1
|
Gao K, Huang Z, Yu W, Wu Y, Liu W, Sun S, Zhang Y, Chen D. Therapeutic mechanisms of modified Jiawei Juanbi decoction in early knee osteoarthritis: A multimodal analysis. Heliyon 2024; 10:e30828. [PMID: 38770333 PMCID: PMC11103480 DOI: 10.1016/j.heliyon.2024.e30828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Modified Jiawei Juanbi decoction (MJD) is used for the treatment of early-stage knee osteoarthritis (KOA). Here, modified Jiawei Juanbi decoction (MJD) was employed for the treatment of early-stage knee osteoarthritis (KOA) and its mechanisms were assessed via metabonomics and network pharmacology. A total of 24 male Sprague-Dawley rats were randomly allocated into a normal control group, a model group, and an MJD group (n = 8 rats per group). Each rat group was further equally divided into two subgroups for investigation for either 14 or 28 days. A rat model of early-stage KOA was constructed and rats were treated with MJD. Effects were evaluated based on changes in knee circumference, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). We also analyzed histopathological changes in articular cartilage. High-resolution mass spectrometry was used to analyze the chemical profile of MJD, identifying 228 components. Using an LC-Q-TOF-MS metabonomics approach, 33 differential metabolites were identified. The relevant pathways significantly associated with MJD include arginine and proline metabolism, vitamin B6 metabolism, as well as the biosynthesis of phenylalanine, tyrosine and tryptophan. The system pharmacology paradigm revealed that MJD contains 1027 components and associates with 1637 genes, of which 862 disease genes are related to osteoarthritis. The construction of the MJD composition-target-KOA network revealed a total of 140 intersection genes. A total of 39 hub genes were identified via integration of betweenness centrality values greater than 100 using CytoHubba. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed several significantly affected signaling pathways including the HIF-1, AGE-RAGE (in diabetic complications), IL-17, rheumatoid arthritis and TNF pathways. Integrated-omics and network pharmacology approaches revealed a necessity for further detailed investigation focusing on two major targets, namely NOS2 and NOS3, along with their essential metabolite (arginine) and associated pathways (HIF-1 signaling and arginine and proline metabolism). Real-time PCR validated significantly greater downregulation of NOS2 and HIF-1ɑ in the MJD as compared to the model group. Molecular docking analysis further confirmed the binding of active MJD with key active components. Our findings elucidate the impact of MJD on relevant pathophysiological and metabolic networks relevant to KOA and assess the drug efficacy of MJD and its underlying mechanisms of action.
Collapse
Affiliation(s)
- Kun Gao
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Zhenyu Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiji Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yihong Wu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Weidong Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shufen Sun
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yong Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Dayu Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| |
Collapse
|
2
|
Kaya S, Bailey KN, Schurman CA, Evans DS, Alliston T. Bone-cartilage crosstalk informed by aging mouse bone transcriptomics and human osteoarthritis genome-wide association studies. Bone Rep 2023; 18:101647. [PMID: 36636109 PMCID: PMC9830153 DOI: 10.1016/j.bonr.2022.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Subchondral bone participates in crosstalk with articular cartilage to maintain joint homeostasis, and disruption of either tissue results in overall joint degeneration. Among the subchondral bone changes observed in osteoarthritis (OA), subchondral bone plate (SBP) thickening has a time-dependent relationship with cartilage degeneration and has recently been shown to be regulated by osteocytes. Here, we evaluate the effect of age on SBP thickness and cartilage degeneration in aging mice. We find that SBP thickness significantly increases by 18-months of age, corresponding temporally with increased cartilage degeneration. To identify factors in subchondral bone that may participate in bone cartilage crosstalk or OA, we leveraged mouse transcriptomic data from one joint tissue compartment - osteocyte-enriched bone - to search for enrichment with human OA in UK Biobank and Arthritis Research UK Osteoarthritis Genetics (arcOGEN) GWAS using the mouse2human (M2H, www.mouse2human.org) strategy. Genes differentially expressed in aging mouse bone are significantly enriched for human OA, showing joint site-specific (knee vs. hip) relationships, exhibit temporal associations with age, and unique gene clusters are implicated in each type of OA. Application of M2H identifies genes with known and unknown functions in osteocytes and OA development that are clinically associated with human OA. Altogether, this work prioritizes genes with a potential role in bone/cartilage crosstalk for further mechanistic study based on their association with human OA in GWAS.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
| | - Karsyn N. Bailey
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| |
Collapse
|
3
|
Primetis E, Drakopoulos D, Sieron D, Meusburger H, Szyluk K, Niemiec P, Obmann VC, Peters AA, Huber AT, Ebner L, Delimpasis G, Christe A. Knee Diameter and Cross-Sectional Area as Biomarkers for Cartilage Knee Degeneration on Magnetic Resonance Images. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010027. [PMID: 36676651 PMCID: PMC9865157 DOI: 10.3390/medicina59010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: Osteoarthritis (OA) of the knee is a degenerative disorder characterized by damage to the joint cartilage, pain, swelling, and walking disability. The purpose of this study was to assess whether demographic and radiologic parameters (knee diameters and knee cross-sectional area from magnetic resonance (MR) images) could be used as surrogate biomarkers for the prediction of OA. Materials and Methods: The knee diameters and cross-sectional areas of 481 patients were measured on knee MR images, and the corresponding demographic parameters were extracted from the patients' clinical records. The images were graded based on the modified Outerbridge arthroscopic classification that was used as ground truth. Receiver-operating characteristic (ROC) analysis was performed on the collected data. Results: ROC analysis established that age was the most accurate predictor of severe knee cartilage degeneration (corresponding to Outerbridge grades 3 and 4) with an area under the curve (AUC) of the specificity-sensitivity plot of 0.865 ± 0.02. An age over 41 years was associated with a sensitivity and specificity for severe degeneration of 82.8% (CI: 77.5-87.3%), and 76.4% (CI: 70.4-81.6%), respectively. The second-best degeneration predictor was the normalized knee cross-sectional area, with an AUC of 0.767 ± 0.04), followed by BMI (AUC = 0.739 ± 0.02), and normalized knee maximal diameter (AUC = 0.724 ± 0.05), meaning that knee degeneration increases with increasing knee diameter. Conclusions: Age is the best predictor of knee damage progression in OA and can be used as surrogate marker for knee degeneration. Knee diameters and cross-sectional area also correlate with the extent of cartilage lesions. Though less-accurate predictors of damage progression than age, they have predictive value and are therefore easily available surrogate markers of OA that can be used also by general practitioners and orthopedic surgeons.
