1
|
Zhang Y, Yuan Z, Jin Y, Zhang W, Yuan WE. Novel Fluorinated Spermine and Small Molecule PEI to Deliver Anti-PD-L1 and Anti-VEGF siRNA for Highly Efficient Tumor Therapy. Pharmaceutics 2021; 13:2058. [PMID: 34959340 PMCID: PMC8708240 DOI: 10.3390/pharmaceutics13122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Small interfering RNA (siRNA) can specifically silence disease gene expression. This project investigated the overexpression of programmed death receptor ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) on the surface of tumor cells. However, the main obstacle to the development of gene therapy drugs is the lack of an efficient delivery vector, which should be able to overcome multiple delivery barriers and protect siRNA to enter the target cells. Therefore, a novel fluorine-modified endogenous molecular carrier TFSPEI was constructed by linking fluorinated groups with hydrophobic and hydrophilic characteristics on the surface of PEI and spermine. The results showed that lower toxicity, higher endocytosis, and silencing efficiency were achieved. We found that the inhibition of VEGF targets can indirectly activate the immune response to promote the tumor-killing and invasion effects of T cells. The combined delivery of anti-VEGF siRNA and anti-PD-L1 siRNA could inhibit the expression of corresponding proteins, restore the anti-tumor function of T cells and inhibit the growth of neovascularization, and obtained significant anti-tumor effects. Therefore, this safe and efficient fluorinated spermine and small molecule PEI-based anti-PD-L1 and anti-VEGF siRNA delivery system is expected to provide a new strategy for gene therapy of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Y.); (Y.J.); (W.Z.)
| |
Collapse
|
2
|
Animal Models in Bladder Cancer. Biomedicines 2021; 9:biomedicines9121762. [PMID: 34944577 PMCID: PMC8698361 DOI: 10.3390/biomedicines9121762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with an increasing incidence and mortality. Mouse models of bladder cancer should possess a high value of reproducibility, predictability, and translatability to allow mechanistic, chemo-preventive, and therapeutic studies that can be furthered into human clinical trials. OBJECTIVES To provide an overview and resources on the origin, molecular and pathological characteristics of commonly used animal models in bladder cancer. METHODS A PubMed and Web of Science search was performed for relevant articles published between 1980 and 2021 using words such as: "bladder" and/or "urothelial carcinoma" and animal models. Animal models of bladder cancer can be categorized as autochthonous (spontaneous) and non-autochthonous (transplantable). The first are either chemically induced models or genetically engineered models. The transplantable models can be further subclassified as syngeneic (murine bladder cancer cells implanted into immunocompetent or transgenic mice) and xenografts (human bladder cancer cells implanted into immune-deficient mice). These models can be further divided-based on the site of the tumor-as orthotopic (tumor growth occurs within the bladder) and heterotopic (tumor growth occurs outside of the bladder).
Collapse
|
3
|
Liu W, Ju L, Cheng S, Wang G, Qian K, Liu X, Xiao Y, Wang X. Conditional reprogramming: Modeling urological cancer and translation to clinics. Clin Transl Med 2020; 10:e95. [PMID: 32508060 PMCID: PMC7403683 DOI: 10.1002/ctm2.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patient-derived models, including cell models (organoids and conditionally reprogrammed cells [CRCs]) and patient-derived xenografts, are urgently needed for both basic and translational cancer research. Conditional reprogramming (CR) technique refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. Considering its robust features, the CR technique may facilitate cancer research in many aspects. Under in vitro culturing, malignant CRCs can share certain genetic aberrations and tumor phenotypes with their parental specimens. Thus, tumor CRCs can promisingly be utilized for the study of cancer biology, the discovery of novel therapies, and the promotion of precision medicine. For normal CRCs, the characteristics of normal karyotype maintenance and lineage commitment suggest their potential in toxicity testing and regenerative medicine. In this review, we discuss the applications, limitations, and future potential of CRCs in modeling urological cancer and translation to clinics.
