatty acid composition of beef, and to what extent content claims are currently possible for beef fatty acids.
Collapse
Affiliation(s)
- Payam Vahmani
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, P. Bag X1, Matieland, 7602 South Africa
| | - Nuria Prieto
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada ; Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - David C Rolland
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 1st Avenue South 5403, PO Box 3000, T1J 4B1 Lethbridge, AB Canada
| | - Jennifer L Aalhus
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| | - Michael E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| |
Collapse
|
41
|
Dong Y, Zhang X, Xie M, Arefnezhad B, Wang Z, Wang W, Feng S, Huang G, Guan R, Shen W, Bunch R, McCulloch R, Li Q, Li B, Zhang G, Xu X, Kijas JW, Salekdeh GH, Wang W, Jiang Y. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics 2015; 16:431. [PMID: 26044654 PMCID: PMC4455334 DOI: 10.1186/s12864-015-1606-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics. RESULTS We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits. CONCLUSION Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.
Collapse
Affiliation(s)
- Yang Dong
- Kunming University of Science and Technology, Kunming, 650093, China.
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Xiaolei Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Min Xie
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Babak Arefnezhad
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| | - Zongji Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | | | | | | | - Rui Guan
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Wenjing Shen
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Rowan Bunch
- CSIRO, Agriculture Flagship, Brisbane, 4065, QLD, Australia.
| | | | - Qiye Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - James W Kijas
- CSIRO, Agriculture Flagship, Brisbane, 4065, QLD, Australia.
| | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Yu Jiang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
42
|
Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet 2015; 6:167. [PMID: 26029239 PMCID: PMC4429627 DOI: 10.3389/fgene.2015.00167] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
This review compiles the results of 21 genomic studies of European Bos taurus breeds and thus provides a general picture of the selection signatures in taurine cattle identified by genome-wide selection-mapping scans. By performing a comprehensive summary of the results reported in the literature, we compiled a list of 1049 selection sweeps described across 37 cattle breeds (17 beef breeds, 14 dairy breeds, and 6 dual-purpose breeds), and four different beef-vs.-dairy comparisons, which we subsequently grouped into core selective sweep (CSS) regions, defined as consecutive signals within 1 Mb of each other. We defined a total of 409 CSSs across the 29 bovine autosomes, 232 (57%) of which were associated with a single-breed (Single-breed CSSs), 134 CSSs (33%) were associated with a limited number of breeds (Two-to-Four-breed CSSs) and 39 CSSs (9%) were associated with five or more breeds (Multi-breed CSSs). For each CSS, we performed a candidate gene survey that identified 291 genes within the CSS intervals (from the total list of 5183 BioMart-extracted genes) linked to dairy and meat production, stature, and coat color traits. A complementary functional enrichment analysis of the CSS positional candidates highlighted other genes related to pathways underlying behavior, immune response, and reproductive traits. The Single-breed CSSs revealed an over-representation of genes related to dairy and beef production, this was further supported by over-representation of production-related pathway terms in these regions based on a functional enrichment analysis. Overall, this review provides a comparative map of the selection sweeps reported in European cattle breeds and presents for the first time a characterization of the selection sweeps that are found in individual breeds. Based on their uniqueness, these breed-specific signals could be considered as “divergence signals,” which may be useful in characterizing and protecting livestock genetic diversity.
Collapse
Affiliation(s)
| | - Juan J Arranz
- Departamento de Producción Animal, Universidad de León León, Spain
| | - Pamela Wiener
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh Midlothian, UK
| |
Collapse
|
43
|
Zhu JJ, Luo J, Sun YT, Shi HB, Li J, Wu M, Yu K, Haile AB, Loor JJ. Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells. J Dairy Sci 2015; 98:3485-91. [PMID: 25726120 DOI: 10.3168/jds.2014-8202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/12/2015] [Indexed: 01/12/2023]
Abstract
The role of fatty acid synthase (FASN) on de novo fatty acid synthesis has been well established. In monogastrics, unlike acetyl-coenzyme A carboxylase, FASN is primarily controlled at the transcriptional level. However, no data exist on ruminant mammary cells evaluating effects of FASN knockdown on mRNA expression of lipogenic genes. Inhibition of FASN in mammary cells by C75-mediated interference, a synthetic inhibitor of FASN activity, and short hairpin RNA-mediated interference markedly reduced cellular triglyceride content at least in part by decreasing the expression of genes related to triglyceride synthesis (GPAT, AGPAT6, and DGAT2) and enhancing the expression of lipolysis-related genes (ATGL and HSL). Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47, ADFP, BTN1A1, and XDH), cellular lipid droplets also were reduced sharply after incubation with C75 or adenovirus-short-hairpin-RNA. The results underscored the essential role of FASN in the overall process of milk-fat formation in goat mammary epithelial cells.
