1
|
Konoshenko M, Laktionov P, Bryzgunova O. Prostate cancer therapy outcome prediction: are miRNAs a suitable guide for therapeutic decisions? Andrology 2024; 12:705-718. [PMID: 37750354 DOI: 10.1111/andr.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Radical prostatectomy, radiotherapy, chemotherapy, and androgen-deprivation therapy are among the most common treatment options for different forms of prostate cancer (PCa). However, making therapeutic decisions is difficult due to the lack of reliable prediction markers indicating therapy outcomes in clinical practice. The involvement of miRNAs in all mechanisms of the PCa development and their easy detection characterize them as attractive PCa biomarkers. Although there are extensive data on the role of miRNAs in PCa therapy resistance and sensitivity development, the issues of whether they could be used as a guide for therapy choice and, if so, how we can progress toward this goal, remain unclear. Thus, generalizable reviews and studies which summarize, compare, and analyze data on miRNA involvement in responses to different types of PCa therapies are required. OBJECTIVES Data on the involvement of miRNAs in therapy responses, on the role of cross-miRNA expression in different therapies, and on miRNA targets were analyzed in order to determine the miRNA-related factors which can lend perspective to the future development of personalized predictors of PCa sensitivity/resistance to therapies. MATERIALS AND METHODS The data available on the miRNAs associated with different PCa therapies (resistance and sensitivity therapies) are summarized and analyzed in this study, including analyses using bioinformatics resources. Special attention was dedicated to the mechanisms of the development of therapy resistance. RESULTS AND DISCUSSION A comprehensive combined analysis of the current data revealed a panel of miRNAs that were shown to be most closely associated with the PCa therapy response and were found to regulate the genes involved in PCa development via cell proliferation regulation, epithelial-mesenchymal transition (EMT), apoptosis, cell-cycle progression, angiogenesis, metastasis and invasion regulation, androgen-independent development, and colony formation. CONCLUSION The selected miRNA-based panel has the potential to be a guide for therapeutic decision making in the effective treatment of PCa.
Collapse
Affiliation(s)
- MariaYu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Liang J, Bao D, Ye Z, Cao B, Jin G, Lu Z, Chen J. miR-3195 suppresses the malignant progression of osteosarcoma cells via targeting SOX4. J Orthop Surg Res 2023; 18:809. [PMID: 37904207 PMCID: PMC10614315 DOI: 10.1186/s13018-023-04321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly invasive primary malignancy of the bone that is common in children and adolescents. MicroRNAs (miRNAs) are novel diagnostic and predictive biomarkers for cancers. The miRNA miR-3195 is aberrantly expressed in multiple types of tumors. However, the expression levels and biological functions of miR-3195 in OS remain unclear. METHODS Two Gene Expression Omnibus (GEO) datasets (GSE69470 and GSE16088) were used to analyze differentially expressed miRNAs and mRNAs in osteosarcoma cell lines and OS tissues. Quantitative RT-PCR was used to detect the expression levels of miR-3195 and the SRY-box transcription factor 4 (SOX4) mRNA in OS tissues and cell lines. The relationship between miR-3195 and the 3'-upstream region (3'-UTR) in the SOX4 mRNA (predicted through bioinformatics) was analyzed using Pearson's correlation analysis and confirmed by a dual-luciferase reporter gene experiment. Cell counting kit-8 assays, colony formation assays, flow cytometry, wound healing assays, transwell assays, and western blotting were performed to explore the effects of miR-3195 levels on SOX4 affected OS cell biological behavior. RESULTS Our results revealed that miR-3195 was the most down-regulated miRNA and SOX4 was the most up-regulated mRNA by Bioinformatic analysis. It was further confirmed miR-3195 had low expression, and SOX4 had high expression levels in clinical OS tissue samples; the expression levels of both genes were negatively correlated with each other in OS tissues. Overexpression of miR-3195 in OS cell lines significantly inhibited cell proliferation, migration, and invasiveness, while promoting apoptosis; all these effects were reversed by increasing SOX4 expression levels. We also found that miR-3195 could directly bind with the SOX4 gene and down-regulate SOX4 expression. CONCLUSIONS miR-3195 can modulate proliferation, migration, invasiveness, and apoptosis in OS cells by regulating the SOX4 gene. Thus, the miR-3195/SOX4 signaling may be a novel therapeutic target in OS treatment.
