2
|
Advani SJ, Weichselbaum RR, Chmura SJ. Enhancing Radiotherapy With Genetically Engineered Viruses. J Clin Oncol 2007; 25:4090-5. [PMID: 17827458 DOI: 10.1200/jco.2007.12.2739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Concurrent radiotherapy and chemotherapy have been used to treat a variety of tumors to improve local control and overall survival. Gene therapy strategies represent a novel means to further improve the therapeutic ratio of ionizing radiation. Cancer gene therapy strategies in clinical trials include the use of replication-defective shuttle vectors to deliver exogenous genes and replication-competent oncolytic viruses. This review focuses on these approaches in the context of radiotherapy and radiochemotherapy. In the shuttle vector approach, exogenous gene products that enhance ionizing radiation–mediated tumor cell destruction have been selected. Moreover, the expression of exogenous genes encoding therapeutic proteins can be regulated through the use of ionizing radiation–enhanced promoters. Also, genetically engineered attenuated replication-competent viruses have been investigated in clinical trials. Preclinical data indicate that ionizing radiation interacts with replication-competent oncolytic viruses to enhance viral replication and tumor destruction. Here, we review the background preclinical and current clinical data utilizing gene therapy with radiotherapy.
Collapse
Affiliation(s)
- Sunil J Advani
- Department of Radiation and Cellular Oncology, Center for Molecular Medicine, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
3
|
Ifon ET, Pang ALY, Johnson W, Cashman K, Zimmerman S, Muralidhar S, Chan WY, Casey J, Rosenthal LJ. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3. Cancer Cell Int 2005; 5:19. [PMID: 15972109 PMCID: PMC1200560 DOI: 10.1186/1475-2867-5-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 06/22/2005] [Indexed: 12/12/2022] Open
Abstract
Background Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s) associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A), could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets. Results We have shown that stable expression of U94 gene in PC3 cell line inhibited its focus formation in culture, and tumorigenesis in nude mice. Moreover gene expression profiling revealed dramatic upregulation of FN 1 (fibronectin, 91 ± 16-fold), and profound downregulation of ANGPTL 4 (angiopoietin-like-4, 20 ± 4-fold) in U94 recombinant PC3 cell line. Quantitative real-time polymerase chain reaction (QRT-PCR) analysis showed that the pattern of expression of FN 1 and ANGPTL 4 mRNA were consistent with the microarray data. Based on previous reports, the findings in this study implicate upregulation of FN 1 and downregulation of ANGPTL 4 in the anti tumor activity of U94. Genes with cancer inhibitory activities that were also upregulated include SERPINE 2 (serine/cysteine protease inhibitor 2, 7 ± 1-fold increase) and ADAMTS 1 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7 ± 2-fold increase). Additionally, SPUVE 23 (serine protease 23) that is pro-tumorigenic was significantly downregulated (10 ± 1-fold). Conclusion The dramatic upregulation of FN 1 and downregulation of ANGPTL 4 genes in PC3 cell line stably expressing U94 implicate up-regulation of FN 1 and downregulation of ANGPTL 4 in anti tumor activity of U94. Further studies are necessary to determine functional roles of differentially expressed genes in U94 recombinant PC3 cell line, and hopefully provide leads to potential therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Ekwere T Ifon
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, D.C. 20057, USA
| | - Alan LY Pang
- Laboratory of Clinical Genomics, NICHD, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Warren Johnson
- Laboratory of Clinical Genomics, NICHD, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Kathleen Cashman
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, D.C. 20057, USA
| | - Sharon Zimmerman
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, D.C. 20057, USA
| | - Sumitra Muralidhar
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, D.C. 20057, USA
| | - Wai-Yee Chan
- Laboratory of Clinical Genomics, NICHD, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, D.C. 20057, USA
- Department of Cell Biology, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, D.C. 20057
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, D.C. 20057, USA
| | - John Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, D.C. 20057, USA
| | - Leonard Jason Rosenthal
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, D.C. 20057, USA
| |
Collapse
|
4
|
Norris JS, Norris KL, Holman DH, El-Zawahry A, Keane TE, Dong JY, Tavassoli M. The present and future for gene and viral therapy of directly accessible prostate and squamous cell cancers of the head and neck. Future Oncol 2005; 1:115-23. [PMID: 16555981 DOI: 10.1517/14796694.1.1.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Gene therapy has been in a continuous evolutionary process since the first approved trial occurred in 1990 at the National Institute of Health. In the USA, as of March 2004, there were 619 approved gene therapy/transfer protocols and 405 of these were for cancer treatment. Another 294 trials are in progress worldwide, with most concentrated in Europe. However, cancer gene therapy is in its relative infancy when compared with the well-established use of chemo-radiotherapy for treating cancer. As the field develops it is becoming clear that using gene therapy in conjunction with established chemo-radiotherapy approaches is yielding the best results. This concept shall be reviewed in the context of the status of the field, and a future direction based on a combination of gene therapy with small molecule modification of sphingolipid metabolism shall be discussed.
