1
|
Cai H, Li X, Niu X, Li J, Lan X, Lei C, Huang Y, Xu H, Li M, Chen H. Copy number variations within fibroblast growth factor 13 gene influence growth traits and alternative splicing in cattle. Anim Biotechnol 2024; 35:2314104. [PMID: 38426908 DOI: 10.1080/10495398.2024.2314104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Previous researches revealed a copy number variation (CNV) region in the bovine fibroblast growth factor 13 (FGF13) gene. However, its effects remain unknown. This study detected the various copy number types in seven Chinese cattle breeds and analysed their population genetic characteristics and effects on growth traits and transcription levels. Copy number Loss was more frequent in Caoyuan Red cattle and Xianan cattle than in the other breeds. Association analysis between CNV and growth traits of Qinchuan indicated that the CNV was significantly related to chest depth, hip width and hucklebone width (P < 0.05). Additionally, the growth traits of individuals with copy number Loss were significantly inferior to those with copy number Gain or Median (P < 0.05). Besides, we found two splicing isoforms, AS1 and AS2, in FGF13 gene, which resulted from alternative 5' splicing sites of intron 1. These isoforms showed varied expression levels in various tissues. Moreover, CNV was significantly and negatively associated with the mRNA expression of AS1 (r = -0.525, P < 0.05). The CNVs in bovine FGF13 gene negatively regulated growth traits and gene transcription. These observations provide new insights into bovine FGF13 gene, delivering potentially useful information for future Chinese cattle breeding programs.
Collapse
Affiliation(s)
- Hanfang Cai
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Biyang, Henan, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Hong Chen
- College of Animal Science, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
2
|
Yang Y, Tang J, Yang H, Yang S, Cai M, Qi A, Lan X, Huang B, Su C, Chen H. Copy number variation of bovine S100A7 as a positional candidate affected body measurements. Anim Biotechnol 2023; 34:2141-2149. [PMID: 35815693 DOI: 10.1080/10495398.2022.2077740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Beef production is closely related to the national economy and the attention has been paid to the improvement of beef cattle by molecular markers associated. Copy number variations (CNVs) recently have been gained many researches and recognized as an important source of genetic variation. Extensive studies have indicated that CNVs have effects on a large range of economic traits by a wide range of gene copy number alteration. S100A7 is a member of S100 family which is a famous family of Ca2+-binding proteins. S100A7 plays a crucial role in many important phenotypes (progress) including inflammatory diseases, psoriasis, obesity, etc. The aim of our study was to explore the phenotypic effects of CNV located in the S100A7 gene of bovine chromosome 3. We detected S100A7 CNV by qPCR in different cattle breeds, including Qinchuan cattle, Yunling cattle, Xianan cattle and a crossbred group Pinan. The copy number was identified as gain, normal and loss type, our results showed that the gain type was the main type in three types of S100A7 CNV of the whole tested breeds. After CNV detection, association analysis between S100A7 CNV and growth traits was carried out in four cattle breeds. We found significant effects of the CNV on cattle growth traits with differently preferred CNV types such as gain type with better chest depth (p = 0.043) in QC, loss type with better body length (p = 0.008) and rump width (p = 0.014) in YL, normal with better chest girth (p = 0.001), gain with better waist width (p = 0.001) and rump width (p = 0.044) in PN. These results suggested that the S100A7 CNV could affect the phenotypic traits and be used as a promising genetic marker for cattle molecular breeding.
Collapse
Affiliation(s)
- Yu Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Jia Tang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Haiyan Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Shuling Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ao Qi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chao Su
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
3
|
Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals (Basel) 2022; 12:ani12223074. [PMID: 36428302 PMCID: PMC9686495 DOI: 10.3390/ani12223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Copy number variation (CNV) is a fundamental type of structural variation of the genome affecting the economic traits of livestock. The SOX6 gene (sex-determining region Y-box 6), as a transcription factor, has multiple functions with regard to sex determination, embryonic growth, the nervous system development, as well as bone, and various organ formation. This study employed quantitative real-time fluorescence quota PCR (qPCR) for detecting the SOX6-CNV of the 311 Ashidan yaks and analyzed the correlation of the SOX6-CNV with four phenotypes (including body weight, withers height, body length, and chest girth) of the yaks aged 6, 12, 18, and 30 months using ANOVA and multiple comparisons. Furthermore, the SOX6 gene expression was identified in seven different tissues of the yaks. The experiment results demonstrated the expression of SOX6 in each tissue, and the kidney and muscle tissue were found to have higher relative expression levels. Based on the processing by IBM SPSS software, SOX6-CNV was significantly correlated with the chest girth of the 6-months old yaks (p < 0.05) and 30-months yaks (p < 0.05), and withers height of 6 months yaks (p < 0.05) and 18-months yaks (p < 0.05), as well as the normal type of CNV, was chosen for yak breeding. In conclusion, SOX6 might be prominently involved in promoting growth and development of yaks, suggesting that the SOX6 gene can be used in breeding yaks by molecular marker-assisted selection (MAS). The study also offered some important insights into the references and clues for the genetic breeding of yaks.