Collapse
Affiliation(s)
- Elias Primetis
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Dionysios Drakopoulos
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Dominik Sieron
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Hugo Meusburger
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 St., 41-940 Piekary Slaskie, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Verena C. Obmann
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Alan A. Peters
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Adrian T. Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Lukas Ebner
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgios Delimpasis
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Andreas Christe
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
4
|
Sieroń D, Jabłońska I, Niemiec P, Lukoszek D, Szyluk K, Platzek I, Meusburger H, Delimpasis G, Christe A. Relationship between Outerbridge Scale and Chondropathy Femorotibial Joint in Relation to Gender and Age-The Use of 1.5T and 3.0T MRI Scanners. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111634. [PMID: 36422173 PMCID: PMC9697703 DOI: 10.3390/medicina58111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective: Magnetic resonance imaging (MRI) enables the effective evaluation of chondromalacia of the knee joint. Cartilage disease is affected by many factors, including gender, age, and body mass index (BMI). The aim of this study was to check the relationship between the severity of chondromalacia of the femoro-tibial joint and age, gender, and BMI assessed with 1.5T and 3.0T MRI scanners. Materials and Methods: The cross-observational study included 324 patients—159 (49%) females and 165 (51%) males aged 8−87 (45.1 ± 20.9). The BMI of study group was between 14.3 and 47.3 (27.7 ± 5.02). 1.5T and 3.0T MRI scanners were used in the study. The articular cartilage of the knee joint was assessed using the Outerbridge scale. Results: The age of the patients showed a significant correlation with Outerbrige for each compartment of the femorotibial joint (Spearman’s rank correlation rho: 0.69−0.74, p < 0.0001). A higher correlation between BMI and Outerbridge was noted in the femur medial (rho = 0.45, p < 0.001) and the tibia medial (rho = 0.43, p < 0.001) than in the femur lateral (rho = 0.29, p < 0.001) and the tibia lateral compartment (rho = 0.34, p < 0.001). Conclusions: The severity of chondromalacia significantly depends on age and BMI level, regardless of gender.
Collapse
Affiliation(s)
- Dominik Sieroń
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
- Correspondence:
| | - Izabella Jabłońska
- Recreation and Treatment Center “Glinik” 1, Wysowa-Zdrój 101 str, 38-316 Wysowa-Zdrój, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 str, 40-752 Katowice, Poland
| | - Dawid Lukoszek
- Dawid Lukoszek Physiotherapy Osteopathy, 42-690 Hanusek, Poland
| | - Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Orthopaedic and Trauma Surgery, District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 str, 41-940 Piekary Śląskie, Poland
| | - Ivan Platzek
- Department of Radiology, Dresden University Hospital, Fetscherstr. 74, 01307 Dresden, Germany
| | - Hugo Meusburger
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Georgios Delimpasis
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Andreas Christe
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| |
Collapse
|
5
|
Ai LY, Du MZ, Chen YR, Xia PY, Zhang JY, Jiang D. Integrated Analysis of lncRNA and mRNA Expression Profiles Indicates Age-Related Changes in Meniscus. Front Cell Dev Biol 2022; 10:844555. [PMID: 35359458 PMCID: PMC8960627 DOI: 10.3389/fcell.2022.844555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Little has been known about the role of long non-coding RNA (lncRNA) involves in change of aged meniscus. Microarray analyses were performed to identify lncRNAs and mRNAs expression profiles of meniscus in young and aging adults and apple bioinformatics methods to analyse their potential roles. The differentially expressed (DE) lncRNAs and mRNAs were confirmed by qRT-PCR. A total of 1608 DE lncRNAs and 1809 DE mRNAs were identified. Functional and pathway enrichment analyses of all DE mRNAs showed that DE mRNAs were mainly involved in the TGF-beta, Wnt, Hippo, PI3K-Akt signaling pathway. The expressions of TNFRSF11B and BMP2 were significantly upregulated in aging group. LASSO logistic regression analysis of the DE lncRNAs revealed four lncRNAs (AC124312.5, HCG11, POC1B-AS1, and AP001011.1) that were associated with meniscus degradation. CNC analysis demonstrated that AP001011 inhibited the expression of TNFRSF11B and AC1243125 upregulated the expression of TNFRSF11B. CeRNA analysis suggested that POC1B-AS1 regulates the expression of BMP2 by sponging miR 130a-3p, miR136-5p, miR 18a-3p, and miR 608. Furthermore, subcellular localization and m6A modification sites prediction analysis of these four lncRNAs was performed. These data lay a foundation for extensive studies on the role of lncRNAs in change of aged meniscus.