Collapse
Affiliation(s)
- Wei Liu
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Lingao Ju
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Songtao Cheng
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gang Wang
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Kaiyu Qian
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Yu Xiao
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Xinghuan Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Medical Research InstituteWuhan UniversityWuhanChina
| |
Collapse
|
4
|
Ossick MV, Ferrari KL, Nunes-Silva I, Denardi F, Reis LO. Chorioallantoic urothelial tumor avatar. A clinical tool for phenotype-based therapy. Acta Cir Bras 2020; 34:e201901207. [PMID: 32049187 PMCID: PMC7011207 DOI: 10.1590/s0102-865020190120000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022] Open
Abstract
In the muscle invasive bladder cancer (MIBC) standard of care treatment only patients presenting a major pathological tumor response are more likely to show the established modest 5% absolute survival benefit at 5 years after cisplatin-based neoadjuvant chemotherapy (NAC). To overcome the drawbacks of a blind NAC (i.e. late cystectomy with unnecessary NAC adverse events) with potential to survival improvements, preclinical models of urothelial carcinoma have arisen in this generation as a way to pre-determine drug resistance even before therapy is targeted. The implantation of tumor specimens in the chorioallantoic membrane (MCA) of the chicken embryo results in a high-efficiency graft, thus allowing large-scale studies of patient-derived “tumor avatar”. This article discusses a novel approach that exploits cancer multidrug resistance to provide personalized phenotype-based therapy utilizing the MIBC NAC dilemma.
Collapse
|
5
|
Guo H, Li F, Xu W, Chen J, Hou Y, Wang C, Ding J, Chen X. Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800004. [PMID: 29938183 PMCID: PMC6010003 DOI: 10.1002/advs.201800004] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/08/2018] [Indexed: 05/28/2023]
Abstract
Initially, chemotherapy is effective for treatment of bladder cancer after transurethral resection of the bladder. However, certain patients progressively become unresponsive after multiple treatment cycles, which results from the rapid and almost complete excretion of clinically used formulations of antineoplastic agents with urinary voiding. Improving the mucoadhesiveness and penetrability of chemotherapeutic drugs are key factors in treatment of advanced bladder cancer. Here, a smart disulfide-crosslinked polypeptide nanogel of poly(l-lysine)-poly(l-phenylalanine-co-l-cystine) (PLL-P(LP-co-LC)) is developed to deliver 10-hydroxycamptothecin (HCPT) for treatment of orthotopic bladder cancer. The positively charged PLL-P(LP-co-LC) can significantly prolong the retention period and enhance the tissue permeability of HCPT within the bladder wall of rat. Moreover, the reduction-responsive polypeptide nanogel (i.e., NG/HCPT) possesses the capability to accurately and rapidly deliver HCPT in bladder cancer cells. NG/HCPT can significantly inhibit proliferation of human bladder cancer 5637 cells in vitro and enhance antitumor activity toward an orthotopic rat bladder cancer model in vivo. This work demonstrates that the smart polypeptide nanogel may function as a promising drug-delivery system for local chemotherapy of bladder cancer with unprecedented clinical benefits.
Collapse
Affiliation(s)
- Hui Guo
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Faping Li
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jinjin Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Yuchuan Hou
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Chunxi Wang
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
6
|
Abstract
Urinary bladder cancer (UBC) is a common and complex malignancy, with a multifactorial etiology, like environmental factors, such as cigarette smoking, occupational exposure, and genetic factors.UBC exhibits considerable genotypic and phenotypic heterogeneity. Among all UBC lesions, urothelial carcinoma is the most frequently observed histological type. Despite all the developments made in urologic oncology field, therapeutic options remain inadequate. There is urgency for the identification and development of new antineoplastic drugs to replace or improve current protocols and in vivo models have been proven to be essential for this step. There are different animal models of UBC: Spontaneous and experimentally induced models (genetically engineered, transplantable-xenograft and syngeneic animals- and chemically induced models). N-butyl-N(4-hydroxybutil)nitrosamine (BBN) is the most suitable reagent to generate chemically induced in vivo models of UBC and to study bladder carcinogenesis. BBN has proven, over the years, to be very realistic and reliable. It is bladder specific, and induces high tumor incidence.