Collapse
|
4
|
Liu M, Huang C, Dai R, Ren W, Li X, Wu X, Ma X, Chu M, Bao P, Guo X, Pei J, Xiong L, Yan P, Liang C. Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits. Animals (Basel) 2022; 12:ani12202779. [PMID: 36290165 PMCID: PMC9597734 DOI: 10.3390/ani12202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Copy number variations (CNVs) are a result of genomic rearrangement affecting DNA regions over 1 kb in length, and can include inversions, translocations, deletions, and duplications. The molecule interacting with CasL-like protein 2 (MICALL2) gene is primarily associated with mitochondrial protein targeting and exhibits predicted stress fiber colocalization. The monoacylglycerol O-acyltransferase 2 (MOGAT2) gene encodes an enzyme responsible for catalyzing diacylglycerol synthesis from 2-monoacylglycerol and fatty acyl-CoA. For this study, blood samples were obtained from 315 yaks, and the body weight, body length, withers height, and chest girth of these animals were measured at 6, 12, 18, and 30 months of age. Genomic DNA was harvested from the collected blood samples, and CNVs in these samples were detected by qPCR. The resultant data were compared using ANOVAs, revealing significant associations between MICALL2 gene CNVs and body weight at 6 months of age (p < 0.05), body length and chest girth at 30 months of age (p < 0.05), and withers height at 18 months of age (p < 0.01) in Ashidan yaks. Similarly, MOGAT2 CNVs were significantly associated with body weight at 6 and 30 months of age (p < 0.05), and with withers height at 18 months of age (p < 0.01) in these Ashidan yaks. MICALL2 and MOGAT2 gene expression was further analyzed in yak tissue samples, revealing that MICALL2 was most highly expressed in the adipose tissue, whereas MOGAT2 was most highly expressed in the lung. These results thus confirmed the relationship between CNVs in the MICALL2 and MOGAT2 genes and Ashidan yak growth traits, providing a valuable gene locus that can be leveraged for future marker-assisted yak breeding efforts.
Collapse
Affiliation(s)
- Modian Liu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| |
Collapse
|
5
|
Guo X, Pei J, Wu X, Bao P, Ding X, Xiong L, Chu M, Lan X, Yan P. Detection of InDel and CNV of SPAG17 gene and their associations with bovine growth traits. Anim Biotechnol 2022; 33:440-447. [PMID: 32820682 DOI: 10.1080/10495398.2020.1803342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sperm-associated antigen 17 (SPAG17) gene encodes a central pair protein, which is involved in flagellar motility, male fertility and skeletal growth in ruminants. The insertions/deletions (indels) and copy number variations (CNVs) influence phenotypic traits by altering the sequences and copy numbers of functional genes, respectively. This study identified a novel 8-bp indel of SPAG17 gene in 1520 individuals from eight different cattle breeds, as well as a novel CNV region in 355 animals. The correlation analysis of indel showed that the individuals of ID genotype had superior performance traits such as body height (p = 0.038) and body slanting length (p = 0.041) as compared to other genotypes in Xianan cattle. For the CNV, different copy numbers were closely related to the body height in Qinchuan (p = 0.045) and body weight in Xianan (p = 0.036) breeds. Importantly, significant difference was observed between the 8-bp indel and the copy number loss in Xianan breed (p < 0.01). These findings indicated that the variations within the bovine SPAG17 gene can be considered as an effective DNA molecular marker for beef cattle breeding.
Collapse
Affiliation(s)
- Xian Guo
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Jie Pei
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Pengjia Bao
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xuezhi Ding
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Lin Xiong
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Min Chu
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Yan
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, Huang B, Chen H. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. BIOLOGY 2022; 11:biology11020223. [PMID: 35205089 PMCID: PMC8869484 DOI: 10.3390/biology11020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary It is known that many different breeds of cattle are widely distributed in China. However, due to a lengthy selection of draught direction, there are obvious shortcomings in Chinese cattle, such as less meat production, slow weight gain, poor meat quality, and a lack of specialized beef cattle breeds. Animal breeding heavily benefits from molecular technologies, among which molecular genetic markers were widely used to improve the economic traits of beef cattle. Because the copy number variation (CNV) involves a longer DNA sequence or even the entire functional gene, it may have a greater impact on the phenotype. Recent studies have indicated that CNVs are widespread in the Chinese cattle genome. By investigating the effects of CNVs on gene expression and cattle traits, we aim to find those genomic variations which could significantly affect cattle traits, and which could provide a basis for genetic selection and molecular breeding of local Chinese cattle. Abstract Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle.