Collapse
Affiliation(s)
- Li-Ya Ai
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Ming-Ze Du
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Peng-Yan Xia
- Department of Immunology, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-Ying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- *Correspondence: Dong Jiang,
| |
Collapse
|
6
|
Loughlin J. Translating osteoarthritis genetics research: challenging times ahead. Trends Mol Med 2022; 28:176-182. [PMID: 35033441 DOI: 10.1016/j.molmed.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
The ultimate goal of molecular genetic studies of human diseases is to translate the discoveries for patient benefit. For diseases that lack licensed disease-modifying therapeutics, such as osteoarthritis (OA), the need is acute. OA is polygenic and affects older individuals, with a recent genome-wide study of over 800 000 individuals adding 52 novel association signals to those already reported on for this common arthritis. Many of the predicted effector genes of these signals encode proteins that are targets of drugs for other indications, highlighting repurposing opportunities. Here, the potential for OA genetic data to translate is discussed, including whether the developmental origin of OA will limit the application of genetic risk data for disease-modification purposes.
Collapse
Affiliation(s)
- John Loughlin
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
7
|
Inagaki J, Nakano A, Hatipoglu OF, Ooka Y, Tani Y, Miki A, Ikemura K, Opoku G, Ando R, Kodama S, Ohtsuki T, Yamaji H, Yamamoto S, Katsuyama E, Watanabe S, Hirohata S. Potential of a Novel Chemical Compound Targeting Matrix Metalloprotease-13 for Early Osteoarthritis: An In Vitro Study. Int J Mol Sci 2022; 23:ijms23052681. [PMID: 35269821 PMCID: PMC8910651 DOI: 10.3390/ijms23052681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound library to identify new drug candidates that target MMP and ADAMTS using a cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a potential candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated IL-1β-induced MMP13 mRNA expression in a dose-dependent manner, without causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone on IL-1β-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9 mRNA expression. In conclusion, we identified a potential compound of interest that may help attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints.
Collapse
Affiliation(s)
- Junko Inagaki
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Airi Nakano
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Higashi-Sayama, Osaka 577-8502, Japan;
| | - Yuka Ooka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Yurina Tani
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Akane Miki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Kentaro Ikemura
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Gabriel Opoku
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Ryosuke Ando
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Shintaro Kodama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Hirosuke Yamaji
- Heart Rhythm Center, Okayama Heart Clinic, Takeda 54-1, Okayama 703-8251, Japan;
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Eri Katsuyama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
- Correspondence: ; Tel./Fax: +81-86-235-6897
| |
Collapse
|
8
|
Regenerative Potential of Blood-Derived Products in 3D Osteoarthritic Chondrocyte Culture System. Curr Issues Mol Biol 2021; 43:665-675. [PMID: 34287259 PMCID: PMC8929075 DOI: 10.3390/cimb43020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Intra-articular injection of different types of blood-derived products is gaining popularity and clinical importance in the treatment of degenerative cartilage disorders such as osteoarthritis. The regenerative potential of two types of platelet-rich plasma (PRP), prepared in the presence of EDTA (EPRP) and citrate (CPRP) and an alternative blood product-hyperacute serum (hypACT) was evaluated using a 3D osteoarthritic chondrocyte pellet model by assessing the metabolic cell activity, cartilage-related gene expression and extracellular matrix deposition within the pellets. Chondrocyte viability was determined by XTT assay and it revealed no significant difference in metabolic activity of OA chondrocyte pellets after supplementation with different blood products. Nevertheless, the selection of blood products influenced the cartilage-related genes expression, ECM morphology and the tissue quality of pellets. Both PRP types had a different biological effect depending upon concentration and even though CPRP is widely used in clinics our assessment did not reveal good results in gene expression either tissue quality. HypACT supplementation resulted in superior cartilage-related genes expression together with tissue quality and seemed to be the most stable product since no remarkable changes were observed between the two different concentrations. All in all, for successful regenerative therapy, possible molecular mechanisms induced by blood-derived products should be always carefully investigated and adapted to the specific medical indications.
Collapse
|
9
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
10
|
Zacharjasz J, Mleczko AM, Bąkowski P, Piontek T, Bąkowska-Żywicka K. Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments. Int J Mol Sci 2021; 22:5711. [PMID: 34071929 PMCID: PMC8198041 DOI: 10.3390/ijms22115711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Anna M. Mleczko
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| | - Paweł Bąkowski
- Department of Orthopedic Surgery, Rehasport Clinic, 60-201 Poznan, Poland; (P.B.); (T.P.)
| | - Tomasz Piontek
- Department of Orthopedic Surgery, Rehasport Clinic, 60-201 Poznan, Poland; (P.B.); (T.P.)