Collapse
|
7
|
Passos G, Camargo J, Ferrari K, Franch G, Nowill A, Reis L. Is there room for luminal-basal urothelial cell population quantification? Actas Urol Esp 2017; 41:504-510. [PMID: 28431768 DOI: 10.1016/j.acuro.2016.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 10/19/2022]
Abstract
PURPOSE Three cell layers compose the urothelium: basal, intermediate and luminal ("umbrella cells") and different diseases might arise from different cell populations. The aim of this study is to analyze the quantification ability of such cell populations by using four different protocols. METHODS Twenty male rats (Wistar) were randomized in four groups of five animals: scraping, enzymatic 30, 45 and 60minutes. The cells were isolated, analyzed by flow cytometer and data processed by BD FACSDIVA™ software. RESULTS The urothelium was separated in two cell populations that are different in size and complexity. The group that showed more efficiency in cells dissociation and cells separation was enzymatic protocol 45minutes. CONCLUSIONS Enzymatic protocol 45minutes was able to isolate urothelial cell populations and might be explored as potential prognostic tool, patient selection and therapeutic target in urothelial diseases. Future studies should validate the potential clinical application to the proposed rational of luminal-basal paradigm in the urothelial cancer as hope for individualized approach.
Collapse
|
8
|
John BA, Said N. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities. Oncotarget 2017; 8:57766-57781. [PMID: 28915710 PMCID: PMC5593682 DOI: 10.18632/oncotarget.17714] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions.
Collapse
Affiliation(s)
- Bincy Anu John
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
Reis LO. Editorial Comment to Orthotopic mouse model of renal pelvic cancer using a human bladder cancer cell line. Int J Urol 2016; 23:963. [PMID: 27784153 DOI: 10.1111/iju.13240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leonardo O Reis
- Urologic Oncology Division, Pontifical Catholic University of Campinas, São Paulo, Brazil.
| |
Collapse
|
10
|
Zhang N, Li D, Shao J, Wang X. Animal models for bladder cancer: The model establishment and evaluation (Review). Oncol Lett 2015; 9:1515-1519. [PMID: 25788992 PMCID: PMC4356294 DOI: 10.3892/ol.2015.2888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022] Open
Abstract
Bladder cancer is the most common type of tumor in the urogenital system. Approximately 75% of patients with bladder cancer present with non-muscle-invasive cancer, which is generally treated by transurethral resection and intravesical chemotherapy. In spite of different therapeutic options, there remains a very variable risk of recurrence and progression. Novel therapeutic methods of treating bladder cancer are urgently required. The exploration and preclinical evaluation of new treatments requires an animal tumor model that mimics the human counterpart. Animal models are key in bladder cancer research and provide a bridge to the clinic. Various animal bladder cancer models have been described to date, but the tumor take rate is reported to be 30-100%. Establishment of reliable, simple, practicable and reproducible animal models remains an ongoing challenge. The present review summarizes the latest developments with regard to the establishment of animal models and tumor evaluation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China ; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Dongyang Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China ; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jialiang Shao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China ; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiang Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China ; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
11
|
Urothelial carcinogen resistance driven by stronger Toll-like receptor 2 (TLR2) and Uroplakin III (UP III) defense mechanisms: a new model. World J Urol 2014; 33:413-9. [PMID: 24871424 DOI: 10.1007/s00345-014-1329-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/14/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. METHODS Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. RESULTS There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). CONCLUSIONS The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.
Collapse
|
12
|
Oliveira PA, Arantes-Rodrigues R, Vasconcelos-Nóbrega C. Animal models of urinary bladder cancer and their application to novel drug discovery. Expert Opin Drug Discov 2014; 9:485-503. [DOI: 10.1517/17460441.2014.902930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, Zhang L, Chen Y, Gao Y, Wang B, Guo P, Li L, Wang X, He D. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal 2013; 25:2625-33. [PMID: 24012496 DOI: 10.1016/j.cellsig.2013.08.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
Abstract
Muscle-invasive bladder cancer is associated with a high frequency of metastasis, and fewer therapies substantially prolong survival. Silibinin, a nontoxic natural flavonoid, has been shown to exhibit pleiotropic anticancer effects in many cancer types, including bladder cancer. Our and other previous studies have demonstrated that silibinin induced apoptosis and inhibited proliferation of bladder cancer cells, whether silibinin could suppress bladder cancer metastasis has not been elucidated. In the present study, we utilized a novel highly metastatic T24-L cell model, and found that silibinin treatment not only resulted in the suppression of cell migration and invasion in vitro, but also decreased bladder cancer lung metastasis and prolonged animal survival in vivo. Mechanistically, silibinin could inhibit glycogen synthase kinase-3β (GSK3β) phosphorylation, β-catenin nuclear translocation and transactivation, and ZEB1 gene transcription that subsequently regulated the expression of cytokeratins, vimentin and matrix metalloproteinase-2 (MMP2) to reverse epithelial-mesenchymal transition (EMT). On the other hand, silibinin inhibited ZEB1 expression and then suppressed the properties of cancer stem cells (CSCs), which were evidenced as decreased spheroid colony formation, side population, and the expression of stem cell factor CD44. Overall, this study reveals a novel mechanism for silibinin targeting bladder cancer metastasis, in which inactivation of β-catenin/ZEB1 signaling by silibinin leads to dual-block of EMT and stemness.
