1
|
Lawson JM, Salem SE, Miller D, Kahler A, van den Boer WJ, Shilton CA, Sever T, Mouncey RR, Ward J, Hampshire DJ, Foote AK, Bryan JS, Juras R, Pynn OD, Davis BW, Bellone RR, Raudsepp T, de Mestre AM. Naturally occurring horse model of miscarriage reveals temporal relationship between chromosomal aberration type and point of lethality. Proc Natl Acad Sci U S A 2024; 121:e2405636121. [PMID: 39102548 PMCID: PMC11331123 DOI: 10.1073/pnas.2405636121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal abnormalities are a common cause of human miscarriage but rarely reported in any other species. As a result, there are currently inadequate animal models available to study this condition. Horses present one potential model since mares receive intense gynecological care. This allowed us to investigate the prevalence of chromosomal copy number aberrations in 256 products of conception (POC) in a naturally occurring model of pregnancy loss (PL). Triploidy (three haploid sets of chromosomes) was the most common aberration, found in 42% of POCs following PL over the embryonic period. Over the same period, trisomies and monosomies were identified in 11.6% of POCs and subchromosomal aberrations in 4.2%. Whole and subchromosomal aberrations involved 17 autosomes, with chromosomes 3, 4, and 20 having the highest number of aberrations. Triploid fetuses had clear gross developmental anomalies of the brain. Collectively, data demonstrate that alterations in chromosome number contribute to PL similarly in women and mares, with triploidy the dominant ploidy type over the key period of organogenesis. These findings, along with highly conserved synteny between human and horse chromosomes, similar gestation lengths, and the shared single greatest risk for PL being advancing maternal age, provide strong evidence for the first animal model to truly recapitulate many key features of human miscarriage arising due to chromosomal aberrations, with shared benefits for humans and equids.
Collapse
Affiliation(s)
- Jessica M. Lawson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Shebl E. Salem
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Donald Miller
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Anne Kahler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Wilhelmina J. van den Boer
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Charlotte A. Shilton
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Tia Sever
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Rebecca R. Mouncey
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Jenna Ward
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Daniel J. Hampshire
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Alastair K. Foote
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Jill S. Bryan
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Oliver D. Pynn
- Rossdales Veterinary Surgeons, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA95617
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA95617
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Amanda M. de Mestre
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| |
Collapse
|
2
|
Shilton CA, Kahler A, Roach JM, Raudsepp T, de Mestre AM. Lethal variants of equine pregnancy: is it the placenta or foetus leading the conceptus in the wrong direction? Reprod Fertil Dev 2022; 35:51-69. [PMID: 36592981 DOI: 10.1071/rd22239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Embryonic and foetal loss remain one of the greatest challenges in equine reproductive health with 5-10% of established day 15 pregnancies and a further 5-10% of day 70 pregnancies failing to produce a viable foal. The underlying reason for these losses is variable but ultimately most cases will be attributed to pathologies of the environment of the developing embryo and later foetus, or a defect intrinsic to the embryo itself that leads to lethality at any stage of gestation right up to birth. Historically, much research has focused on the maternal endometrium, endocrine and immune responses in pregnancy and pregnancy loss, as well as infectious agents such as pathogens, and until recently very little was known about the both small and large genetic variants associated with reduced foetal viability in the horse. In this review, we first introduce key aspects of equine placental and foetal development. We then discuss incidence, risk factors and causes of pregnancy loss, with the latter focusing on genetic variants described to date that can impact equine foetal viability.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Jessica M Roach
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| |
Collapse
|
3
|
Pirosanto Y, Laseca N, Valera M, Molina A, Moreno-Millán M, Bugno-Poniewierska M, Ross P, Azor P, Demyda-Peyrás S. Screening and detection of chromosomal copy number alterations in the domestic horse using SNP-array genotyping data. Anim Genet 2021; 52:431-439. [PMID: 34013628 DOI: 10.1111/age.13077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Chromosomal abnormalities are a common cause of infertility in horses. However, they are difficult to detect using automated methods. Here, we propose a simple methodology based on single nucleotide polymorphism (SNP)-array data that allows us to detect the main chromosomal abnormalities in horses in a single procedure. As proof of concept, we were able to detect chromosomal abnormalities in 33 out of 268 individuals, including monosomies, chimerisms, and male and female sex-reversions, by analyzing the raw signal intensity produced by an SNP array-based genotyping platform. We also demonstrated that the procedure is not affected by the SNP density of the array employed or by the inbreeding level of the individuals. Finally, the methodology proposed in this study could be performed in an open bioinformatic environment, thus permitting its integration as a flexible screening tool in diagnostic laboratories and genomic breeding programs.