Collapse
Affiliation(s)
- Jianwei Liang
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Dandan Bao
- Department of Pharmacy, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Zhan Ye
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Binhao Cao
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Guojun Jin
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Zhenyu Lu
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Jianjun Chen
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China.
| |
Collapse
|
4
|
Ding Y, Wu X, Yang X. Identification of miRNAs and target genes associated with lymph node metastasis in cervical cancer using bioinformatics analysis. Toxicol Mech Methods 2023; 33:625-635. [PMID: 37125668 DOI: 10.1080/15376516.2023.2207644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
This study was designed to identify the differentially expressed miRNAs (DEMs) and genes (DEGs) in metastatic cervical cancer using bioinformatic tools. In this study, fifty-seven DEMs (48 downregulated and 9 upregulated) were identified, among which miR-4459 and miR-3195 expression was negatively associated with overall survival of cervical cancer patients. Then, 476 target DEGs were determined, and protein-protein interaction (PPI) network was constructed. Seventeen hub genes (LONRF2, CCNE2, AURKA, SYT1, NEGR1, PPP1R12B, GABRP, RAD51, CDK1, FBLN5, PRKG1, CDC6, CACNA1C, MEOX2, ANLN, MYLK, and EDNRB) were finally selected to construct the miRNA-hub gene network. Overall, our study discovered the key miRNAs and mRNAs related to lymph node metastasis (LNM) in cervical cancer, which helps discover candidate therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yishan Ding
- Department of Gynecology, Ankang City Central Hospital, Ankang, PR China
| | - Xiaorong Wu
- Ankang City Central Hospital, Ankang, PR China
| | - Xiaofeng Yang
- Department of Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
5
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
6
|
Padmyastuti A, Sarmiento MG, Dib M, Ehrhardt J, Schoon J, Somova M, Burchardt M, Roennau C, Pinto PC. Microfluidic-based prostate cancer model for investigating the secretion of prostate-specific antigen and microRNAs in vitro. Sci Rep 2023; 13:11623. [PMID: 37468746 DOI: 10.1038/s41598-023-38834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
The study of prostate cancer in vitro relies on established cell lines that lack important physiological characteristics, such as proper polarization and expression of relevant biomarkers. Microphysiological systems (MPS) can replicate cancer microenvironments and lead to cellular phenotypic changes that better represent organ physiology in vitro. In this study, we developed an MPS model comprising conventional prostate cancer cells to evaluate their activity under dynamic culture conditions. Androgen-sensitive (LNCaP) and androgen-insensitive (PC3) cells were grown in conventional and 3D cultures, both static and dynamic. Cell morphology, the secretion of prostate-specific antigen, and the expression of key prostate markers and microRNAs were analyzed. LNCaP formed spheroids in 3D and MPS cultures, with morphological changes supported by the upregulation of cytokeratins and adhesion proteins. LNCaP also maintained a constant prostate-specific antigen secretion in MPS. PC3 cells did not develop complex structures in 3D and MPS cultures. PSA expression at the gene level was downregulated in LNCaP-MPS and considerably upregulated in PC3-MPS. MicroRNA expression was altered by the 3D static and dynamic culture, both intra- and extracellularly. MicroRNAs associated with prostate cancer progression were mostly upregulated in LNCaP-MPS. Overall dynamic cell culture substantially altered the morphology and expression of LNCaP cells, arguably augmenting their prostate cancer phenotype. This novel approach demonstrates that microRNA expression in prostate cancer cells is sensitive to external stimuli and that MPS can effectively promote important physiological changes in conventional prostate cancer models.
Collapse
Affiliation(s)
- Adventina Padmyastuti
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Marina Garcia Sarmiento
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Maria Dib
- Department of Ear, Nose and Throat Surgery, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Fleichmannstraße 8, 17475, Greifswald, Germany
| | - Maryna Somova
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Cindy Roennau
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Pedro Caetano Pinto
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany.