Collapse
Affiliation(s)
- Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Zehui Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| |
Collapse
|
7
|
Shi R, Brito LF, Liu A, Luo H, Chen Z, Liu L, Guo G, Mulder H, Ducro B, van der Linden A, Wang Y. Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models. BMC Genomics 2021; 22:193. [PMID: 33731012 PMCID: PMC7968333 DOI: 10.1186/s12864-021-07496-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023] Open
Abstract
Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1, KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC, and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07496-3.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Animal Breeding and Genomics Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.,Animal Production System Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ziwei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Co. Ltd, Beijing, 100176, China.
| | - Herman Mulder
- Animal Breeding and Genomics Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.
| | - Bart Ducro
- Animal Breeding and Genomics Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | - Aart van der Linden
- Animal Production System Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.,Cooperation CRV, Arnhem, AL, 6800, the Netherlands
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Copy number variation of the HPGDS gene in the Ashidan yak and its associations with growth traits. Gene 2020; 772:145382. [PMID: 33373661 DOI: 10.1016/j.gene.2020.145382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Copy number variation (CNV) is a structural variation at the submicroscopic level of the genome, which can affect gene-related phenotypes by changing genes dosage and transcript structure. Hematopoietic prostaglandin D synthase (HPGDS) is a member whose functions are closely related to weight gain and inflammatory diseases of the glutathione S-transferase (GSTs) family. In this study, the growth characteristics (body weight, withers height, body length, and chest girth) of 336 Ashidan yaks were monitored at four stages (6 months, 12 months, 18 months, and 30 months). In addition, CNV of the HPGDS gene was detected, discovered relationships of CNV with growth traits, and explored the level of gene expression. Based on the statistical analysis by IBM SPSS software, significant correlations were observed between HPGDS-CNV and body weight in 12-month-old yak (P < 0.01), 18-month-old yak (P < 0.001) and 30-month-old yak (P < 0.001) and body length in 18-month-old yak (P < 0.05) and 30-month-old yak (P < 0.05), respectively. Additionally, the individuals with gain copy number type performed better in body weight and body length than those with normal or loss copy number type. To our best of knowledge, this is the first time to make efforts to probe into the role of HPGDS-CNV and its interaction with livestock growth traits. Our results suggested that the CNV of the HPGDS gene may be an active candidate gene for the marker-assisted selection (MAS) of yaks.
Collapse
|
9
|
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L, Liu J. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J Anim Sci Biotechnol 2020; 11:42. [PMID: 32337028 PMCID: PMC7171861 DOI: 10.1186/s40104-020-00442-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Reproductive performance of livestock is an economically important aspect of global food production. The Chinese Meishan pig is a prolific breed, with an average of three to five more piglets per litter than European breeds; however, the genetic basis for this difference is not well understood. Results In this study, we investigated copy number variations (CNVs) of 32 Meishan pigs and 29 Duroc pigs by next-generation sequencing. A genome-wide analysis of 61 pigs revealed 12,668 copy number variable regions (CNVRs) that were further divided into three categories based on copy number (CN) of the whole population, i.e., gain (n = 7,638), and loss (n = 5,030) CNVRs. We then compared Meishan and Duroc pigs and identified 17.17 Mb of 6,387 CNVRs that only existing in Meishan pigs CNVRs that overlapped the reproduction-related gene encoding the aryl hydrocarbon receptor (AHR) gene. We found that normal AHR CN was more frequent than CN loss in four different pig breeds. An association analysis showed that AHR CN had a positive effect on litter size (P < 0.05) and that a higher CN was associated with higher total number born (P < 0.05), number born alive (P < 0.05), number of weaned piglets, and birth weight. Conclusions The present study provides comprehensive CNVRs for Meishan and Duroc pigs through large-scale population resequencing. Our results provide a supplement for the high-resolution map of copy number variation in the porcine genome and valuable information for the investigation of genomic structural variation underlying traits of interest in pig. In addition, the association results provide evidence for AHR as a candidate gene associated with reproductive traits that can be used as a genetic marker in pig breeding programs.
Collapse
Affiliation(s)
- Xianrui Zheng
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Pengju Zhao
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kaijie Yang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chao Ning
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haifei Wang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Department of Animal Genetics, Breeding and Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Lei Zhou
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianfeng Liu
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
10
|
Goshu HA, Xiaoyun W, Chu M, Pengjia B, Xue Zhi D, Yan P. Novel copy number variations of the CHRM3 gene associated with gene expression and growth traits in Chinese Datong yak (Bos grunniens). JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1753750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
- Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Wu Xiaoyun
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Bao Pengjia
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Ding Xue Zhi
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
11
|
Hao D, Wang X, Thomsen B, Kadarmideen HN, Wang X, Lan X, Huang Y, Qi X, Chen H. Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle. Animals (Basel) 2020; 10:E566. [PMID: 32230930 PMCID: PMC7222342 DOI: 10.3390/ani10040566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
Association studies have indicated profound effects of copy number variations (CNVs) on various phenotypes in different species. In this study, we identified the CNV distributions and expression levels of guanylate-binding protein 6 (GBP6) associated with the growth traits of Chinese cattle. The results showed that the phenotypic values of body size and weight of Xianan (XN) cattle were higher than those of Nanyang (NY) cattle. The medium CNV types were mostly identified in the XN and NY breeds, but their CNV distributions were significantly different (adjusted p < 0.05). The association analysis revealed that the body weight, cannon circumference and chest circumference of XN cattle had significantly different values in different CNV types (p < 0.05), with CNV gain types (Log22-ΔΔCt > 0.5) displaying superior phenotypic values. We also found that transcription levels varied in different tissues (p < 0.001) and the CNV gain types showed the highest relative gene expression levels in the muscle tissue, consistent with the highest phenotypic values of body weight and cannon circumference among the three CNV types. Consequently, our results suggested that CNV gain types of GBP6 could be used as the candidate markers in the cattle-breeding program for growth traits.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Xiao Wang
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.W.); (H.N.K.)