Collapse
Affiliation(s)
- Kaijie Wu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Knockdown of Ki-67 by dicer-substrate small interfering RNA sensitizes bladder cancer cells to curcumin-induced tumor inhibition. PLoS One 2012; 7:e48567. [PMID: 23152782 PMCID: PMC3495973 DOI: 10.1371/journal.pone.0048567] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/28/2012] [Indexed: 01/04/2023] Open
Abstract
Transitional cell carcinoma (TCC) of the urinary bladder is the most common cancer of the urinary tract. Most of the TCC cases are of the superficial type and are treated with transurethral resection (TUR). However, the recurrence rate is high and the current treatments have the drawback of inducing strong systemic toxicity or cause painful cystitis. Therefore, it would be of therapeutic value to develop novel concepts and identify novel drugs for the treatment of bladder cancer. Ki-67 is a large nucleolar phosphoprotein whose expression is tightly linked to cell proliferation, and curcumin, a phytochemical derived from the rhizome Curcuma longa, has been shown to possess powerful anticancer properties. In this study, we evaluated the combined efficacy of curcumin and a siRNA against Ki-67 mRNA (Ki-67-7) in rat (AY-27) and human (T-24) bladder cancer cells. The anticancer effects were assessed by the determination of cell viability, apoptosis and cell cycle analysis. Ki-67-7 (10 nM) and curcumin (10 µM), when treated independently, were moderately effective. However, in their combined presence, proliferation of bladder cancer cells was profoundly (>85%) inhibited; the rate of apoptosis in the combined presence of curcumin and Ki-67-7 (36%) was greater than that due to Ki-67-7 (14%) or curcumin (13%) alone. A similar synergy between curcumin and Ki-67-7 in inducing cell cycle arrest was also observed. Western blot analysis suggested that pretreatment with Ki-67-7 sensitized bladder cancer cells to curcumin-mediated apoptosis and cell cycle arrest by p53- and p21-independent mechanisms. These data suggest that a combination of anti-Ki-67 siRNA and curcumin could be a viable treatment against the proliferation of bladder cancer cells.
Collapse
|
15
|
Wu K, Fan J, Zhang L, Ning Z, Zeng J, Zhou J, Li L, Chen Y, Zhang T, Wang X, Hsieh JT, He D. PI3K/Akt to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cell Signal 2012; 24:2273-82. [PMID: 22906492 DOI: 10.1016/j.cellsig.2012.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/12/2012] [Indexed: 11/29/2022]
Abstract
Muscle-invasive bladder cancer is associated with a high frequency of metastasis, and bone is the most common metastatic site outside the pelvis. To clarify its organ-specific characteristics, we generated a successive bone metastatic T24-B bladder cancer subline following tail vein injection of metastatic T24-L cells. Compared with parental T24-L cells, epithelial-like T24-B cells displayed increased adhesion but decreased migration or invasion abilities as well as up-regulation of cytokeratins and down-regulation of vimentin, N-cadherin and MMP2. Mechanically, phosphatidylinositol 3-kinase (PI3K)/Akt targets glycogen synthase kinase-3β (GSK3β)/β-catenin to control ZEB1 gene transcription, and then subsequently regulates the expression of cytokeratins, vimentin and MMP2. Importantly, ZEB1 is essential for bladder cancer invasion in vitro and distant metastasis in vivo, and ZEB1 overexpression was highly correlated with the expression of those downstream markers in clinical tumor samples. Overall, this study reveals a novel mechanism facilitating metastatic bladder cancer cell re-colonization into bone, and confirms the significance of mesenchymal-to-epithelial transition (MET) in formation of bone metastasis.
Collapse
Affiliation(s)
- Kaijie Wu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effects of P-MAPA Immunomodulator on Toll-Like Receptors and p53: Potential Therapeutic Strategies for Infectious Diseases and Cancer. Infect Agent Cancer 2012; 7:14. [PMID: 22709446 PMCID: PMC3408364 DOI: 10.1186/1750-9378-7-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022] Open
Abstract
Background Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. Methods For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. Results The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. Conclusions In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases.