| |
Collapse
|
7
|
Ottman R, Ganapathy K, Lin HY, Osterman CD, Dutil J, Matta J, Ruiz-Deya G, Wang L, Yamoah K, Berglund A, Chakrabarti R, Park JY. Differential Expression of miRNAs Contributes to Tumor Aggressiveness and Racial Disparity in African American Men with Prostate Cancer. Cancers (Basel) 2023; 15:cancers15082331. [PMID: 37190259 DOI: 10.3390/cancers15082331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Prostate cancer is the leading cancer in incidence and second leading cause of cancer mortality in US men. African American men have significantly higher incidence and mortality rates from prostate cancer than European American men. Previous studies reported that the disparity in prostate cancer survival or mortality can be explained by different biological backgrounds. microRNAs (miRNAs) regulate gene expression of their cognate mRNAs in many cancers. Therefore, miRNAs may be a potentially promising diagnostic tool. The role of miRNAs in prostate cancer aggressiveness and racial disparity has not been fully established. The goal of this study is to identify miRNAs associated with aggressiveness and racial disparity in prostate cancer. Here we report miRNAs that are associated with tumor status and aggressiveness in prostate cancer using a profiling approach. Further, downregulated miRNAs in African American tissues were confirmed by qRT-PCR. These miRNAs have also been shown to negatively regulate the expression of the androgen receptor in prostate cancer cells. This report provides a novel insight into understanding tumor aggressiveness and racial disparities of prostate cancer.
Collapse
Affiliation(s)
- Richard Ottman
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Suzuki K, Yokoi A, Yoshida K, Kato T, Ochiya T, Yamamoto Y, Kajiyama H. Preoperative serum microRNAs as potential prognostic biomarkers in ovarian clear cell carcinoma. J Gynecol Oncol 2022; 34:e34. [PMID: 36603851 PMCID: PMC10157334 DOI: 10.3802/jgo.2023.34.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Ovarian clear cell carcinoma (OCCC) is a subtype of epithelial ovarian carcinoma with poor prognosis. However, no effective biomarkers have been established for predicting unfavorable events, including recurrence and poor prognoses. Serum microRNAs (miRNAs) have been increasingly reported to be useful in predicting a patient's condition and have been recognized as a potentially less-invasive source for liquid biopsy in cancer. Therefore, this study aimed to evaluate serum miRNA profiles from patients with OCCC and to establish biomarker for predicting the prognoses. METHODS The GSE106817, which included preoperative serum miRNA profiles of patients with ovarian tumors, was used, and clinical information was investigated. In all, 66 patients with OCCC were included, excluding those with other histological subtypes or insufficient prognostic information. Moreover, miRNA profiles of OCCC tissues were also examined. RESULTS The median follow-up period was 64.3 (8.0-153.3) months. Based on multivariable Cox regression analyses and the expression of miRNAs in OCCC tissues, miR-150-3p, miR-3195, and miR-7704 were selected as miRNA candidates associated with both progression-free survival (PFS) and overall survival (OS). Then, the prognostic index was calculated based on expression values of 3 serum miRNAs. Kaplan-Meier survival analysis indicated that the prognostic index was significantly predictive of PFS and OS (p=0.004 and p=0.012, respectively). CONCLUSION Preoperative serum miRNA profiles of miR-150-3p, miR-3195, and miR-7704 can be used to potentially predict the prognosis of patients with OCCC.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Zhang C, Sun C, Zhao Y, Wang Q, Guo J, Ye B, Yu G. Overview of MicroRNAs as Diagnostic and Prognostic Biomarkers for High-Incidence Cancers in 2021. Int J Mol Sci 2022; 23:ijms231911389. [PMID: 36232692 PMCID: PMC9570028 DOI: 10.3390/ijms231911389] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) about 22 nucleotides in size, which play an important role in gene regulation and are involved in almost all major cellular physiological processes. In recent years, the abnormal expression of miRNAs has been shown to be associated with human diseases including cancer. In the past ten years, the link between miRNAs and various cancers has been extensively studied, and the abnormal expression of miRNAs has been reported in various malignant tumors, such as lung cancer, gastric cancer, colorectal cancer, liver cancer, breast cancer, and prostate cancer. Due to the high malignancy grade of these cancers, it is more necessary to develop the related diagnostic and prognostic methods. According to the study of miRNAs, many potential cancer biomarkers have been proposed for the diagnosis and prognosis of diseases, especially cancer, thus providing a new theoretical basis and perspective for cancer screening. The use of miRNAs as biomarkers for diagnosis or prognosis of cancer has the advantages of being less invasive to patients, with better accuracy and lower price. In view of the important clinical significance of miRNAs in human cancer research, this article reviewed the research status of miRNAs in the above-mentioned cancers in 2021, especially in terms of diagnosis and prognosis, and provided some new perspectives and theoretical basis for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Jianlin Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (G.Y.)