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Haja N. Kadarmideen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.W.); (H.N.K.)
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang 463700, Henan, China;
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, Shaanxi, China; (D.H.); (X.W.); (X.L.); (Y.H.)
| |
Collapse
|
12
|
Yang Z, Cao X, Ma Y, Cheng J, Song C, Jiang R, Wang X, Huang Y, Buren C, Lan X, Ibrahim EE, Hu L, Chen H. Novel copy number variation of the BAG4 gene is associated with growth traits in three Chinese sheep populations. Anim Biotechnol 2020; 32:461-469. [PMID: 32022644 DOI: 10.1080/10495398.2020.1719124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Copy number variation (CNV) as an important source of genetic phenotypic and variation is related to complex phenotypic traits. The aim of this study was to investigate the potential associations of BAG4 (Bcl-2-associated athanogene 4) copy numbers variations with sheep growth traits in three Chinese sheep breeds (CKS, STHS, and HS). BAG4 is located within the stature and udder attachment quantitative trait loci (QTL) in sheep. Expression profiling revealed that the BAG4 gene was widely expressed in the tissues of sheep. The distribution of BAG4 gene copy number showed that the loss of copy number was more dominant in CKS and HS which was different from that in STHS. Statistical analysis revealed that the BAG4 CNV was significantly associated with body height in CKS (p < 0.05), with body slanting length in HS (p < 0.05), and with body height and hip cross height in STHS (p < 0.05). The χ2 values showed significant differences in the BAG4 CNV distribution frequency between varieties. In conclusion, the results establish the association between BAG4 CNV and sheep traits and suggest that BAG4 CNV may be a promising marker for the molecular breeding of Chinese sheep.
Collapse
Affiliation(s)
- Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilei Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaogang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Elsaeid Elnour Ibrahim
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Wang X, Cao X, Wen Y, Ma Y, Elnour IE, Huang Y, Lan X, Chaogetu B, Hu L, Chen H. Associations of ORMDL1 gene copy number variations with growth traits in four Chinese sheep breeds. Arch Anim Breed 2019; 62:571-578. [PMID: 31807669 PMCID: PMC6853131 DOI: 10.5194/aab-62-571-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022] Open
Abstract
Copy number variations (CNVs) are gains and losses of genomic sequence of more
than 50 bp between two individuals of a species. Also, CNV is considered to be one
of the main elements affecting the phenotypic diversity and evolutionary
adaptation of animals. ORMDL sphingolipid biosynthesis regulator 1
(ORMDL1) is a protein-coding gene associated with diseases and development. In our
study, the polymorphism of ORMDL1 gene copy numbers in four Chinese sheep breeds
(abbreviated CK, HU, STH, and LTH) was detected. In addition, we analyzed the
transcriptional expression level of ORMDL1 gene in different tissues of sheep and
examined the association of ORMDL1 CNV with growth traits. The statistical
analysis revealed that ORMDL1 CNV was remarkably correlated with body height,
heart girth, and circumference of cannon bone in HU sheep (P<0.05),
and there are significant effects on body weight, body height, body length,
chest depth, and height of hip cross in STH sheep (P<0.05). In
conclusion, our results provide a basis for the relationship between CNV of
ORMDL1 gene and sheep growth traits, suggesting that ORMDL1 CNV may be considered a promising marker for the molecular breeding of Chinese sheep.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiukai Cao
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Wen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yilei Ma
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ibrahim Elsaeid Elnour
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai 817000, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Shi SY, Li LJ, Zhang ZJ, Wang EY, Wang J, Xu JW, Liu HB, Wen YF, He H, Lei CZ, Chen H, Huang YZ. Copy number variation of MYLK4 gene and its growth traits of Capra hircus (goat). Anim Biotechnol 2019; 31:532-537. [PMID: 31280665 DOI: 10.1080/10495398.2019.1635137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Copy number variation (CNV) is a form of genetic variation caused by genome rearrangement, with abnormal fragments ranging from 50 bp to Mb. And, CNV is closely related to disease, growth and reproductive shape of livestock. As a member of myosin light chain kinase (MYLK) family with serine/threonine specificity, MYLK4 belongs to an enzyme encoded by MYLK4 gene. Although MYLK4 is a recognized kinase, its function has yet to be revealed in subsequent studies. This study aims to analyze CNV and genetic effects of MYLK4 gene in goats. We used qPCR to detect CNV of MYLK4 gene in African Nubian goat (n = 32), Guizhou black goat (n = 196) and Guizhou white goat (n = 95), respectively, and correlated CNV data of MYLK4 gene with goat growth traits in Chinese goats. The results showed that the effect of MYLK4 gene CNV on body weight, body length and body height of goats had significantly different (p < 0.05, Q < 0.05), in which CNV showed better growth traits in type of deletion. Therefore, CNV of MYLK4 gene can be used as a molecular marker for assisted selection of goat growth traits, which provides a theoretical basis for the genetic improvement of goat breeds in China.