Collapse
Affiliation(s)
- J J Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100.
| | - Y T Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H B Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - K Yu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - A B Haile
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
44
|
Genes regulating lipid and protein metabolism are highly expressed in mammary gland of lactating dairy goats. Funct Integr Genomics 2014; 15:309-21. [PMID: 25433708 DOI: 10.1007/s10142-014-0420-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Dairy goats serve as an important source of milk and also fulfill agricultural and economic roles in developing countries. Understanding the genetic background of goat mammary gland is important for research on the regulatory mechanisms controlling tissue function and the synthesis of milk components. We collected tissue at four different stages of goat mammary gland development and generated approximately 25 GB of data from Illumina de novo RNA sequencing. The combined reads were assembled into 51,361 unigenes, and approximately 60.07 % of the unigenes had homology to other proteins in the NCBI non-redundant protein database (NR). Functional classification through eukaryotic Ortholog Groups of Protein (KOG), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the unigenes from goat mammary glands are involved in a wide range of biological processes and metabolic pathways, including lipid metabolism and lactose metabolism. The results of qPCR revealed that genes encoding FABP3, FASN, SCD, PLIN2, whey proteins (LALBA and BLG), and caseins (CSN1S1, CSN1S2, CSN2 and CSN3) at 100 and 310 days postpartum increased significantly compared with the non-lactating period. In addition to their role in lipid and protein synthesis, the higher expression at 310 days postpartum could contribute to mammary cell turnover during pregnancy. In conclusion, this is the first study to characterize the complete transcriptome of goat mammary glands and constitutes a comprehensive genomic resource available for further studies of ruminant lactation.
Collapse
|
45
|
Strillacci MG, Frigo E, Canavesi F, Ungar Y, Schiavini F, Zaniboni L, Reghenzani L, Cozzi MC, Samoré AB, Kashi Y, Shimoni E, Tal-Stein R, Soller M, Lipkin E, Bagnato A. Quantitative trait loci mapping for conjugated linoleic acid, vaccenic acid and ∆9-desaturase in Italian Brown Swiss dairy cattle using selective DNA pooling. Anim Genet 2014; 45:485-99. [DOI: 10.1111/age.12174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- M. G. Strillacci
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - E. Frigo
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - F. Canavesi
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - Y. Ungar
- Israel Institute of Technology (Technion); Department of Biotechnology and Food Engineering; Technion City; Haifa 3200003 Israel
| | - F. Schiavini
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
- Genomic and Bioinformatics Platform; University of Milan; c/o Fondazione Filarete, Viale Ortles 20 Milano 20100 Italy
| | - L. Zaniboni
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - L. Reghenzani
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - M. C. Cozzi
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - A. B. Samoré
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
| | - Y. Kashi
- Israel Institute of Technology (Technion); Department of Biotechnology and Food Engineering; Technion City; Haifa 3200003 Israel
| | - E. Shimoni
- Israel Institute of Technology (Technion); Department of Biotechnology and Food Engineering; Technion City; Haifa 3200003 Israel
| | - R. Tal-Stein
- Department of Genetics; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - M. Soller
- Department of Genetics; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - E. Lipkin
- Department of Genetics; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - A. Bagnato
- Department of Health; Animal Science and Food Safety (VESPA); University of Milan; Via Celoria 10 20133 Milan Italy
- Genomic and Bioinformatics Platform; University of Milan; c/o Fondazione Filarete, Viale Ortles 20 Milano 20100 Italy
| |
Collapse
|
46
|