Collapse
Affiliation(s)
- Y Pirosanto
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, 1900, Argentina.,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 s/n, La Plata, 1900, Argentina
| | - N Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. de Utrera km 1, Sevilla, 41013, España
| | - A Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Moreno-Millán
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Bugno-Poniewierska
- Katedra Rozrodu, Anatomii i Genomiki Zwierząt Wydział Hodowli i Biologii Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - P Ross
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - P Azor
- Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Edif. Indotorre · Avda. del Reino Unido 11, pl. 3ª 2, Sevilla, 41012, España
| | - S Demyda-Peyrás
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, 1900, Argentina.,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 s/n, La Plata, 1900, Argentina
| |
Collapse
|
4
|
Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals (Basel) 2021; 11:ani11030831. [PMID: 33809432 PMCID: PMC8001954 DOI: 10.3390/ani11030831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly demonstrate that chromosomal disorders are among the most common non-infectious causes of decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that almost 30% of horses with reproductive or developmental problems have chromosome aberrations, whereas abnormal karyotypes are found in only 2-5% of the general population. Among the many chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The two are signature conditions for the horse and rare or absent in other domestic species. The progress in equine genomics and the development of molecular tools, have qualitatively improved clinical cytogenetics today, allowing for refined characterization of aberrations and understanding the underlying molecular mechanisms. While cutting-edge genomics tools promise further improvements in chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals and horses with reproductive or developmental disorders.
Collapse
|
5
|
Shilton CA, Kahler A, Davis BW, Crabtree JR, Crowhurst J, McGladdery AJ, Wathes DC, Raudsepp T, de Mestre AM. Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci Rep 2020; 10:13314. [PMID: 32769994 PMCID: PMC7415156 DOI: 10.1038/s41598-020-69967-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
The first 8 weeks of pregnancy is a critical time, with the majority of pregnancy losses occurring during this period. Abnormal chromosome number (aneuploidy) is a common finding in human miscarriage, yet is rarely reported in domestic animals. Equine early pregnancy loss (EPL) has no diagnosis in over 80% of cases. The aim of this study was to characterise aneuploidies associated with equine EPL. Genomic DNA from clinical cases of spontaneous miscarriage (EPLs; 14-65 days of gestation) and healthy control placentae (various gestational ages) were assessed using a high density genotyping array. Aneuploidy was detected in 12/55 EPLs (21.8%), and 0/15 healthy control placentae. Whole genome sequencing (30X) and digital droplet PCR (ddPCR) validated results. The majority of these aneuploidies have never been reported in live born equines, supporting their embryonic/fetal lethality. Aneuploidies were detected in both placental and fetal compartments. Rodents are currently used to study how maternal ageing impacts aneuploidy risk, however the differences in reproductive biology is a limitation of this model. We present the first evidence of aneuploidy in naturally occurring equine EPLs at a similar rate to human miscarriage. We therefore suggest the horse as an alternative to rodent models to study mechanisms resulting in aneuploid pregnancies.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - D Claire Wathes
- Department of Production and Population Health, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
6
|
Abstract
The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458;
| | | |
Collapse
|
7
|
Dorado J, Anaya G, Bugno-Poniewierska M, Molina A, Mendez-Sanchez A, Ortiz I, Moreno-Millán M, Hidalgo M, Peral García P, Demyda-Peyrás S. First case of sterility associated with sex chromosomal abnormalities in a jenny. Reprod Domest Anim 2016; 52:227-234. [DOI: 10.1111/rda.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022]
