1
|
Vullioud C, Benhaiem S, Meneghini D, Szyf M, Shao Y, Hofer H, East ML, Fickel J, Weyrich A. Epigenetic signatures of social status in wild female spotted hyenas (Crocuta crocuta). Commun Biol 2024; 7:313. [PMID: 38548860 PMCID: PMC10978994 DOI: 10.1038/s42003-024-05926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024] Open
Abstract
In mammalian societies, dominance hierarchies translate into inequalities in health, reproductive performance and survival. DNA methylation is thought to mediate the effects of social status on gene expression and phenotypic outcomes, yet a study of social status-specific DNA methylation profiles in different age classes in a wild social mammal is missing. We tested for social status signatures in DNA methylation profiles in wild female spotted hyenas (Crocuta crocuta), cubs and adults, using non-invasively collected gut epithelium samples. In spotted hyena clans, female social status influences access to resources, foraging behavior, health, reproductive performance and survival. We identified 149 differentially methylated regions between 42 high- and low-ranking female spotted hyenas (cubs and adults). Differentially methylated genes were associated with energy conversion, immune function, glutamate receptor signalling and ion transport. Our results provide evidence that socio-environmental inequalities are reflected at the molecular level in cubs and adults in a wild social mammal.
Collapse
Affiliation(s)
- Colin Vullioud
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Dorina Meneghini
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- University of Potsdam, Potsdam, Germany
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Hu J, Barrett RDH. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol Ecol 2022; 32:1581-1591. [PMID: 36560898 DOI: 10.1111/mec.16832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.
Collapse
Affiliation(s)
- Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Weyrich A, Guerrero-Altamirano TP, Yasar S, Czirják GÁ, Wachter B, Fickel J. First Steps towards the Development of Epigenetic Biomarkers in Female Cheetahs ( Acinonyx jubatus). LIFE (BASEL, SWITZERLAND) 2022; 12:life12060920. [PMID: 35743950 PMCID: PMC9225391 DOI: 10.3390/life12060920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Free-ranging cheetahs (Acinonyx jubatus) are generally healthy, whereas cheetahs under human care, such as those in zoological gardens, suffer from ill-defined infectious and degenerative pathologies. These differences are only partially explained by husbandry management programs because both groups share low genetic diversity. However, mounting evidence suggests that physiological differences between populations in different environments can be tracked down to differences in epigenetic signatures. Here, we identified differentially methylated regions (DMRs) between free-ranging cheetahs and conspecifics in zoological gardens and prospect putative links to pathways relevant to immunity, energy balance and homeostasis. Comparing epigenomic DNA methylation profiles obtained from peripheral blood mononuclear cells (PBMCs) from eight free-ranging female cheetahs from Namibia and seven female cheetahs living in zoological gardens within Europe, we identified DMRs of which 22 were hypermethylated and 23 hypomethylated. Hypermethylated regions in cheetahs under human care were located in the promoter region of a gene involved in host-pathogen interactions (KLC1) and in an intron of a transcription factor relevant for the development of pancreatic β-cells, liver, and kidney (GLIS3). The most canonical mechanism of DNA methylation in promoter regions is assumed to repress gene transcription. Taken together, this could indicate that hypermethylation at the promoter region of KLC1 is involved in the reduced immunity in cheetahs under human care. This approach can be generalized to characterize DNA methylation profiles in larger cheetah populations under human care with a more granular longitudinal data collection, which, in the future, could be used to monitor the early onset of pathologies, and ultimately translate into the development of biomarkers with prophylactic and/or therapeutic potential.
Collapse
Affiliation(s)
- Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Correspondence: (A.W.); (B.W.); (J.F.)
| | - Tania P. Guerrero-Altamirano
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Selma Yasar
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany;
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
- Correspondence: (A.W.); (B.W.); (J.F.)
