1
|
Bosch TCG, Wigley M, Colomina B, Bohannan B, Meggers F, Amato KR, Azad MB, Blaser MJ, Brown K, Dominguez-Bello MG, Ehrlich SD, Elinav E, Finlay BB, Geddie K, Geva-Zatorsky N, Giles-Vernick T, Gros P, Guillemin K, Haraoui LP, Johnson E, Keck F, Lorimer J, McFall-Ngai MJ, Nichter M, Pettersson S, Poinar H, Rees T, Tropini C, Undurraga EA, Zhao L, Melby MK. The potential importance of the built-environment microbiome and its impact on human health. Proc Natl Acad Sci U S A 2024; 121:e2313971121. [PMID: 38662573 PMCID: PMC11098107 DOI: 10.1073/pnas.2313971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.
Collapse
Affiliation(s)
- Thomas C. G. Bosch
- Zoological Institute, University of Kiel, Kiel24118, Germany
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
| | - Mark Wigley
- Graduate School of Architecture, Planning and Preservation, Columbia University, New York, NY10027
| | - Beatriz Colomina
- School of Architecture, Princeton University, Princeton, NJ08544
| | - Brendan Bohannan
- The Institute of Ecology and Evolution, University of Oregon, Eugene, OR97403-5289
| | - Forrest Meggers
- Princeton University School of Architecture & Andlinger Center for Energy and the Environment, Princeton, NJ08540
| | - Katherine R. Amato
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Anthropology, Northwestern University, Evanston, IL60208
| | - Meghan B. Azad
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Martin J. Blaser
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MBR3E 3P4, Canada
- Center for Advanced Biotechnology and Medicine at Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ08854-8021
| | - Kate Brown
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Program in Science, Technology and Society, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Maria Gloria Dominguez-Bello
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ08901
- Department of Anthropology, Rutgers University, New Brunswick, NJ08901
| | - Stanislav Dusko Ehrlich
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Institute of Neurology, University College London, LondonWC1N 3RX, United Kingdom
| | - Eran Elinav
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Systems Immunology Department, Weizmann Institute of Science, Rehovot761000, Israel
- Division of Microbiome & Cancer, Deutsches Krebsforschungszentrum, 69120Heidelberg, Germany
| | - B. Brett Finlay
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Kate Geddie
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Medical and Related Sciences Centre, The Canadian Institute for Advanced Research, Toronto, ONM5G 1L7, Canada
| | - Naama Geva-Zatorsky
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa3525433, Israel
- Department of Cell Biology and Cancer Science, Technion-Israel Institute of Technology, Haifa3525433, Israel
| | - Tamara Giles-Vernick
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Anthropology & Ecology of Disease Emergence, Institut Pasteur, Université Paris Cité, Paris75015, France
| | - Philippe Gros
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Karen Guillemin
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Louis-Patrick Haraoui
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, CanadaJ1E 4K8
| | - Elizabeth Johnson
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- College of Human Ecology, Cornell University, IthakaNY14853
| | - Frédéric Keck
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Laboratoire d’Anthropologie Sociale, Collège de France, Paris75005, France
| | - Jamie Lorimer
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- School of Geography and the Environment, University of Oxford, OX1 3QY, United Kingdom
| | - Margaret J. McFall-Ngai
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA91125
| | - Mark Nichter
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- School of Anthropology, University of Arizona, Tucson, AZ85721
| | - Sven Pettersson
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Nanyang Technological University, Singapore637715, Singapore
| | - Hendrik Poinar
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4M4, Canada
| | - Tobias Rees
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- LIMN, Berkeley, CA94708
| | - Carolina Tropini
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Microbiology and Immunology and School of Biomedical Engineering, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Eduardo A. Undurraga
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Santiago7820436, Chile
| | - Liping Zhao
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ08901
| | - Melissa K. Melby
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Anthropology, University of Delaware, Newark, DE19716
| |
Collapse
|
4
|
Berton RR, Jensen IJ, Harty JT, Griffith TS, Badovinac VP. Inflammation Controls Susceptibility of Immune-Experienced Mice to Sepsis. Immunohorizons 2022; 6:528-542. [PMID: 35878936 PMCID: PMC9650784 DOI: 10.4049/immunohorizons.2200050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis, an amplified immune response to systemic infection that leads to life-threatening organ dysfunction, affects >125,000 people/day worldwide with 20% mortality. Modest therapeutic progress for sepsis has been made, in part because of the lack of therapeutic translatability between mouse-based experimental models and humans. One potential reason for this difference stems from the extensive use of immunologically naive specific pathogen-free mice in preclinical research. To address this issue, we used sequential infections with well-defined BSL-2 pathogens to establish a novel immune-experienced mouse model (specific pathogen experienced [SPexp]) to determine the extent to which immunological experience and/or inflammation influences the host capacity to respond to subsequent infections, including sepsis. Consistent with their immunological experience, SPexp inbred or outbred mice had significant changes in the composition and activation status of multiple leukocyte populations known to influence the severity of cecal ligation and puncture-induced sepsis. Importantly, by varying the timing of sepsis induction, we found the level of basal inflammation controls sepsis-induced morbidity and mortality in SPexp mice. In addition, although a beneficial role of NK cells in sepsis was recently demonstrated in specific pathogen-free mice, NK cell depletion before cecal ligation and puncture induction in SPexp mice lead to diminished mortality, suggesting NK cells may have beneficial or detrimental roles in the response to septic insult dependent on host immune status. Thus, data highlight the importance of utilizing immune-experienced models for preclinical studies to interrogate the cellular/molecular mechanism(s) that could be therapeutically exploited during severe and dysregulated infection-induced inflammatory responses, such as sepsis.
Collapse
Affiliation(s)
- Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA.,Department of Microbiology and Immunology, Columbia University, New York, NY
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN; and.,Minneapolis VA Health Care System, Minneapolis, MN
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|