1
|
Sreenivasan VKA, Henck J, Spielmann M. Single-cell sequencing: promises and challenges for human genetics. MED GENET-BERLIN 2022; 34:261-273. [PMID: 38836091 PMCID: PMC11006387 DOI: 10.1515/medgen-2022-2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Over the last decade, single-cell sequencing has transformed many fields. It has enabled the unbiased molecular phenotyping of even whole organisms with unprecedented cellular resolution. In the field of human genetics, where the phenotypic consequences of genetic and epigenetic alterations are of central concern, this transformative technology promises to functionally annotate every region in the human genome and all possible variants within them at a massive scale. In this review aimed at the clinicians in human genetics, we describe the current status of the field of single-cell sequencing and its role for human genetics, including how the technology works as well as how it is being applied to characterize and monitor diseases, to develop human cell atlases, and to annotate the genome.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
| | - Jana Henck
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
- DZHK e. V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
2
|
Nguyen TD, Lan Y, Kane SS, Haffner JJ, Liu R, McCall LI, Yang Z. Single-Cell Mass Spectrometry Enables Insight into Heterogeneity in Infectious Disease. Anal Chem 2022; 94:10567-10572. [PMID: 35863111 PMCID: PMC10064790 DOI: 10.1021/acs.analchem.2c02279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular heterogeneity is generally overlooked in infectious diseases. In this study, we investigated host cell heterogeneity during infection with Trypanosoma cruzi (T. cruzi) parasites, causative agents of Chagas disease (CD). In chronic-stage CD, only a few host cells are infected with a large load of parasites and symptoms may appear at sites distal to parasite colonization. Furthermore, recent work has revealed T. cruzi heterogeneity with regard to replication rates and drug susceptibility. However, the role of cellular-level metabolic heterogeneity in these processes has yet to be assessed. To fill this knowledge gap, we developed a Single-probe SCMS (single-cell mass spectrometry) method compatible with biosafety protocols, to acquire metabolomics data from individual cells during T. cruzi infection. This study revealed heterogeneity in the metabolic response of the host cells to T. cruzi infection in vitro. Our results showed that parasite-infected cells possessed divergent metabolism compared to control cells. Strikingly, some uninfected cells adjacent to infected cells showed metabolic impacts as well. Specific metabolic changes include increases in glycerophospholipids with infection. These results provide novel insight into the pathogenesis of CD. Furthermore, they represent the first application of bioanalytical SCMS to the study of mammalian-infectious agents, with the potential for broad applications to study infectious diseases.
Collapse
Affiliation(s)
- Tra D Nguyen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yunpeng Lan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shelley S Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jacob J Haffner
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Anthropology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Renmeng Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States.,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Abondio P, De Intinis C, da Silva Gonçalves Vianez Júnior JL, Pace L. SINGLE CELL MULTIOMIC APPROACHES TO DISENTANGLE T CELL HETEROGENEITY. Immunol Lett 2022; 246:37-51. [DOI: 10.1016/j.imlet.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
4
|
Tekath T, Dugas M. Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle. Bioinformatics 2021; 37:3781-3787. [PMID: 34469510 PMCID: PMC8570804 DOI: 10.1093/bioinformatics/btab629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Motivation Each year, the number of published bulk and single-cell RNA-seq datasets is growing exponentially. Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inherently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage (DTU) analysis is testing for proportional differences in a gene’s transcript composition, and has been of rising interest for many research questions, such as analysis of differential splicing or cell-type identification. Results We present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq datasets, and the first package to conduct a ‘classical’ DTU analysis in a single-cell context. DTUrtle extends established statistical frameworks, offers various result aggregation and visualization options and a novel detection probability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human and mouse, confirming and extending key results. In addition, we present novel potential DTU applications like the identification of cell-type specific transcript isoforms as biomarkers. Availability and implementation The R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tobias Tekath
- Institute of Medical Informatics, University Hospital of Münster, Münster, 48149, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, 69120, Germany
| |
Collapse
|
5
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|
6
|
Pinheiro I, Torres-Padilla ME, Almouzni G. Epigenomics in the single cell era, an important read out for genome function and cell identity. Epigenomics 2021; 13:981-984. [PMID: 34114476 DOI: 10.2217/epi-2021-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Inês Pinheiro
- Institut Curie, CNRS, PSL Research University, LabEx DEEP, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 75248 Paris Cedex 05, France
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München - German Research Center for Environmental Health, Munich 81377, Germany.,Faculty of Biology, Ludwig-Maximilians Universität, 82152 Martinsried, Germany
| | - Geneviève Almouzni
- Institut Curie, CNRS, PSL Research University, LabEx DEEP, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 75248 Paris Cedex 05, France
| |
Collapse
|
7
|
Beckers J, Teperino R, Hérault Y, Hrabé de Angelis M. Introduction to Mammalian Genome Special Issue: Epigenetics. Mamm Genome 2021; 31:117-118. [PMID: 32643117 PMCID: PMC7368862 DOI: 10.1007/s00335-020-09843-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany. .,Department of Molecular Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany. .,DZD - German Center for Diabetes Research, Neuherberg, Germany.
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany.,DZD - German Center for Diabetes Research, Neuherberg, Germany
| | - Yann Hérault
- Université de Strasbourg, CNRS UM7104, INSERM U1258, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany.,Department of Molecular Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany.,DZD - German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
8
|
Ma S, Zhang Y. Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq. MOLECULAR BIOMEDICINE 2020; 1:9. [PMID: 34765994 PMCID: PMC7546943 DOI: 10.1186/s43556-020-00009-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Chromatin regulatory landscape plays a critical role in many disease processes and embryo development. Epigenome sequencing technologies such as chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) have enabled us to dissect the pan-genomic regulatory landscape of cells and tissues in both time and space dimensions by detecting specific chromatin state and its corresponding transcription factors. Pioneered by the advancement of chromatin immunoprecipitation-chip (ChIP-chip) technology, abundant epigenome profiling technologies have become available such as ChIP-seq, DNase I hypersensitive site sequencing (DNase-seq), ATAC-seq and so on. The advent of single-cell sequencing has revolutionized the next-generation sequencing, applications in single-cell epigenetics are enriched rapidly. Epigenome sequencing technologies have evolved from low-throughput to high-throughput and from bulk sample to the single-cell scope, which unprecedentedly benefits scientists to interpret life from different angles. In this review, after briefly introducing the background knowledge of epigenome biology, we discuss the development of epigenome sequencing technologies, especially ChIP-seq & ATAC-seq and their current applications in scientific research. Finally, we provide insights into future applications and challenges.
Collapse
Affiliation(s)
- Shaoqian Ma
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Yongyou Zhang
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian China
| |
Collapse
|