Collapse
Affiliation(s)
- Shu-Yue Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Li-Juan Li
- Guizhou University of Engineering Science, Institute of Bijie Test Area, Guizhou, People's Republic of China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Er-Yao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Jia-Wei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong-Bing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Yi-Fan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hua He
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
15
|
Ma YL, Wen YF, Cao XK, Cheng J, Huang YZ, Ma Y, Hu LY, Lei CZ, Qi XL, Cao H, Chen H. Copy number variation (CNV) in the IGF1R gene across four cattle breeds and its association with economic traits. Arch Anim Breed 2019; 62:171-179. [PMID: 31807627 PMCID: PMC6852844 DOI: 10.5194/aab-62-171-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) plays a vital role in
immunomodulation and muscle and bone growth. The copy number variation (CNV) is
believed to the reason for many complex phenotypic variations. In
this paper, we statistically analyzed the copy number and the expression
profiling in different tissue types of the IGF1R gene using the
422 samples from four Chinese beef cattle breeds, and the mRNA of
IGF1R was widely expressed in nine tissue types of adult cattle (heart,
liver, kidney, muscle, fat, stomach, spleen, lung and testis). Results of CNV and growth traits indicated that the IGF1R CNV
was significantly associated with body weight and body height of Jinnan (JN)
cattle and was significantly associated with body height and hucklebone width
of Qinchuan (QC) cattle, making IGF1R CNV a promising molecular
marker to improve meat production in beef cattle breeding. Bioinformatics
predictions show that the CNV region is highly similar to the human genome,
and there are a large number of transcription factors, DNase I hypersensitive
sites, and high levels of histone acetylation, suggesting that this region may
play a role in transcriptional regulation, providing directions for further
study of the role of bovine CNV and economic traits.
Collapse
Affiliation(s)
- Yi-Lei Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Yi-Fan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Xiu-Kai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, 464000, P. R. China
| | - Lin-Yong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, P. R. China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Xing-Lei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, 463700, P. R. China
| | - Hui Cao
- Shaanxi Kingbull Animal Husbandry Co. Ltd., Yangling, Shaanxi, 712100, P. R. China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| |
Collapse
|
16
|
Zhang Q, Jin Y, Jiang F, Cheng H, Wang Y, Lan X, Song E. Relationship between an indel mutation within the SIRT4 gene and growth traits in Chinese cattle. Anim Biotechnol 2019; 30:352-357. [DOI: 10.1080/10495398.2018.1520716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qingfeng Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Key Laboratory of Animal Disease control and Breeding, Jinan, Shandong, China
| | - Yunyun Jin
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fugui Jiang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Key Laboratory of Animal Disease control and Breeding, Jinan, Shandong, China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Key Laboratory of Animal Disease control and Breeding, Jinan, Shandong, China
| | - Yafang Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Key Laboratory of Animal Disease control and Breeding, Jinan, Shandong, China
| |
Collapse
|
17
|
Goshu HA, Chu M, Xiaoyun W, Pengjia B, Zhi DX, Yan P. Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol Genet Genomics 2019; 294:549-561. [DOI: 10.1007/s00438-018-01530-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
|
18
|
Goshu HA, Chu M, Wu X, Pengjia B, Ding XZ, Yan P. Association study and expression analysis of GPC1 gene copy number variation in Chinese Datong yak ( Bos grunniens) breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1586456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
- Animal Science Department, Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Bao Pengjia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xue Zhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Xu JW, Zheng L, Li LJ, Yao YF, Hua H, Yang SZ, Wen YF, Song CC, Cao XK, Liu KP, Zhang GM, Yang JM, Hao D, Dang RH, Lan XY, Lei CZ, Qi XL, Chen H, Huang YZ. Novel copy number variation of the KLF3 gene is associated with growth traits in beef cattle. Gene 2019; 680:99-104. [DOI: 10.1016/j.gene.2018.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
|
20
|
Copy Number Variations of KLF6 Modulate Gene Transcription and Growth Traits in Chinese Datong Yak (Bos Grunniens). Animals (Basel) 2018; 8:ani8090145. [PMID: 30134528 PMCID: PMC6162419 DOI: 10.3390/ani8090145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023] Open
Abstract
Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage and disrupting coding regions in the genome. Biochemically, Kruppel-like factor 6 (KLF6) genes plays a significant role in the regulation of cell differentiation and proliferation and muscle development. The aim of this study was to detect the distributions of KLF6 copy number variations (CNVs) in five breeds of domestic yak and to explore their effect on growth traits and gene expression. The data were analyzed by real-time quantitative PCR (qPCR). Our results elucidated that a decreased CNV in the KLF6 gene is more highly associated (p < 0.05) with various growth traits than increased or normal CNVs in six-month-old and five-year-old Datong yak. Nevertheless, negative correlations between the DNA copy number and KLF6 gene expression were observed in the skeletal muscle of adult Datong yak. These results suggest that CNVs of the KLF6 gene could be crucial genomic markers for growth phenotypes of Chinese Datong yak breeds and this finding constitutes the first evidence of the biological role of KLF6 CNVs in Chinese Datong yak breeds.