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Correspondence: (A.W.); (B.W.); (J.F.)
| |
Collapse
|
4
|
Venney CJ, Wellband KW, Normandeau E, Houle C, Garant D, Audet C, Bernatchez L. Thermal regime during parental sexual maturation, but not during offspring rearing, modulates DNA methylation in brook charr ( Salvelinus fontinalis). Proc Biol Sci 2022; 289:20220670. [PMID: 35506232 PMCID: PMC9065957 DOI: 10.1098/rspb.2022.0670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
Epigenetic inheritance can result in plastic responses to changing environments being faithfully transmitted to offspring. However, it remains unclear how epigenetic mechanisms such as DNA methylation can contribute to multigenerational acclimation and adaptation to environmental stressors. Brook charr (Salvelinus fontinalis), an economically important salmonid, is highly sensitive to thermal stress and is of conservation concern in the context of climate change. We studied the effects of temperature during parental sexual maturation and offspring rearing on whole-genome DNA methylation in brook charr juveniles (fry). Parents were split between warm and cold temperatures during sexual maturation, mated in controlled breeding designs, then offspring from each family were split between warm (8°C) and cold (5°C) rearing environments. Using whole-genome bisulfite sequencing, we found 188 differentially methylated regions (DMRs) due to parental maturation temperature after controlling for family structure. By contrast, offspring rearing temperature had a negligible effect on offspring methylation. Stable intergenerational inheritance of DNA methylation and minimal plasticity in progeny could result in the transmission of acclimatory epigenetic states to offspring, priming them for a warming environment. Our findings have implications pertaining to the role of intergenerational epigenetic inheritance in response to ongoing climate change.
Collapse
Affiliation(s)
- Clare J. Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| | - Kyle W. Wellband
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| | - Carolyne Houle
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - Céline Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5 L 2Z9
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| |
Collapse
|
5
|
Layton KKS, Bradbury IR. Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 2021; 91:1064-1072. [PMID: 34679193 DOI: 10.1111/1365-2656.13619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Predicting how species will respond to future climate change is of central importance in the midst of the global biodiversity crisis, and recent work has demonstrated the utility of population genomics for improving these predictions. Here, we suggest a broadening of the approach to include other types of genomic variants that play an important role in adaptation, like structural (e.g. copy number variants) and epigenetic variants (e.g. DNA methylation). These data could provide additional power for forecasting response, especially in weakly structured or panmictic species. Incorporating structural and epigenetic variation into estimates of climate change vulnerability, or maladaptation, may not only improve prediction power but also provide insight into the molecular mechanisms underpinning species' response to climate change.
Collapse
Affiliation(s)
- Kara K S Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ian R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Canada
| |
Collapse
|
6
|
Beckers J, Teperino R, Hérault Y, Hrabé de Angelis M. Introduction to Mammalian Genome Special Issue: Epigenetics. Mamm Genome 2021; 31:117-118. [PMID: 32643117 PMCID: PMC7368862 DOI: 10.1007/s00335-020-09843-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany. .,Department of Molecular Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany. .,DZD - German Center for Diabetes Research, Neuherberg, Germany.
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany.,DZD - German Center for Diabetes Research, Neuherberg, Germany
| | - Yann Hérault
- Université de Strasbourg, CNRS UM7104, INSERM U1258, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany.,Department of Molecular Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany.,DZD - German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
7
|
Guerrero TP, Fickel J, Benhaiem S, Weyrich A. Epigenomics and gene regulation in mammalian social systems. Curr Zool 2020; 66:307-319. [PMID: 32440291 PMCID: PMC7233906 DOI: 10.1093/cz/zoaa005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Social epigenomics is a new field of research that studies how the social environment shapes the epigenome and how in turn the epigenome modulates behavior. We focus on describing known gene-environment interactions (GEIs) and epigenetic mechanisms in different mammalian social systems. To illustrate how epigenetic mechanisms integrate GEIs, we highlight examples where epigenetic mechanisms are associated with social behaviors and with their maintenance through neuroendocrine, locomotor, and metabolic responses. We discuss future research trajectories and open questions for the emerging field of social epigenomics in nonmodel and naturally occurring social systems. Finally, we outline the technological advances that aid the study of epigenetic mechanisms in the establishment of GEIs and vice versa.
Collapse
Affiliation(s)
- Tania P Guerrero
- Department Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
- Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Tennenbacher Str. 4, Freiburg, D-79085, Germany
| | - Jörns Fickel
- Department Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Sarah Benhaiem
- Department Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
| | - Alexandra Weyrich
- Department Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
| |
Collapse
|