Affiliation(s)
- J Dorado
- Veterinary Reproduction Group AGR-275; Department of Animal Medicine and Surgery; Veterinary Teaching Hospital; University of Cordoba; Cordoba Spain
| | - G Anaya
- Laboratory of Animal Genomics; MERAGEM AGR-158 Research Group; Department of Genetics; University of Córdoba; Cordoba Spain
| | - M Bugno-Poniewierska
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - A Molina
- Laboratory of Animal Genomics; MERAGEM AGR-158 Research Group; Department of Genetics; University of Córdoba; Cordoba Spain
| | - A Mendez-Sanchez
- Department of Anatomy and Comparative Pathology; University of Cordoba; Cordoba Spain
| | - I Ortiz
- Veterinary Reproduction Group AGR-275; Department of Animal Medicine and Surgery; Veterinary Teaching Hospital; University of Cordoba; Cordoba Spain
| | - M Moreno-Millán
- Laboratory of Applied and Molecular Animal Cytogenetics; MERAGEM AGR-158 Research Group; Department of Genetics; University of Cordoba; Cordoba Spain
| | - M Hidalgo
- Veterinary Reproduction Group AGR-275; Department of Animal Medicine and Surgery; Veterinary Teaching Hospital; University of Cordoba; Cordoba Spain
| | - P Peral García
- Facultad de Ciencias Veterinarias; IGEVET - Instituto de Genética Veterinaria UNLP - CONICET LA PLATA; Universidad Nacional de La Plata; La Plata Argentina
| | - S Demyda-Peyrás
- Facultad de Ciencias Veterinarias; IGEVET - Instituto de Genética Veterinaria UNLP - CONICET LA PLATA; Universidad Nacional de La Plata; La Plata Argentina
| |
Collapse
|
8
|
Schrimpf R, Gottschalk M, Metzger J, Martinsson G, Sieme H, Distl O. Screening of whole genome sequences identified high-impact variants for stallion fertility. BMC Genomics 2016; 17:288. [PMID: 27079378 PMCID: PMC4832559 DOI: 10.1186/s12864-016-2608-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/30/2016] [Indexed: 02/07/2023] Open
Abstract
Background Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Methods Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). Results We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant g.37455302G>A in NOTCH1 with the de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). For 9 high-impact variants within the genes CFTR, OVGP1, FBXO43, TSSK6, PKD1, FOXP1, TCP11, SPATA31E1 and NOTCH1 (g.37453246G>C) absence of the homozygous mutant genotype in the validation sample of all 337 fertile stallions was obvious. Therefore, these variants were considered as potentially deleterious factors for stallion fertility. Conclusions In conclusion, this study revealed 17 genetic variants with a predicted high damaging effect on protein structure and missing homozygous mutant genotype. The g.37455302G>A NOTCH1 variant was identified as a significant stallion fertility locus in Hanoverian stallions and further 9 candidate fertility loci with missing homozygous mutant genotypes were validated in a panel including 19 horse breeds. To our knowledge this is the first study in horses using next generation sequencing data to uncover strong candidate factors for stallion fertility. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2608-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rahel Schrimpf
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany
| | - Maren Gottschalk
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany
| | - Gunilla Martinsson
- State Stud Celle of Lower Saxony, Spörckenstraße 10, 29221, Celle, Germany
| | - Harald Sieme
- Clinic for Horses, Unit for Reproduction Medicine, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany.
| |
Collapse
|
9
|
Teri Lear, PhD (1951-2016). Cytogenet Genome Res 2016; 149:237-240. [DOI: 10.1159/000450535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/19/2022] Open
|
10
|
Demyda-Peyrás S, Anaya G, Bugno-Poniewierska M, Pawlina K, Membrillo A, Valera M, Moreno-Millán M. The use of a novel combination of diagnostic molecular and cytogenetic approaches in horses with sexual karyotype abnormalities: A rare case with an abnormal cellular chimerism. Theriogenology 2014; 81:1116-22. [DOI: 10.1016/j.theriogenology.2014.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/01/2023]
|