- Department of Spine Disorders and Pediatric Orthopedics, University of Medical Sciences Poznan, 61-854 Poznan, Poland
| | | |
Collapse
|
11
|
[Possibilities and limits of conservative treatment for osteoarthritis : Sport advice, training therapy, orthotics and cartilage therapeutics]. DER ORTHOPADE 2021; 50:346-355. [PMID: 33837442 PMCID: PMC8081692 DOI: 10.1007/s00132-021-04100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/14/2022]
Abstract
Hintergrund Arthrose – die Degeneration von Gelenken – ist ein weit verbreitetes Problem durch alle Bevölkerungsschichten, das im zunehmenden Alter vermehrt auftritt und die häufigste Ursache für mobilitätseinschränkende Schmerzen am Bewegungsapparat ist. Etwa 70–80 % der über 70-Jährigen zeigen Zeichen einer Gelenksdegeneration. Insgesamt sind bis zu 25 % der Gesamtbevölkerung davon betroffen, aufgrund der generellen Alterung der Bevölkerung mit steigender Tendenz. Die Inzidenz der Arthrose steigt aber schon ab dem 40 Lebensjahr, wobei besonders posttraumatische und sekundäre Arthroseformen zum Tragen kommen. Anspruch Der Wunsch nach hoher Mobilität und Sport zieht sich als Phänomen ebenfalls durch alle Altersgruppe. Dies ist mit hohen Gelenkbelastungen verbunden und stellt damit eine große Herausforderung an vor allem früh degenerativ veränderte Gelenksstrukturen dar. In diesem Zusammenhang ist der orthopädisch tätige Arzt gefordert, die Belastbarkeit von geschädigten Gelenken abzuschätzen und so früh wie möglich präventive Schritte sowie gegebenenfalls konservative Therapien einzuleiten, um die Progression der Arthrose zu verhindern und damit den eventuell notwendigen Gelenkersatz möglichst weit nach hinten zu schieben.
Collapse
|
12
|
Nguyen LY, Harris KD, Morelli KM, Tsai LC. Increased knee flexion and varus moments during gait with high-heeled shoes: A systematic review and meta-analysis. Gait Posture 2021; 85:117-125. [PMID: 33548909 DOI: 10.1016/j.gaitpost.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 01/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND High-heeled shoes have been thought to alter lower extremity joint mechanics during gait, however its effects on the knee remain unclear. RESEARCH QUESTION This systematic review and meta-analysis aimed to determine the effects of high-heeled shoes on the sagittal- and frontal-plane knee kinetics/kinematics during gait. METHODS 1449 studies from 6 databases were screened for the following criteria: 1) healthy adult females, 2) knee joint kinematics/kinetics reported for the early stance phase during gait under varying shoe heel heights (including barefoot). Excluded studies included those mixing different shoe styles in addition to altering the heel heights. A total of 14 studies (203 subjects) met the selection criteria, resulting in 51 and 21 Cohen's d effect sizes (ESs) comparing the differences in knee sagittal- (flexion) and frontal-plane (varus) moment/angle, respectively, between shoes with higher heels and shoes with lower heels/barefoot. RESULTS Meta-analyses yielded a significant medium-to-large effect of higher heels compared to lower heels on increasing knee flexion moment (overall ES = 0.83; P < 0.01), flexion angle (overall ES=0.46; P < 0.01), and varus moment (overall ES=0.52; P < 0.01) during the early stance phase of gait. The results of meta-regressions used to explore factors explaining the heterogeneity among study ESs revealed that a greater ES in the knee flexion moment was associated with an elevated heel height of the high-heeled shoes (P = 0.02) and greater body mass of the individuals (P = 0.012). A greater ES in the knee varus moment during high-heeled gait was associated with a greater body height (P = 0.003) and mass (P = 0.006). SIGNIFICANCE Given the association between increased knee flexion/varus moments and risk of developing knee osteoarthritis (OA), women who wear high-heel shoes frequently and for a long period may be more susceptible to knee OA. Preventive treatments, such as lower extremity muscle strengthening, may help improve shock absorption to decrease knee loading in high-heel users.
Collapse
Affiliation(s)
- Linh Y Nguyen
- Department of Physical Therapy, Georgia State University, Atlanta GA, USA
| | - Kelsey D Harris
- Department of Physical Therapy, Georgia State University, Atlanta GA, USA
| | - Kimberly M Morelli
- Department of Physical Therapy, Georgia State University, Atlanta GA, USA
| | - Liang-Ching Tsai
- Department of Physical Therapy, Georgia State University, Atlanta GA, USA.
