1
|
Abd-Elkader OH, Deraz NM, Aleya L. Corchorus Olitorius-Mediated Green Synthesis and Characterization of Nickel and Manganese Ferrite Nanoparticles. Symmetry (Basel) 2023; 15:965. [DOI: 10.3390/sym15050965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Developing a method for preparing Ni and Mn ferrites was the main objective of this study due to the importance of these materials in high-frequency applications. These ferrites were made by assisting combustion with dried leaves of Corchorus olitorius and then heating them to 700 °C. Several methods, including FTIR, XRD, TEM, and SEM/EDX, were used to characterize these ferrites. The thermal behavior, surface and magnetic properties of the as-prepared materials were determined. The results revealed that the method used is cheap, economical, environmentally friendly and makes it easy to produce the studied ferrites. FTIR, XRD, TEM, and SEM/EDX analyses show the formation of nanocrystalline ferrites with brittle, spongy and spinel-type structures, having two main vibration bands located around 400 cm−1 and 600 cm−1. However, TG-DTG results display the thermal behavior of different materials which consisted of unreacted oxides, carbon and the corresponding ferrites in the range of 300 °C to 600 °C. Moreover, complete conversion of the unreacted oxides to the equivalent ferrite was achieved by increasing heat treatment from 600 °C to 1000 °C. Ferrites are heated at 700 °C, which reduces their surface area. The magnetic properties of different ferrites calcined at 700 °C were estimated using the VSM technique. The magnetism of Fe-based materials containing Ni and Mn is 12.189 emu/g and 25.988 emu/g, respectively. Moreover, the squareness and coercivity of Ni ferrite are greater than for Mn ferrite.
Collapse
Affiliation(s)
- Omar H. Abd-Elkader
- Physics and Astronomy Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nasrallah M. Deraz
- Physical Chemistry Department, National Research Centre, P.O. Box 21111, Giza 12622, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, F-25030 Besançon, France
| |
Collapse
|
2
|
Al-Enizi A, Abd-Elkader O, Shaikh S, Ubaidullah M, Abdelkader M, Mostafa N. Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications. COATINGS 2022; 12:1355. [DOI: 10.3390/coatings12091355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A sol–gel technique was successfully employed in creating pure and W-substituted zinc ferrite, with nominal compositions of ZnFe2−2xWxO4 (0.0 ≤ x ≤ 0.15). For the purposes of investigating the physical and chemical properties of the generated powders, several analytical techniques were used. In TEM images of all the compositions, mixed-shaped particles (cubic, spherical, and hexagonal) were observed. The crystallite size decreases from 82 nm (x = 0.0) to 32 nm (x = 0.15) with an increase in the W doping contents in the ZnFe2O4 lattice. The microstrain increases with increasing W doping content. Furthermore, the surface area of pure ZnFe2O4, 0.05 W-ZnFe2O4, 0.10 W-ZnFe2O4, and 0.15 W-ZnFe2O4 NPs were calculated as being 121.5, 129.1, 134.4 and 143.2 m2 g−1, respectively, with a mesoporous pore structure for all ferrite samples. The calculated BJH pore size distribution was within the range of 160 to 205 Å. All W-doped ZnFe2O4 samples show H-M loops with paramagnetic characteristics. The magnetization (M) directly increases by increasing the applied field (H) without achieving saturation up to 20 kA/m. For comparison, the magnetization at 20 kA/m gradually decreases with increasing W doping content. Among all the synthesized samples, the 0.15 W-ZnFe2O4 NPs demonstrated the highest sensitivity towards acetone gas at 350 °C.
Collapse
Affiliation(s)
- Abdullah Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Omar Abd-Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shoyebmohamad Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Abdelkader
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nasser Mostafa
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability. SUSTAINABILITY 2022. [DOI: 10.3390/su14127191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anaerobic digestion (AD) is the strategy of producing environmentally sustainable bioenergy from waste-activated sludge (WAS), but its efficiency was hindered by low biodegradability. Hence, the usage of nanomaterials was found to be essential in enhancing the degradability of sludge due to its nanostructure with specific physiochemical properties. The application of nanomaterials in sludge digestion was thoroughly reviewed. This review focused on the impact of nanomaterials such as metallic nanoparticles, metal oxide nanoparticles, carbon-based nanomaterials, and nanocomposite materials in AD enhancement, along with the pros and cons. Most of the studies detailed that the addition of an adequate dosage of nanomaterial has a good effect on microbial activity. The environmental and economic impact of the AD enhancement process is also detailed, but there are still many existing challenges when it comes to designing an efficient, cost-effective AD digester. Hence, proper investigation is highly necessary to assess the potency of utilizing the nanomaterials in enhancing AD under various conditions.
Collapse
|