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (G.Y.)
| |
Collapse
|
10
|
Identification of the Regulatory Targets of miR-3687 and miR-4417 in Prostate Cancer Cells Using a Proteomics Approach. Int J Mol Sci 2022; 23:ijms231810565. [PMID: 36142477 PMCID: PMC9501364 DOI: 10.3390/ijms231810565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNA) are ubiquitous non-coding RNAs that have a prominent role in cellular regulation. The expression of many miRNAs is often found deregulated in prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). Although their expression can be associated with PCa and CRPC, their functions and regulatory activity in cancer development are poorly understood. In this study, we used different proteomics tools to analyze the activity of hsa-miR-3687-3p (miR-3687) and hsa-miR-4417-3p (miR-4417), two miRNAs upregulated in CRPC. PCa and CRPC cell lines were transfected with miR-3687 or miR-4417 to overexpress the miRNAs. Cell lysates were analyzed using 2D gel electrophoresis and proteins were subsequently identified using mass spectrometry (Maldi-MS/MS). A whole cell lysate, without 2D-gel separation, was analyzed by ESI-MS/MS. The expression of deregulated proteins found across both methods was further investigated using Western blotting. Gene ontology and cellular process network analysis determined that miR-3687 and miR-4417 are involved in diverse regulatory mechanisms that support the CRPC phenotype, including metabolism and inflammation. Moreover, both miRNAs are associated with extracellular vesicles, which point toward a secretory mechanism. The tumor protein D52 isoform 1 (TD52-IF1), which regulates neuroendocrine trans-differentiation, was found to be substantially deregulated in androgen-insensitive cells by both miR-3687 and miR-4417. These findings show that these miRNAs potentially support the CRPC by truncating the TD52-IF1 expression after the onset of androgen resistance.
Collapse
|
11
|
Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153744. [PMID: 35954408 PMCID: PMC9367587 DOI: 10.3390/cancers14153744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite aggressive treatment and androgen-deprivation therapy, most prostate cancer patients ultimately develop castration-resistant prostate cancer (CRPC), which is associated with high mortality rates. However, the mechanisms governing the development of CRPC are poorly understood, and androgen receptor (AR) signaling has been shown to be important in CRPC through AR gene mutations, gene overexpression, co-regulatory factors, AR shear variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to influence the CRPC progression, including the Wnt and Hh pathways. Moreover, non-coding RNAs have been identified as important regulators of the CRPC pathogenesis. The present review provides an overview of the relevant literature pertaining to the mechanisms governing the molecular acquisition of castration resistance in prostate cancer, providing a foundation for future, targeted therapeutic efforts.
Collapse
|
12
|
A comprehensive analysis of ncRNA-mediated interactions reveals potential prognostic biomarkers in prostate adenocarcinoma. Comput Struct Biotechnol J 2022; 20:3839-3850. [PMID: 35891787 PMCID: PMC9307580 DOI: 10.1016/j.csbj.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
As one of common malignancies, prostate adenocarcinoma (PRAD) has been a growing health problem and a leading cause of cancer-related death. To obtain expression and functional relevant RNAs, we firstly screened candidate hub mRNAs and characterized their associations with cancer. Eight deregulated genes were identified and used to build a risk model (AUC was 0.972 at 10 years) that may be a specific biomarker for cancer prognosis. Then, relevant miRNAs and lncRNAs were screened, and the constructed primarily interaction networks showed the potential cross-talks among diverse RNAs. IsomiR landscapes were surveyed to understand the detailed isomiRs in relevant homologous miRNA loci, which largely enriched RNA interaction network due to diversities of sequence and expression. We finally characterized TK1, miR-222-3p and SNHG3 as crucial RNAs, and the abnormal expression patterns of them were correlated with poor survival outcomes. TK1 was found synthetic lethal interactions with other genes, implicating potential therapeutic target in precision medicine. LncRNA SNHG3 can sponge miR-222-3p to perturb RNA regulatory network and TK1 expression. These results demonstrate that TK1:miR-222-3p:SNHG3 axis may be a potential prognostic biomarker, which will contribute to further understanding cancer pathophysiology and providing potential therapeutic targets in precision medicine.
Collapse
|
13
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|