| |
Collapse
|
13
|
Rai MF, Sandell LJ, Barrack TN, Cai L, Tycksen ED, Tang SY, Silva MJ, Barrack RL. A Microarray Study of Articular Cartilage in Relation to Obesity and Severity of Knee Osteoarthritis. Cartilage 2020; 11:458-472. [PMID: 30173558 PMCID: PMC7488940 DOI: 10.1177/1947603518796122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To query the transcript-level changes in the medial and lateral tibial plateau cartilage in tandem with obesity in patients with end-stage osteoarthritis (OA). DESIGN Cartilage was obtained from 23 patients (20 obese [body mass index > 30 kg/m2], 3 overweight [body mass index < 30 kg/m2]) at the time of total knee replacement. Cartilage integrity was assessed using Outerbridge scale, while radiographic changes were scored on preoperative X-rays using Kellgren-Lawrence (K-L) classification. RNA was probed for differentially expressed transcripts between medial and lateral compartments using Affymetrix Gene 2.0 ST Array and validated via real-time polymerase chain reaction. Gene ontology and pathway analyses were also queried. RESULTS Scoring of cartilage integrity by the Outerbridge scale indicated that the medial and lateral compartments were similar, while scoring by the K-L classification indicated that the medial compartment was more severely damaged than the lateral compartment. We observed a distinct transcript profile with >50% of transcripts unique between medial and lateral compartments. MMP13 and COL2A1 were more highly expressed in medial versus lateral compartment. Polymerase chain reaction confirmed expression of 4 differentially expressed transcripts. Numerous transcripts, biological processes, and pathways were significantly different between overweight and obese patients with a differential response of obesity on medial and lateral compartments. CONCLUSIONS Our findings support molecular differences between medial and lateral compartments reflective of the greater severity of OA in the medial compartment. The K-L system better reflected the molecular results than did the Outerbridge. Moreover, the molecular effect of obesity was different between the medial and lateral compartments of the same knee plausibly reflecting the molecular effects of differential biomechanical loading.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Muhammad Farooq Rai, Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes Jewish Hospital, MS 8233, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO, USA
| | - Toby N. Barrack
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO, USA
| | - Robert L. Barrack
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| |
Collapse
|
14
|
Balaskas P, Green JA, Haqqi TM, Dyer P, Kharaz YA, Fang Y, Liu X, Welting TJ, Peffers MJ. Small Non-Coding RNAome of Ageing Chondrocytes. Int J Mol Sci 2020; 21:E5675. [PMID: 32784773 PMCID: PMC7461137 DOI: 10.3390/ijms21165675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Ageing is a leading risk factor predisposing cartilage to osteoarthritis. However, little research has been conducted on the effect of ageing on the expression of small non-coding RNAs (sncRNAs). RNA from young and old chondrocytes from macroscopically normal equine metacarpophalangeal joints was extracted and subjected to small RNA sequencing (RNA-seq). Differential expression analysis was performed in R using package DESeq2. For transfer RNA (tRNA) fragment analysis, tRNA reads were aligned to horse tRNA sequences using Bowtie2 version 2.2.5. Selected microRNA (miRNAs or miRs) and small nucleolar RNA (snoRNA) findings were validated using real-time quantitative Polymerase Chain Reaction (qRT-PCR) in an extended cohort of equine chondrocytes. tRNA fragments were further investigated in low- and high-grade OA human cartilage tissue. In total, 83 sncRNAs were differentially expressed between young and old equine chondrocytes, including miRNAs, snoRNAs, small nuclear RNAs (snRNAs), and tRNAs. qRT-PCR analysis confirmed findings. tRNA fragment analysis revealed that tRNA halves (tiRNAs), tiRNA-5035-GluCTC and tiRNA-5031-GluCTC-1 were reduced in both high grade OA human cartilage and old equine chondrocytes. For the first time, we have measured the effect of ageing on the expression of sncRNAs in equine chondrocytes. Changes were detected in a number of different sncRNA species. This study supports a role for sncRNAs in ageing cartilage and their potential involvement in age-related cartilage diseases.
Collapse
Affiliation(s)
- Panagiotis Balaskas
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| | - Jonathan A. Green
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (J.A.G.); (T.M.H.)
| | - Tariq M. Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (J.A.G.); (T.M.H.)
| | - Philip Dyer
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| | - Yalda A. Kharaz
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK; (Y.F.); (X.L.)
| | - Xuan Liu
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK; (Y.F.); (X.L.)
| | - Tim J.M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands;
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| |
Collapse
|
15
|
Wang M, Liu L, Zhang CS, Liao Z, Jing X, Fishers M, Zhao L, Xu X, Li B. Mechanism of Traditional Chinese Medicine in Treating Knee Osteoarthritis. J Pain Res 2020; 13:1421-1429. [PMID: 32606908 PMCID: PMC7304682 DOI: 10.2147/jpr.s247827] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (KOA) is a degenerative disease, making a unique contribution to chronic pain, edema, and limited mobility of knee joint. Traditional Chinese Medicine (TCM) is a common complementary therapy for KOA and has been found effective. The aim of this review is to consolidate the current knowledge about the mechanism of four interventions of TCM: acupuncture, moxibustion, herbs, and massage in treating KOA, and how they alleviate symptoms such as pain, swelling, and dysfunction. Furthermore, this review highlights that four therapies have different mechanisms but all of them can manage KOA through inhibiting inflammation, which indicates that alternative therapies should be considered as a viable complementary treatment for pain management in clinical practice.