Collapse
|
21
|
Jin Y, Yang Q, Gao J, Tang Q, Duan B, Yu T, Qi X, Liu J, Wang R, Dang R, Lei C, Chen H, Lan X. Detection of Insertions/Deletions Within SIRT1, SIRT2 and SIRT3 Genes and Their Associations with Body Measurement Traits in Cattle. Biochem Genet 2018; 56:663-676. [PMID: 29869077 DOI: 10.1007/s10528-018-9868-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/31/2018] [Indexed: 11/27/2022]
Abstract
Growth traits are complex quantitative traits controlled by numerous candidate genes, and they can be well-evaluated using body measurement traits. As the members of the nicotinamide adenine dinucleotide-dependent family of histone deacetylases, class I sirtuin genes (including SIRT1, SIRT2 and SIRT3) play crucial roles in regulating lipid metabolism, cellular growth and metabolism, suggesting that they are potential candidate genes affecting body measurement traits in animals. Hence, the objective of this work aimed to detect novel insertions/deletions (indels) of SIRT1, SIRT2 and SIRT3 genes in 955 cattle belonging to five breeds, as well as to evaluate their effects on body measurement traits. Herein, the novel 12-bp indel of SIRT1 gene, the 7-bp indel of SIRT2 gene and the 26-bp indel of SIRT3 gene were firstly reported, respectively. The association analysis indicated that the indels within SIRT1 and SIRT2 genes were significantly associated with body measurement traits such as body weight, chest circumference, height at hip cross, hip width, body height, etc. (P < 0.05 or P < 0.01). Therefore, based on these findings, the two novel indel variants within bovine SIRT1 and SIRT2 genes could be considered as potential molecular markers for growth traits in cattle selection practices and breeding.
Collapse
Affiliation(s)
- Yunyun Jin
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qing Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiayang Gao
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qi Tang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Bo Duan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ting Yu
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinglei Qi
- Xianan Cattle Technology Development Company, Biyang, 463700, Henan, People's Republic of China
- Bureau of Animal Husbandry, Biyang, 463700, Henan, People's Republic of China
| | - Jiming Liu
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Rongmin Wang
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Ruihua Dang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
22
|
Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature. Funct Integr Genomics 2018; 18:559-567. [PMID: 29737453 DOI: 10.1007/s10142-018-0613-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 02/03/2023]
Abstract
Copy number variation (CNV) of DNA sequences, functionally significant but yet fully ascertained, is believed to confer considerable increments in unexplained heritability of quantitative traits. Identification of phenotype-associated CNVs (paCNVs) therefore is a pressing need in CNV studies to speed up their exploitation in cattle breeding programs. Here, we provided a new avenue to achieve this goal that is to project the published CNV data onto meta-quantitative trait loci (meta-QTL) map which connects causal genes with phenotypes. Any CNVs overlapping meta-QTL therefore will be potential paCNVs. This study reported potential paCNVs in Bos taurus autosome 3 (BTA3). Notably, overview indexes and CNVs both highlighted a narrower region (BTA3 54,500,000-55,000,000 bp, named BTA3_INQTL_6) within one constructed meta-QTL. Then, we ascertained guanylate-binding protein 4 (GBP4) among the nine positional candidate genes was significantly associated with adult cattle stature, including body weight (BW, P < 0.05) and withers height (WHT, P < 0.05), fitting GBP4 CNV either with three levels or with six levels in the model. Although higher copy number downregulated the mRNA levels of GBP2 (P < 0.05) and GBP4 (P < 0.05) in 1-Mb window (54.0-55.0 Mb) in muscle and adipose, additional analyses will be needed to clarify the causality behind the ascertained association.
Collapse
|
23
|
Widespread modulation of gene expression by copy number variation in skeletal muscle. Sci Rep 2018; 8:1399. [PMID: 29362391 PMCID: PMC5780461 DOI: 10.1038/s41598-018-19782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022] Open
Abstract
Copy number variation (CNV) is a frequently observed deviation from the diploid state due to duplication or deletion of genomic regions. Although intensively analyzed for association with diseases and production traits, the specific mechanisms and extent by which such variations affect the phenotype are incompletely understood. We present an integrative study on CNV and genome-wide gene expression in Brazilian Bos indicus cattle. We analyzed CNVs inferred from SNP-chip data for effects on gene expression measured with RNA-seq in skeletal muscle samples of 183 steers. Local effects, where expression changes coincided with CNVs in the respective genes, were restricted to immune genes. Distal effects were attributable to several high-impact CNVs that modulated remote expression in an orchestrated and intertwined fashion. These CNVs were located in the vicinity of major skeletal muscle pathway regulators and associated genes were enriched for proteolysis, autophagy, and muscle structure development. From association analysis between CNVs and several meat quality and production traits, we found CNV-associated expression effects to also manifest at the phenotype level. Based on genome sequences of the population founders, we further demonstrate that CNVs with impact on expression and phenotype are passed on from one generation to another.