Collapse
Affiliation(s)
- James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kaliberov SA, Kaliberova LN, Buchsbaum DJ. Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas. Gene Ther 2004; 12:407-17. [PMID: 15616600 DOI: 10.1038/sj.gt.3302432] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of vascular endothelial growth factor (VEGF) and its cognate receptor KDR has been linked to a more aggressive phenotype of human prostate carcinomas. The importance of signal transduction through the VEGF receptor 2 is illustrated by use of soluble KDR, which binds to VEGF and sequesters this ligand before its binding to cellular receptor. Treatment with recombinant adenovirus AdVEGF-sKDR, encoding sKDR under control of the human VEGF promoter, significantly inhibited the proliferation of human vascular endothelial cells and prostate cancer cells. AdVEGF-sKDR infection decreased migration of endothelial 1P-1B cells (61% reduction) and DU145 prostate carcinoma cells (47%) in comparison with AdCMV-Luc-infected control cells. Ionizing radiation upregulated VEGF promoter activity in prostate carcinoma and endothelial cells. AdVEGF-sKDR infection significantly reduced human vascular endothelial and prostate cancer cell proliferation and sensitized cancer cells to ionizing radiation. In vivo tumor therapy studies demonstrated significant inhibition of DU145 tumor growth in mice that received combined AdVEGF-sKDR infection and ionizing radiation versus AdVEGF-sKDR alone or radiation therapy alone. These results suggest that selective transcriptional targeting of sKDR gene expression employing a radiation inducible promoter can effectively inhibit tumor growth and demonstrate the advantage of combination radiotherapy and gene therapy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- S A Kaliberov
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
6
|
Kaliberov SA, Kaliberova LN, Stockard CR, Grizzle WE, Buchsbaum DJ. Adenovirus-mediated FLT1-targeted proapoptotic gene therapy of human prostate cancer. Mol Ther 2004; 10:1059-70. [PMID: 15564138 DOI: 10.1016/j.ymthe.2004.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/30/2004] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is of particular interest in the development of prostate carcinoma therapeutics as it preferentially induces apoptosis of tumor cells. To employ adenoviral vectors for highly efficient and specific TRAIL gene transfer into cancer cells could overcome some potential problems for recombinant TRAIL. The vascular endothelial growth factor receptor FLT-1 is involved in regulation of angiogenesis and tumor growth, invasion, and metastasis of prostate carcinoma. FLT-1 expression is observed in both tumor endothelial cells and prostate cancer cells. We developed an adenoviral vector encoding the TRAIL gene under control of the FLT1 promoter (AdFlt-TRAIL), which produced endothelial and prostate cancer cell death. The combination of ionizing radiation and adenovirus-driven TRAIL expression overcame human prostate cancer cell resistance to TRAIL. Furthermore, in vivo administration of AdFlt-TRAIL at the site of tumor growth in combination with radiation treatment produced significant suppression of the growth of DU145 human prostate tumor xenografts in athymic nude mice. Our results suggest that specific TRAIL delivery employing the FLT1 promoter can effectively inhibit tumor growth and demonstrate the advantage of combination radiotherapy and gene therapy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sergey A Kaliberov
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|