Collapse
Affiliation(s)
- Mina Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Graduate School, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Claire Shuiqing Zhang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm SE-17177, Sweden
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Marc Fishers
- Department of Neurology, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, USA
| | - Luopeng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Xiaobai Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| |
Collapse
|
16
|
Li L, Wei X, Wang D, Lv Z, Geng X, Li P, Lu J, Wang K, Wang X, Sun J, Cao X, Wei L. Positive Effects of a Young Systemic Environment and High Growth Differentiation Factor 11 Levels on Chondrocyte Proliferation and Cartilage Matrix Synthesis in Old Mice. Arthritis Rheumatol 2020; 72:1123-1133. [PMID: 32067417 DOI: 10.1002/art.41230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects of a young systemic environment and growth differentiation factor 11 (GDF-11) on aging cartilage. METHODS A heterochronic parabiosis model (2-month-old mouse and 12-month-old mouse [Y/O]), an isochronic parabiosis model (12-month-old mouse and 12-month-old mouse [O/O]), and 12-month-old mice alone (O) were evaluated. Knee joints and chondrocytes from old mice were examined by radiography, histology, cell proliferation assays, immunohistochemistry, Western blotting, and quantitative reverse transcriptase-polymerase chain reaction 16 weeks after parabiosis surgery. GDF-11 was injected into 12-month-old mouse joints daily for 16 weeks. Cartilage degeneration, cell proliferation, and osteoarthritis-related gene expression were evaluated. RESULTS Osteoarthritis Research Society International scores in old mice were significantly lower in the Y/O group than in the O/O and O groups (both P < 0.05). The percentage of 5-ethynyl-2'-deoxyuridine-positive chondrocytes in old mice was significantly higher in the Y/O group than in the other groups (P < 0.05). Type II collagen (CII) and SOX9 messenger RNA levels differed in cartilage from old mice in the Y/O group compared to the O/O and O groups (both P < 0.05). RUNX-2, CX, and matrix metalloproteinase 13 levels were significantly lower in cartilage from old mice in the Y/O group compared to the O/O and O groups (both P < 0.05). Similar results were obtained for protein expression levels and after GDF-11 treatment in vitro and in vivo. Phosphorylated Smad2/3 (pSmad2/3) levels were higher in the recombinant GDF-11-treated group than in the control group. CONCLUSION A young systemic environment promotes chondrocyte proliferation and cartilage matrix synthesis in old mice. GDF-11, a "young factor," contributes to these effects through the up-regulation of pSmad2/3.
Collapse
Affiliation(s)
- Lu Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dongming Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi Lv
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiang Geng
- Shanxi Health Vocational College, Jinzhong, China
| | - Pengcui Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiangong Lu
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaihang Wang
- Subsidiary High School of Taiyuan Normal University, Taiyuan, China
| | - Xiaohu Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoming Cao
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wei
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
17
|
Tseng C, Sinha K, Pan H, Cui Y, Guo P, Lin CY, Yang F, Deng Z, Eltzschig HK, Lu A, Huard J. Markers of Accelerated Skeletal Muscle Regenerative Response in Murphy Roths Large Mice: Characteristics of Muscle Progenitor Cells and Circulating Factors. Stem Cells 2019; 37:357-367. [PMID: 30537304 DOI: 10.1002/stem.2957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
The "super-healing" Murphy Roths Large (MRL/MpJ) mouse possesses a superior regenerative capacity for repair of many tissues, which makes it an excellent animal model for studying molecular and cellular mechanisms during tissue regeneration. As the role of muscle progenitor cells (MPCs) in muscle-healing capacity of MRL/MpJ mice has not been previously studied, we investigated the muscle regenerative capacity of MRL/MpJ mice following muscle injury, and the results were compared to results from C57BL/6J (B6) age-matched control mice. Our results show that muscle healing upon cardiotoxin injury was accelerated in MRL/MpJ mice and characterized by reduced necrotic muscle area, reduced macrophage infiltration, and more regenerated myofibers (embryonic myosin heavy chain+/centronucleated fibers) at 3, 5, and 12 days postinjury, when compared to B6 age-matched control mice. These observations were associated with enhanced function of MPCs, including improved cell proliferation, differentiation, and resistance to stress, as well as increased muscle regenerative potential when compared to B6 MPCs. Mass spectrometry of serum proteins revealed higher levels of circulating antioxidants in MRL/MpJ mice when compared to B6 mice. Indeed, we found relatively higher gene expression of superoxide dismutase 1 (Sod1) and catalase (Cat) in MRL/MpJ MPCs. Depletion of Sod1 or Cat by small interfering RNA impaired myogenic potential of MRL/MpJ MPCs, indicating a role for these antioxidants in muscle repair. Taken together, these findings provide evidence that improved function of MPCs and higher levels of circulating antioxidants play important roles in accelerating muscle-healing capacity of MRL/MpJ mice. Stem Cells 2019;37:357-367.
Collapse
Affiliation(s)
- Chieh Tseng
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Krishna Sinha
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Guo
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Chih Yi Lin
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital, Shenzhen, Guangzhou, People's Republic of China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aiping Lu
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
18
|
Huang K, Wu LD. Dehydroepiandrosterone: Molecular mechanisms and therapeutic implications in osteoarthritis. J Steroid Biochem Mol Biol 2018; 183:27-38. [PMID: 29787833 DOI: 10.1016/j.jsbmb.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone primarily synthesized in the adrenal gland, exerts a chondroprotective effect against osteoarthritis (OA) and has been considered an effective candidate of disease-modifying OA drugs (DMOADs) that slow disease progression. We and others previously demonstrated that DHEA exerted a beneficial effect on osteoarthritic cartilage by positively modulating the balance between anabolic and catabolic factors (e.g., MMPs/TIMP-1, ADAMTS/TIMP-3 and cysteine proteinases/cystatin C), inhibiting catabolic signaling pathways (e.g., Wnt/β-catenin), and suppressing proinflammatory cytokines-mediated low-grade synovial inflammation (e.g., IL-1β). However, the full picture of the pharmacological molecular mechanism(s) underlying the activity of DHEA against OA is still incomplete, and a comprehensive and up-to-date review article in this field is unavailable. In this review, recent findings (apart from the well documented pathogenesis of OA) regarding disease-related mechanisms involving low grade synovial inflammation, cartilage matrix stiffness, chondrocyte autophagy and the roles of a variety of catabolic cellular signaling pathways are discussed. Moreover, the possible relationship between these disease-related mechanisms and DHEA action is discussed. Emerging evidence from in vivo and in vitro studies were scrutinized and are concisely presented to demonstrate the investigational and putative mechanisms underlying the anti-OA potential of DHEA.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, China.
