1
|
Roy S, Nagrale P. Encoding the Photoreceptors of the Human Eye. Cureus 2022; 14:e30125. [PMID: 36381896 PMCID: PMC9644661 DOI: 10.7759/cureus.30125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
This review aims to assess the anatomy of the human eye with a focus on exploring opportunities to mimic certain functionalities of photoreceptors in the optical system. This can help restore vision issues in people who had normal vision earlier, but their vision was impaired due to reasons that damaged parts of the eye; however, the functionality of the optic nerve remained intact. It is a conceptual article where the methodology to simulate artificial photoreceptors is discussed.
Collapse
Affiliation(s)
- Shreya Roy
- Medical Student, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Prachi Nagrale
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
2
|
Abstract
Developments of new strategies to restore vision and improving on current strategies by harnessing new advancements in material and electrical sciences, and biological and genetic-based technologies are of upmost health priorities around the world. Federal and private entities are spending billions of dollars on visual prosthetics technologies. This review describes the most current and state-of-the-art bioengineering technologies to restore vision. This includes a thorough description of traditional electrode-based visual prosthetics that have improved substantially since early prototypes. Recent advances in molecular and synthetic biology have transformed vision-assisted technologies; For example, optogenetic technologies that introduce light-responsive proteins offer excellent resolution but cortical applications are restricted by fiber implantation and tissue damage. Other stimulation modalities, such as magnetic fields, have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils are currently being developed to activate select groups of neurons. Magnetically-responsive nanoparticles or exogenous proteins can significantly enhance the coupling between external electromagnetic devices and any neurons affiliated with these modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies will likely restrict the number of usable materials. Nevertheless, advances in identifying and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-specific stimulation and may overcome many of the limitations that currently exist with other methods. Finally, sensory substitution systems also serve as viable visual prostheses by converting visual input to auditory and somatosensory stimuli. This review also discusses major challenges in the field and offers bioengineering strategies to overcome those.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics 2019; 16:134-143. [PMID: 30194614 PMCID: PMC6361050 DOI: 10.1007/s13311-018-0660-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Loss of vision alters the day to day life of blind individuals and may impose a significant burden on their family and the economy. Cortical visual prosthetics have been shown to have the potential of restoring a useful degree of vision via stimulation of primary visual cortex. Due to current advances in electrode design and wireless power and data transmission, development of these prosthetics has gained momentum in the past few years and multiple sites around the world are currently developing and testing their designs. In this review, we briefly outline the visual prosthetic approaches and describe the history of cortical visual prosthetics. Next, we focus on the state of the art of cortical visual prosthesis by briefly explaining the design of current devices that are either under development or in the clinical testing phase. Lastly, we shed light on the challenges of each design and provide some potential solutions.
Collapse
Affiliation(s)
- Soroush Niketeghad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Fernandez E. Development of visual Neuroprostheses: trends and challenges. Bioelectron Med 2018; 4:12. [PMID: 32232088 PMCID: PMC7098238 DOI: 10.1186/s42234-018-0013-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Visual prostheses are implantable medical devices that are able to provide some degree of vision to individuals who are blind. This research field is a challenging subject in both ophthalmology and basic science that has progressed to a point where there are already several commercially available devices. However, at present, these devices are only able to restore a very limited vision, with relatively low spatial resolution. Furthermore, there are still many other open scientific and technical challenges that need to be solved to achieve the therapeutic benefits envisioned by these new technologies. This paper provides a brief overview of significant developments in this field and introduces some of the technical and biological challenges that still need to be overcome to optimize their therapeutic success, including long-term viability and biocompatibility of stimulating electrodes, the selection of appropriate patients for each artificial vision approach, a better understanding of brain plasticity and the development of rehabilitative strategies specifically tailored for each patient.
Collapse
Affiliation(s)
- Eduardo Fernandez
- Institute of Bioengineering, University Miguel Hernández and CIBER-BBN, Avda de la Universidad, s/n, 03202 Alicante, Elche Spain.,2John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| |
Collapse
|
5
|
Abstract
Sensory neuroprostheses for restoration of vision are a technical approach for treatment of previously untreatable blindness. These systems consist of a technical sensor such as a camera and an implanted multi-electrode array within the visual system. The image information from the sensor is processed with specially designed integrated circuits in such a way that the stimulation pulses can be determined and presented to the implanted multi-electrode matrix. Energy supply and the transfer of the stimulus pulse information is realized either via direct cable connections within the site of the implant or by telemetric inductive links. Currently, two retinal implant systems are approved in the European Union (EU) to be used in blind patients with retinitis pigmentosa. With both systems basic visual functions can be restored. The complication rate is relatively low given the complexity of the surgical procedure. Other systems are still under development but approval studies by several manufacturers and consortia are already in preparation.