Collapse
|
17
|
Reis LO, Sopena JMG, Fávaro WJ, Martin MC, Simão AFL, Reis RBD, Andrade MFD, Domenech JD, Cardo CC. Anatomical features of the urethra and urinary bladder catheterization in female mice and rats. An essential translational tool. Acta Cir Bras 2011; 26 Suppl 2:106-10. [PMID: 22030824 DOI: 10.1590/s0102-86502011000800019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To present fundamental anatomical aspects and technical skills necessary to urethra and urinary bladder catheterization in female mice and rats. METHODS: Urethral and bladder catheterization has been widely utilized for carcinogenesis and cancer research and still remains very useful in several applications: from toxicological purposes as well as inflammatory and infectious conditions to functional aspects as bladder dynamics and vesicoureteral reflux, among many others. RESULTS: Animal models are in the center of translational research and those involving rodents are the most important nowadays due to several advantages including human reproducibility, easy handling and low cost. CONCLUSIONS: Although technical and anatomical pearls for rodent urethral and bladder access are presented as tackles to the advancement of lower urinary tract preclinical investigation in a broaden sight, restriction to female animals hampers the male microenvironment, demanding future advances.
Collapse
|
18
|
Reis LO, Pereira TC, Lopes-Cendes I, Ferreira U. MicroRNAs: A New Paradigm on Molecular Urological Oncology. Urology 2010; 76:521-7. [PMID: 20472270 DOI: 10.1016/j.urology.2010.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/15/2010] [Accepted: 03/01/2010] [Indexed: 12/29/2022]
|
19
|
Arum CJ, Kodama Y, Rolim N, Widerøe M, Anderssen E, Viset T, Otterlei M, Lundgren S, Chen D, Zhao CM. A rat model of intravesical delivery of small interfering RNA for studying urinary carcinoma. World J Urol 2010; 28:479-85. [DOI: 10.1007/s00345-010-0542-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/15/2010] [Indexed: 01/28/2023] Open
|
20
|
Reis LO, Fávaro WJ, Ferreira U, Billis A, Fazuoli MG, Cagnon VHA. Evolution on experimental animal model for upper urothelium carcinogenesis. World J Urol 2010; 28:499-505. [PMID: 20373103 DOI: 10.1007/s00345-010-0545-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022] Open
Abstract
PURPOSE No optimal, well designed and reproducible animal model for upper urothelial carcinogenesis exists. This study characterized the histopathological features on top of immunolocalization of alpha-dystroglycans (alpha-DG) and matrix metalloproteinase (MMP-9) and cell turn-over in the upper urinary tract using a novel experimental model. METHODS Seventy-five female Fischer 344 rats were divided into three groups: the control group received a 0.30-ml dose of 0.9% physiological saline; the MNU group (chemical carcinogen N-methyl-N-nitrosourea) received 0.30 ml of MNU; and the MNU-citrate group received 0.30 ml of MNU plus sodium citrate, every one intravesically every other week for a total of 4 doses. After 15 weeks, bladder, ureters and renal pelvis were collected for morphological and molecular analysis. RESULTS Associated management with MNU and sodium citrate was able to lead to 100% of both urinary bladder and upper urinary tract tumors, being the high-grade noninvasive papillary urothelial carcinoma the most frequent lesion. The upper urothelium showed reduced alpha-DG and increased MMP-9 and Ki-67 immunoreactivities in the MNU-citrate group in relation to the other groups. MNU group presented no upper urothelium tumor and 100% bladder tumor. CONCLUSIONS This is a relevant evolution on experimental animal model for upper urinary tract carcinogenesis field. MMP-dependent disruption of the DG complex plays an important role in urothelial tumor carcinogenesis and showed the model applicability and significance. MNU-citrate model could contribute to a better understanding of human upper urothelial cancer development as well as to its local treatment strategies in a near future.
Collapse
Affiliation(s)
- Leonardo O Reis
- Department of Urology, Division of Urologic Oncology, School of Medicine, University of Campinas, R. Votorantim, 51, ap. 43, Campinas, SP, 13073-090, Brazil.
| | | | | | | | | | | |
Collapse
|