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, China
| |
Collapse
|
19
|
Li L, Wei X, Geng X, Duan Z, Wang X, Li P, Wang C, Wei L. Impairment of chondrocyte proliferation after exposure of young murine cartilage to an aged systemic environment in a heterochronic parabiosis model. Swiss Med Wkly 2018; 148:w14607. [PMID: 29694646 PMCID: PMC6100763 DOI: 10.4414/smw.2018.14607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM: The aim of this study was to investigate whether an aged systemic environment could impair young cartilage tissue in mice. METHODS: Mice differing in age were randomly divided into three groups. Group 1 was the experimental group (Y/O group) consisting of the heterochronic parabiosis model (2-month-old/12-month-old, young/old). Group 2 was the surgical control group (Y/Y group) with the isochronic parabiosis model (2-month-old/2-month-old, young/young). Group 3 consisted of the ageing control mice (2-month-old alone, Y group). Young knee cartilages collected from all three groups at 4 months after surgery were compared. Fluorescence molecular tomography (FMT) was used to confirm whether the two mice in parabiosis shared a common blood circulation at 2 weeks after surgery. The knee joints of young mice were examined radiologically at 4 months after surgery. Histological scoring was assigned to grade the severity of osteoarthritis (OA). Immunohistochemistry and quantitative reverse transcription polymerase chain reaction were used to evaluate OA-related protein expression and gene expression, and chondrocyte proliferation was determined with EdU staining. RESULTS: FMT imaging confirmed cross-circulation in the parabiotic pairs. The percentage of EdU-positive chondrocytes in young mice from the Y/O group was significantly lower compared with those of the Y/Y and Y groups (p <0.05 for both). There was no statistically significant difference in the mRNA expression of collagen type II (Col2), collagen type X (Col10), and matrix metalloproteinase 13 (MMP13) among the three groups (P>0.05), but expression of sex-determining region Y box 9 (Sox9) mRNA in young cartilage from the Y/O group was markedly attenuated compared to those in the Y/Y and Y groups (p <0.05 for both). In the Y/O group, mRNA expression of runt-related transcription factor 2 (Runx2) in young cartilage was significantly increased compared to the Y/Y and Y groups (p <0.05 for both). The changes in Col2, Col10, MMP13, Runx2 and Sox9 at the protein level mimicked the alterations found at the mRNA level. Loss of cartilage proteoglycan in young mice from the Y/O group was significantly greater compared to the Y/Y and Y groups (p <0.05 for both), despite the lack of significant difference among the three groups in OARIS and osteophytosis scores. CONCLUSION: Heterochronic parabiosis exerts a negative effect on chondrocyte proliferation in the knee cartilage of young mice.
Collapse
Affiliation(s)
- Lu Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiang Geng
- Shanxi Medical College of Continuing Education, Jinzhong, China
| | - Zhiqing Duan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohu Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunfang Wang
- Shanxi Key Laboratory of Laboratory Animal Science and Experimental Animal Model of Human Diseases, Shanxi Medical University, Taiyuan, China
| | - Lei Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China, and Department of Orthopedics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Liang Y, Chen S, Yang Y, Lan C, Zhang G, Ji Z, Lin H. Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-κB signaling pathway. J Biomed Sci 2018. [PMID: 29540226 PMCID: PMC5851098 DOI: 10.1186/s12929-018-0410-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the treatment effect of vasoactive intestinal peptide (VIP) on osteoarthritis (OA) and the relative mechanism. METHOD The OA model on the SD rat knee was established using the modified Hulth method, and the recombinant pcDNA3.1+/VIP plasmid was constructed. One month after the plasmids VIP were injected intra-articularly into the right knee joint of OA and sham-operated rats, the pathological changes of the OA knee joint were observed by Hematoxylin-eosin (HE) and Safranin O/fast green staining. The levels of VIP and serum inflammatory cytokines (TNF-α, IL-2 and IL-4) were measured by ELISA kits. Meanwhile, synoviocytes isolated from OA rat and sham-operated rat were cultured in vitro, and transfected with the VIP plasmid. The proliferation of synoviocytes was determined using BrdU kits. The protein expressions of TNF-α, IL-2, CollagenII, osteoprotegerin (OPG), matrix-degrading enzymes (MMP-13, ADAMTS-5), and the related protein of NF-κB signaling pathway (phosphorylated p65, phosphorylated IκBα) were evaluated by western blot. RESULTS The VIP plasmid could effectively improve the pathological state of the OA rats knee joint, significantly decrease the levels of serum TNF-α and IL-2, and clearly increase the levels of VIP and serum IL-4. At the same time, after the OA synoviocytes were treated with the VIP plasmid, the proliferation ability of OA synoviocytes was reduced, the protein expressions of Collagen II and OPG were remarkably up-regulated, and the protein expressions of TNF-α, IL-2, MMP-13 and ADAMTS-5 were significantly down-regulated. In addition, the p-p65 expression decreased and p-IκBα expression increased. CONCLUSION Osteoarthritis was effectively treated by VIP via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yaozhong Liang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shu Chen
- Department of gynaecology and obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chunhai Lan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
21
|
Abstract
Osteoarthritis (OA) is the most common age-related joint disorder in man. MicroRNAs (miRNA), a class of small noncoding RNAs, are potential therapeutic targets for regulating molecular mechanisms in both disease and ageing. Whilst there is an increasing amount of research on the roles of miRNAs in ageing, there has been scant research on age-related changes in miRNA in a cartilage. We undertook a microarray study on young and old human cartilages. Findings were validated in an independent cohort. Contrasts between these samples identified twenty differentially expressed miRNAs in a cartilage from old donors, derived from an OA environment which clustered based on OA severity. We identified a number of recognised and novel miRNAs changing in cartilage ageing and OA including miR-126: a potential new candidate with a role in OA pathogenesis. These analyses represent important candidates that have the potential as cartilage ageing and OA biomarkers and therapeutic targets.