Collapse
Affiliation(s)
- P Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
6
|
Walter P. Sehprothesen. SPEKTRUM DER AUGENHEILKUNDE 2016. [DOI: 10.1007/s00717-016-0299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Fine I, Boynton GM. Pulse trains to percepts: the challenge of creating a perceptually intelligible world with sight recovery technologies. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140208. [PMID: 26240423 PMCID: PMC4528820 DOI: 10.1098/rstb.2014.0208] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 11/12/2022] Open
Abstract
An extraordinary variety of sight recovery therapies are either about to begin clinical trials, have begun clinical trials, or are currently being implanted in patients. However, as yet we have little insight into the perceptual experience likely to be produced by these implants. This review focuses on methodologies, such as optogenetics, small molecule photoswitches and electrical prostheses, which use artificial stimulation of the retina to elicit percepts. For each of these technologies, the interplay between the stimulating technology and the underlying neurophysiology is likely to result in distortions of the perceptual experience. Here, we describe some of these potential distortions and discuss how they might be minimized either through changes in the encoding model or through cortical plasticity.
Collapse
Affiliation(s)
- Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
8
|
Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, Groppe M, Jackson TL, MacLaren RE, Koitschev A, Kusnyerik A, Neffendorf J, Nemeth J, Naeem MAN, Peters T, Ramsden JD, Sachs H, Simpson A, Singh MS, Wilhelm B, Wong D, Zrenner E. Subretinal Visual Implant Alpha IMS--Clinical trial interim report. Vision Res 2015; 111:149-60. [PMID: 25812924 DOI: 10.1016/j.visres.2015.03.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
A subretinal visual implant (Alpha IMS, Retina Implant AG, Reutlingen, Germany) was implanted in 29 blind participants with outer retinal degeneration in an international multicenter clinical trial. Primary efficacy endpoints of the study protocol were a significant improvement of activities of daily living and mobility to be assessed by activities of daily living tasks, recognition tasks, mobility, or a combination thereof. Secondary efficacy endpoints were a significant improvement of visual acuity/light perception and/or object recognition (clinicaltrials.gov, NCT01024803). During up to 12 months observation time twenty-one participants (72%) reached the primary endpoints, of which thirteen participants (45%) reported restoration of visual function which they use in daily life. Additionally, detection, localization, and identification of objects were significantly better with the implant power switched on in the first 3 months. Twenty-five participants (86%) reached the secondary endpoints. Measurable grating acuity was up to 3.3 cycles per degree, visual acuities using standardized Landolt C-rings were 20/2000, 20/2000, 20/606 and 20/546. Maximal correct motion perception ranged from 3 to 35 degrees per second. These results show that subretinal implants can restore very-low-vision or low vision in blind (light perception or less) patients with end-stage hereditary retinal degenerations.
Collapse
Affiliation(s)
- Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | | | - Dorothea Besch
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | - Caroline K Chee
- Department of Ophthalmology, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Charles L Cottriall
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Florian Gekeler
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany; Klinikum Stuttgart - Katharinenhospital, Eye Clinic, Kriegsbergstraße 60, 70174 Stuttgart, Germany(1)
| | - Markus Groppe
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Timothy L Jackson
- King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Robert E MacLaren
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Assen Koitschev
- Klinikum Stuttgart - Olgahospital, ORL-Department, Pediatric Otorhinolaryngology and Otology, Kriegsbergstr. 62, 70176 Stuttgart, Germany
| | - Akos Kusnyerik
- Department of Ophthalmology, Semmelweis University, Maria utca 39, H-1085 Budapest, Hungary
| | - James Neffendorf
- King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Janos Nemeth
- Department of Ophthalmology, Semmelweis University, Maria utca 39, H-1085 Budapest, Hungary
| | - Mohamed Adheem Naser Naeem
- Department of Ophthalmology, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Tobias Peters
- STZ Eyetrial, Center for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | - James D Ramsden
- Department of Otolaryngology, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, United Kingdom
| | - Helmut Sachs
- Klinikum Dresden Friedrichstadt, Univ. Teaching Hospital, Eye Clinic, Friedrichstr. 41, 01067 Dresden, Germany
| | - Andrew Simpson
- King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Mandeep S Singh
- Department of Ophthalmology, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Barbara Wilhelm
- STZ Eyetrial, Center for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | - David Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, 301 Block B, Cyberport 4, Hong Kong
| | - Eberhart Zrenner
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany; Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Kitiratschky VBD, Stingl K, Wilhelm B, Peters T, Besch D, Sachs H, Gekeler F, Bartz-Schmidt KU, Zrenner E. Safety evaluation of "retina implant alpha IMS"--a prospective clinical trial. Graefes Arch Clin Exp Ophthalmol 2014; 253:381-7. [PMID: 25219982 DOI: 10.1007/s00417-014-2797-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To restore vision in patients with retinitis pigmentosa, several types of electronic devices have been developed to stimulate neurons at different levels along the visual pathway. Subretinal stimulation of the retina with the Retina Implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) has been demonstrated to provide useful vision in daily life. Here we evaluated the safety of this device. METHODS An interventional, prospective, multi-center, single-arm study was conducted in patients with retinitis pigmentosa with the Retina Implant Alpha IMS. The results from the first nine patients of a single center regarding safety of the device are reported. Any untoward medical occurrence related or unrelated to the tested device was documented and evaluated. RESULTS Nine adult subjects were included in the study at the Tübingen site. Seventy-five adverse events occurred in total, and 53 affected the eye and its adnexa. Thirty-one ocular adverse events had a relationship to the implant that was classified as "certain" while 19 had a probable or possible relationship; three had no relationship to the implant. Thirty-nine ocular adverse events resolved without sequelae, two resolved with sequelae, 11 remained unresolved, and in one the status was unknown. The intensity of ocular adverse events was mild in the majority of cases (n = 45), while six were of moderate and two of severe intensity. There was no non-ocular adverse event with certain relationship to the device. One subject lost light perception (without light localization) in her study eye. CONCLUSIONS In conclusion, this prospective study, "Safety and Efficacy of Subretinal Implants for Partial Restoration of Vision in Blind Patients," shows that the Retina Implant Alpha IMS is an option for restoring vision using a subretinal stimulation device with a clinically acceptable safety profile.