Singh U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Dhama K, Sharma A. Molecular markers and their applications in cattle genetic research: A review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Li C, Sun D, Zhang S, Wang S, Wu X, Zhang Q, Liu L, Li Y, Qiao L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS One 2014; 9:e96186. [PMID: 24858810 PMCID: PMC4032272 DOI: 10.1371/journal.pone.0096186] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/11/2022] Open
Abstract
Detecting genes associated with milk fat composition could provide valuable insights into the complex genetic networks of genes underling variation in fatty acids synthesis and point towards opportunities for changing milk fat composition via selective breeding. In this study, we conducted a genome-wide association study (GWAS) for 22 milk fatty acids in 784 Chinese Holstein cows with the PLINK software. Genotypes were obtained with the Illumina BovineSNP50 Bead chip and a total of 40,604 informative, high-quality single nucleotide polymorphisms (SNPs) were used. Totally, 83 genome-wide significant SNPs and 314 suggestive significant SNPs associated with 18 milk fatty acid traits were detected. Chromosome regions that affect milk fatty acid traits were mainly observed on BTA1, 2, 5, 6, 7, 9, 13, 14, 18, 19, 20, 21, 23, 26 and 27. Of these, 146 SNPs were associated with more than one milk fatty acid trait; most of studied fatty acid traits were significant associated with multiple SNPs, especially C18:0 (105 SNPs), C18 index (93 SNPs), and C14 index (84 SNPs); Several SNPs are close to or within the DGAT1, SCD1 and FASN genes which are well-known to affect milk composition traits of dairy cattle. Combined with the previously reported QTL regions and the biological functions of the genes, 20 novel promising candidates for C10:0, C12:0, C14:0, C14:1, C14 index, C18:0, C18:1n9c, C18 index, SFA, UFA and SFA/UFA were found, which composed of HTR1B, CPM, PRKG1, MINPP1, LIPJ, LIPK, EHHADH, MOGAT1, ECHS1, STAT1, SORBS1, NFKB2, AGPAT3, CHUK, OSBPL8, PRLR, IGF1R, ACSL3, GHR and OXCT1. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting milk fatty acid traits in dairy cattle.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| | - Shengli Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoping Wu
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing, China
| | - Lv Qiao
- Beijing Dairy Cattle Center, Beijing, China
| |
Collapse
|
48
|
Matsumoto H, Nogi T, Tabuchi I, Oyama K, Mannen H, Sasazaki S. The SNPs in the promoter regions of the bovine FADS2 and FABP4 genes are associated with beef quality traits. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Cesar ASM, Regitano LCA, Mourão GB, Tullio RR, Lanna DPD, Nassu RT, Mudado MA, Oliveira PSN, do Nascimento ML, Chaves AS, Alencar MM, Sonstegard TS, Garrick DJ, Reecy JM, Coutinho LL. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet 2014; 15:39. [PMID: 24666668 PMCID: PMC4230646 DOI: 10.1186/1471-2156-15-39] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/28/2014] [Indexed: 01/01/2023] Open
Abstract
Background Meat from Bos taurus and Bos indicus breeds are an important source of nutrients for humans and intramuscular fat (IMF) influences its flavor, nutritional value and impacts human health. Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood. Different feeding practices and genetic variation within and between breeds influences the amount of IMF and fatty acid (FA) composition in meat. However, it is difficult and costly to determine fatty acid composition, which has precluded beef cattle breeding programs from selecting for a healthier fatty acid profile. In this study, we employed a high-density single nucleotide polymorphism (SNP) chip to genotype 386 Nellore steers, a Bos indicus breed and, a Bayesian approach to identify genomic regions and putative candidate genes that could be involved with deposition and composition of IMF. Results Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥ 1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27. Many of these regions were not previously detected in other breeds. The genes present in these regions were identified and some can help explain the genetic basis of deposition and composition of fat in cattle. Conclusions The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba SP 13418-900, Brazil.
| |
Collapse
|
50
|
Lee J, Jin M, Lee Y, Ha J, Yeo J, Oh D. Gene–gene interactions of fatty acid synthase (FASN) using multifactor-dimensionality reduction method in Korean cattle. Mol Biol Rep 2014; 41:2021-7. [PMID: 24413995 DOI: 10.1007/s11033-014-3050-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|