Collapse
|
22
|
Li YS, Xiao WF, Luo W. Cellular aging towards osteoarthritis. Mech Ageing Dev 2016; 162:80-84. [PMID: 28049007 DOI: 10.1016/j.mad.2016.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a common form of degenerative joint disease. Aging process is supposed to be a leading predictor for developing OA. In this review, we have discussed the potential roles of aging in OA, a better understanding of which might delay or stop the development and progression of OA. Different cellular signaling mechanisms are involved process of aging that induces age-related changes in chondrocytes. These changes influence the expression of catabolic factors resulting in increased production of matrix metalloproteinases and cytokines, reduced levels of collagen type II and aggrecan synthesis, and increased production of reactive oxygen species (ROS). ROS leads to mitochondrial dysfunction and chondrocyte death, which contributes to the development of OA. Antioxidant supplementation is probably the best way to prevent or delay the age-related OA. Some therapeutic agents like histone deacetylase inhibitors and anti-miR34a agents have been reported to be effective against age-related OA. However, further research is needed to demonstrate the efficacy of these alternative treatment strategies in clinical trials using controlled and prospective studies.
Collapse
Affiliation(s)
- Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, PR China.
| |
Collapse
|
23
|
The Extract of Fructus Psoraleae Promotes Viability and Cartilaginous Formation of Rat Chondrocytes In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2057631. [PMID: 27994628 PMCID: PMC5141302 DOI: 10.1155/2016/2057631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the extract components of FP on rat chondrocyte function and cartilaginous formation in vitro. Petroleum ether extract (P-e) of FP extract components was selected to treat Sprague-Dawley rat chondrocytes. Cell viability was tested with different concentrations (0.1, 1, 10, and 100 μg/mL) of P-e treatment. Concentrations of 0.1 and 1 μg/mL P-e conditioned culture mediums were used for treating chondrocytes in experiments. Cell proliferation was measured via DNA incorporation assay. Type II collagen, aggrecan, and Sox-9 genes expression levels were measured with RT-PCR. Additionally, cartilaginous formation was analyzed with type II collagen immunofluorescence, H&E, and alcian blue staining. Concentrations of 0.1 and 1 μg/mL P-e showed low cytotoxicity and demonstrated stimulatory effects on chondrocyte proliferation in early stages. Following 6 days of P-e culture, aggrecan and Sox-9 gene expression levels of the 1 μg/mL P-e group were upregulated by 1.82- (p < 0.05) and 2.06-fold (p < 0.05), respectively, versus controls. Moreover, 1 μg/mL P-e significantly stimulated cell aggregation and type II collagen deposits after 1 week of treatment. Noteworthy, tight cartilaginous structures formed in the 10-day 1 μg/mL P-e conditioned culture. These findings suggest that P-e has the potential to treat cartilage degeneration induced by chondrocyte failure.
Collapse
|
24
|
Zhang G, Wu Y, Xu D, Yan X. Long Noncoding RNA UFC1 Promotes Proliferation of Chondrocyte in Osteoarthritis by Acting as a Sponge for miR-34a. DNA Cell Biol 2016; 35:691-695. [PMID: 27529373 DOI: 10.1089/dna.2016.3397] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common prevalent chronic joint diseases. Emerging pieces of evidence have demonstrated that chondrocytes survival was closely associated with the destruction of joints in OA patients. Long noncoding RNAs (lncRNAs), defined as >200 nucleotides in length, also have been implicated in a variety of disease states. However, there are few studies on the role of lncRNAs in OA, and the pathological contributions of lncRNAs to OA remain largely unknown. In this study, we examined the expression of lncRNA UFC1 in cartilage samples from OA patients and healthy subjects, and then investigated biological function of UFC1 in OA chondrocyte. We found that the UFC1 was significantly reduced in OA patients. Functional assays demonstrated that UFC1 promotes chondrocytes proliferation and inhibits cell apoptosis. Furthermore, we found that UFC1 regulates survival of OA chondrocytes through physically association with miR-34a. Taken together, our data highlight the important roles of lncRNA UFC1 in the survival of OA chondrocytes. UFC1 may be a potential therapy for OA.
Collapse
Affiliation(s)
- Gang Zhang
- 1 Department of Articular Surgery, Qianfoshan Hospital of Shandong University , Jinan, China .,2 Affiliated Hospital of Taishan Medical University , Taian, China
| | - Yadi Wu
- 3 College of Sports Medicine and Rehabilitation, Taishan Medical University , Taian, China
| | - Dong Xu
- 2 Affiliated Hospital of Taishan Medical University , Taian, China
| | - Xinfeng Yan
- 1 Department of Articular Surgery, Qianfoshan Hospital of Shandong University , Jinan, China
| |
Collapse
|