Augmenting intraoperative ultrasound with preoperative magnetic resonance planning models for percutaneous renal access.
Biomed Eng Online 2012;
11:60. [PMID:
22920687 PMCID:
PMC3494559 DOI:
10.1186/1475-925x-11-60]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/21/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND
Ultrasound (US) is a commonly-used intraoperative imaging modality for guiding percutaneous renal access (PRA). However, the anatomy identification and target localization abilities of the US imaging are limited. This paper evaluates the feasibility and efficiency of a proposed image-guided PRA by augmenting the intraoperative US with preoperative magnetic resonance (MR) planning models.
METHODS
First, a preoperative surgical planning approach is presented to define an optimal needle trajectory using MR volume data. Then, a MR to US registration is proposed to transfer the preoperative planning into the intraoperative context. The proposed registration makes use of orthogonal US slices to avoid local minima while reduce processing time. During the registration, a respiratory gating method is used to minimize the impact of kidney deformation. By augmenting the intraoperative US with preoperative MR models and a virtual needle, a visual guidance is provided to guarantee the correct execution of the surgical planning. The accuracy, robustness and processing time of the proposed registration were evaluated by four urologists on human data from four volunteers. Furthermore, the PRA experiments were performed by the same four urologists on a kidney phantom. The puncture accuracy in terms of the needle-target distance was measured, while the perceptual quality in using the proposed image guidance was evaluated according to custom scoring method.
RESULTS
The mean registration accuracy in terms of the root mean square (RMS) target registration error (TRE) is 3.53 mm. The RMS distance from the registered feature points to their average is 0.81 mm. The mean operating time of the registration is 6'4". In the phantom evaluation, the mean needle-target distance is 2.08 mm for the left lesion and 1.85 mm for the right one. The mean duration for all phantom PRA tests was 4'26". According to the custom scoring method, the mean scores of the Intervention Improvement, Workflow Impact, and Clinical Relevance were 4.0, 3.3 and 3.9 respectively.
CONCLUSIONS
The presented image guidance is feasible and promising for PRA procedure. With careful setup it can be efficient for overcoming the limitation of current US-guided PRA.
Collapse