Collapse
|
10
|
Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hörtdörfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 2013; 280:20130077. [PMID: 23427175 PMCID: PMC3619489 DOI: 10.1098/rspb.2013.0077] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study aims at substituting the essential functions of photoreceptors in patients who are blind owing to untreatable forms of hereditary retinal degenerations. A microelectronic neuroprosthetic device, powered via transdermal inductive transmission, carrying 1500 independent microphotodiode-amplifier-electrode elements on a 9 mm2 chip, was subretinally implanted in nine blind patients. Light perception (8/9), light localization (7/9), motion detection (5/9, angular speed up to 35 deg s−1), grating acuity measurement (6/9, up to 3.3 cycles per degree) and visual acuity measurement with Landolt C-rings (2/9) up to Snellen visual acuity of 20/546 (corresponding to decimal 0.037 or corresponding to 1.43 logMAR (minimum angle of resolution)) were restored via the subretinal implant. Additionally, the identification, localization and discrimination of objects improved significantly (n = 8; p < 0.05 for each subtest) in repeated tests over a nine-month period. Three subjects were able to read letters spontaneously and one subject was able to read letters after training in an alternative-force choice test. Five subjects reported implant-mediated visual perceptions in daily life within a field of 15° of visual angle. Control tests were performed each time with the implant's power source switched off. These data show that subretinal implants can restore visual functions that are useful for daily life.
Collapse
Affiliation(s)
- Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, Schleichstraße 12-16, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stingl K, Zrenner E. Electronic Approaches to Restitute Vision in Patients with Neurodegenerative Diseases of the Retina. Ophthalmic Res 2013; 50:215-20. [DOI: 10.1159/000354424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022]
|
12
|
Stingl K, Bach M, Bartz-Schmidt KU, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hörtdörfer G, Kusnyerik A, Peters T, Wilhelm B, Wilke R, Zrenner E. Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin Exp Optom 2012; 96:4-13. [PMID: 23173814 DOI: 10.1111/j.1444-0938.2012.00816.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/24/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Replacing the function of visual pathway neurons by electronic implants is a novel approach presently explored by various groups in basic research and clinical trials. The novelty raises unexplored methodological aspects of clinical trial design that may require adaptation and validation. METHODS We present procedures of efficacy and safety testing for subretinal visual implants in humans, as developed during our pilot trial 2005 to 2009 and multi-centre clinical trial since 2010. RESULTS Planning such a trial requires appropriate inclusion and exclusion criteria. For subretinal electronic visual implants, patients with photoreceptor degeneration are the target patient group, whereas presence of additional diseases affecting clear optic media or the visual pathway must be excluded. Because sham surgery is not possible, a masked study design with implant power ON versus OFF is necessary. Prior to the efficacy testing by psychophysical tests, the implant's technical characteristics have to be controlled via electroretinography (ERG). Moreover the testing methods require adaptation to the particular technology. We recommend standardised tasks first to determine the light perception thresholds, light localisation and movement detection, followed by grating acuity and vision acuity test via Landolt C rings. A laboratory setup for assessing essential activities of daily living is presented. Subjective visual experiences with the implant in a natural environment, as well as questionnaires and psychological counselling are further important aspects. CONCLUSIONS A clinical trial protocol for artificial vision in humans, which leads a patient from blindness to the state of very low vision is a challenge and cannot be defined completely prior to the study. Available tests of visual function may not be sufficiently suited for efficacy testing of artificial vision devices. A protocol based on experience with subretinal visual implants in 22 patients is presented that has been found adequate to monitor safety and efficacy.
Collapse
Affiliation(s)
- Katarina Stingl
- Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|