Collapse
|
24
|
Zhang GM, Zheng L, He H, Song CC, Zhang ZJ, Cao XK, Lei CZ, Lan XY, Qi XL, Chen H, Huang YZ. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle. Gene 2018; 647:101-106. [PMID: 29325733 DOI: 10.1016/j.gene.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/16/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P < .05). In conclusion, this research established the correlations between CNVs of GBP2 gene and growth traits in different cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle.
Collapse
Affiliation(s)
- Gui-Min Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Zheng
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China
| | - Hua He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Cheng-Chuang Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, PR China
| | - Xiu-Kai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xing-Lei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan 463700, PR China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
25
|
Cai Y, Lu J, Tang F. Overexpression of MICAL2, a novel tumor-promoting factor, accelerates tumor progression through regulating cell proliferation and EMT. J Cancer 2018; 9:521-527. [PMID: 29483957 PMCID: PMC5820919 DOI: 10.7150/jca.22355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Molecule interacting with CasL 2 (MICAL2), a microtubule associated monooxygenase, is involved in cell growth, axon guidance, vesicle trafficking and apoptosis. Recent studies have demonstrated that MICAL2 is highly expressed in tumor and accelerates tumor progression and it is deemed to be a novel tumor-promoting factor. MICAL2 overexpression increases cell proliferation to accelerate tumor growth, and MICAL2 also promotes epithelial-mesenchymal transition (EMT)-related proteins to increase cancer cell metastasis. On mechanism, MICAL2 induces EMT by regulating SRF (serum response factor)/MRTF-A (myocardin related transcription factor A) signaling, Semaphorin/Plexin pathway and inducing ROS (Reactive oxygen species) production. In the present review, we introduced MICAL family, expatiated the structure and functions of MICALs, and summarized the mechanisms of MICAL2 involving tumor progression. The challenges and perspectives for MICAL2 in tumor are also discussed.
Collapse
Affiliation(s)
- Yongqiang Cai
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Jinping Lu
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Faqing Tang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
26
|
Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 2017; 12:e0183921. [PMID: 28841720 PMCID: PMC5571935 DOI: 10.1371/journal.pone.0183921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/10/2017] [Indexed: 12/01/2022] Open
Abstract
Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus) and Qinchuan (Bos taurus) are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 to 12 fold on average of 97.86% and 98.98% coverage of genomes, respectively. Comparison with the Bos_taurus_UMD_3.1 reference assembly yielded 9,010,096 SNPs for Nanyang, and 6,965,062 for Qinchuan cattle, 51% and 29% of which were novel SNPs, respectively. A total of 154,934 and 115,032 small indels (1 to 3 bp) were found in the Nanyang and Qinchuan genomes, respectively. The SNP and indel distribution revealed that Nanyang showed a genetically high diversity as compared to Qinchuan cattle. Furthermore, a total of 2,907 putative cases of copy number variation (CNV) were identified by aligning Nanyang to Qinchuan genome, 783 of which (27%) encompassed the coding regions of 495 functional genes. The gene ontology (GO) analysis revealed that many CNV genes were enriched in the immune system and environment adaptability. Among several CNV genes related to lipid transport and fat metabolism, Lepin receptor gene (LEPR) overlapping with CNV_1815 showed remarkably higher copy number in Qinchuan than Nanyang (log2 (ratio) = -2.34988; P value = 1.53E-102). Further qPCR and association analysis investigated that the copy number of the LEPR gene presented positive correlations with transcriptional expression and phenotypic traits, suggesting the LEPR CNV may contribute to the higher fat deposition in muscles of Qinchuan cattle. Our findings provide evidence that the distinct phenotypes of Nanyang and Qinchuan breeds may be due to the different genetic variations including SNPs, indels and CNV.
Collapse
|
27
|
Kwun Y, Seo EJ, Yoo HW, Lee BS, Kim KS, Kim EAR. Phenotypic variability of a terminal 7q deletion/8q duplication in Korean siblings. Ann Lab Med 2016. [PMID: 26206699 PMCID: PMC4510515 DOI: 10.3343/alm.2015.35.5.557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yoojin Kwun
- Department of Pediatrics, Division of Neonatology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicin, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Wook Yoo
- Department of Pediatrics, Division of Neonatology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicin, Seoul, Korea.,Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Sop Lee
- Department of Pediatrics, Division of Neonatology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicin, Seoul, Korea
| | - Ki Soo Kim
- Department of Pediatrics, Division of Neonatology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicin, Seoul, Korea
| | - Ellen Ai Rhan Kim
- Department of Pediatrics, Division of Neonatology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicin, Seoul, Korea.
| |
Collapse
|
28
|
Ben Sassi N, González-Recio Ó, de Paz-del Río R, Rodríguez-Ramilo ST, Fernández AI. Associated effects of copy number variants on economically important traits in Spanish Holstein dairy cattle. J Dairy Sci 2016; 99:6371-6380. [DOI: 10.3168/jds.2015-10487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/15/2016] [Indexed: 11/19/2022]
|
29
|
da Silva VH, Regitano LCDA, Geistlinger L, Pértille F, Giachetto PF, Brassaloti RA, Morosini NS, Zimmer R, Coutinho LL. Genome-Wide Detection of CNVs and Their Association with Meat Tenderness in Nelore Cattle. PLoS One 2016; 11:e0157711. [PMID: 27348523 PMCID: PMC4922624 DOI: 10.1371/journal.pone.0157711] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/03/2016] [Indexed: 12/20/2022] Open
Abstract
Brazil is one of the largest beef producers and exporters in the world with the Nelore breed representing the vast majority of Brazilian cattle (Bos taurus indicus). Despite the great adaptability of the Nelore breed to tropical climate, meat tenderness (MT) remains to be improved. Several factors including genetic composition can influence MT. In this article, we report a genome-wide analysis of copy number variation (CNV) inferred from Illumina® High Density SNP-chip data for a Nelore population of 723 males. We detected >2,600 CNV regions (CNVRs) representing ≈6.5% of the genome. Comparing our results with previous studies revealed an overlap in ≈1400 CNVRs (>50%). A total of 1,155 CNVRs (43.6%) overlapped 2,750 genes. They were enriched for processes involving guanosine triphosphate (GTP), previously reported to influence skeletal muscle physiology and morphology. Nelore CNVRs also overlapped QTLs for MT reported in other breeds (8.9%, 236 CNVRs) and from a previous study with this population (4.1%, 109 CNVRs). Two CNVRs were also proximal to glutathione metabolism genes that were previously associated with MT. Genome-wide association study of CN state with estimated breeding values derived from meat shear force identified 6 regions, including a region on BTA3 that contains genes of the cAMP and cGMP pathway. Ten CNVRs that overlapped regions associated with MT were successfully validated by qPCR. Our results represent the first comprehensive CNV study in Bos taurus indicus cattle and identify regions in which copy number changes are potentially of importance for the MT phenotype.
Collapse
Affiliation(s)
- Vinicius Henrique da Silva
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- * E-mail: (LLC); (VHS)
| | | | - Ludwig Geistlinger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München (LMU), Amalienstrasse 17, 80333, München, Germany
| | - Fábio Pértille
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Ricardo Augusto Brassaloti
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Natália Silva Morosini
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München (LMU), Amalienstrasse 17, 80333, München, Germany
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- * E-mail: (LLC); (VHS)
| |
Collapse
|
30
|
Cai H, Wang Z, Lan X, Xu Y, Chen H, Lei C. Indels within the bovine visfatin gene affect its mRNA expression in longissimus muscle and subcutaneous fat. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-91-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Visfatin, an adipokine hormone produced primarily by visceral adipose tissue in mammals, has been identified as having a crucial role in growth and development of skeletal muscle and lipids. In this research, the effects of two indel loci (35 bp indel: AC_000161.1: g. 20540–20541 Ins ACTGGAATTCTAGTTTAAAAATTGCTACTAATGAA located in intron 4; 6 bp indel: AC_000161.1: g. 25873–25878 Del: TAAAAA located in intron 5) of the visfatin gene on mRNA expression levels were studied by means of real-time quantitative PCR (qPCR) in longissimus muscle and subcutaneous fat from 95 Qinchuan cattle. Firstly, visfatin expression level in longissimus muscle of fetal cattle was prominently greater than that in calves and adult cattle (P < 0.05). The expression level of visfatin in subcutaneous fat was notably higher than that in longissimus muscle of calves and adult cattle (P < 0.05). Secondly, there were three genotypes (ins/ins, del/del and ins/del) and two genotypes (ins/del and ins/ins) detected in the 35 bp locus and 6 bp locus, respectively. Visfatin showed a minimum expression level in longissimus muscle in the homozygous deletion genotype at the 35 bp indel locus. Especially in calves, expression of visfatin was significantly greater in the heterozygous genotype than that in the homozygous insertion genotpye (P < 0.05). No statistical differences were found among visfatin expression level based on genotypes in the 6 bp indel locus (P > 0.05). Compared to heterozygous genotype, the expression level of homozygous insertion genotype was lower in longissimus muscle but greater in subcutaneous fat. These results imply that the expression levels of bovine visfatin vary with age and its indels might be putative variants mediating the expression of the bovine visfatin gene. This study provides useful information for further functional studies of bovine visfatin.
Collapse
|
31
|
Shi T, Xu Y, Yang M, Huang Y, Lan X, Lei C, Qi X, Yang X, Chen H. Copy number variations atLEPRgene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim Sci J 2015; 87:336-43. [DOI: 10.1111/asj.12531] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/11/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Yao Xu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Mingjuan Yang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Yongzhen Huang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Chuzhao Lei
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Xinglei Qi
- Biyang Bureau of Animal Husbandry of Biyang County; Biyang Henan China
| | - Xiaoming Yang
- Institute of Animal Husbandry and Veterinary; Shanxi Academy of Agricultural Sciences; Taiyuan Shanxi China
| | - Hong Chen
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| |
Collapse
|