1
|
Römer H. Directional hearing in insects: biophysical, physiological and ecological challenges. ACTA ACUST UNITED AC 2020; 223:223/14/jeb203224. [PMID: 32737067 DOI: 10.1242/jeb.203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
2
|
Ronacher B. Innate releasing mechanisms and fixed action patterns: basic ethological concepts as drivers for neuroethological studies on acoustic communication in Orthoptera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:33-50. [PMID: 30617601 PMCID: PMC6394777 DOI: 10.1007/s00359-018-01311-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
This review addresses the history of neuroethological studies on acoustic communication in insects. One objective is to reveal how basic ethological concepts developed in the 1930s, such as innate releasing mechanisms and fixed action patterns, have influenced the experimental and theoretical approaches to studying acoustic communication systems in Orthopteran insects. The idea of innateness of behaviors has directly fostered the search for central pattern generators that govern the stridulation patterns of crickets, katydids or grasshoppers. A central question pervading 50 years of research is how the essential match between signal features and receiver characteristics has evolved and is maintained during evolution. As in other disciplines, the tight interplay between technological developments and experimental and theoretical advances becomes evident throughout this review. While early neuroethological studies focused primarily on proximate questions such as the implementation of feature detectors or central pattern generators, later the interest shifted more towards ultimate questions. Orthoptera offer the advantage that both proximate and ultimate questions can be tackled in the same system. An important advance was the transition from laboratory studies under well-defined acoustic conditions to field studies that allowed to measure costs and benefits of acoustic signaling as well as constraints on song evolution.
Collapse
Affiliation(s)
- Bernhard Ronacher
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 18, 10099, Berlin, Germany.
| |
Collapse
|
3
|
Reichert MS, Ronacher B. Temporal integration of conflicting directional cues in sound localization. J Exp Biol 2019; 222:jeb.208751. [DOI: 10.1242/jeb.208751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023]
Abstract
Sound localization is fundamental to hearing. In nature, sound degradation and noise erode directional cues and can generate conflicting directional perceptions across different subcomponents of sounds. Little is known about how sound localization is achieved in the face of conflicting directional cues in non-human animals, although this is relevant for many species in which sound localization in noisy conditions mediates mate finding or predator avoidance. We studied the effects of conflicting directional cues in male grasshoppers, Chorthippus biguttulus, which orient towards signaling females. We presented playbacks varying in the number and temporal position of song syllables providing directional cues in the form of either time or amplitude differences between two speakers. Males oriented towards the speaker broadcasting a greater number of leading or louder syllables. For a given number of syllables providing directional information, syllables with timing differences at the song's beginning were weighted most heavily, while syllables with intensity differences were weighted most heavily when they were in the middle of the song. When timing and intensity cues conflicted, the magnitude and temporal position of each cue determined their relative influence on lateralization, and males sometimes quickly corrected their directional responses. We discuss our findings with respect to similar results from humans.
Collapse
Affiliation(s)
- Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078 USA
- Institut für Biologie, Abteilung Verhaltensphysiologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 18, 10099 Berlin, Germany
| | - Bernhard Ronacher
- Institut für Biologie, Abteilung Verhaltensphysiologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 18, 10099 Berlin, Germany
| |
Collapse
|
4
|
Robustness of an innate releasing mechanism against degradation of acoustic communication signals in the grasshopper Chorthippus biguttulus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:319-328. [PMID: 29294159 DOI: 10.1007/s00359-017-1243-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Noise is a challenge for animals that use acoustic communication to find a mate. A potent source of noise in animal communication is that arising from other conspecific signals, whose co-occurrence can result in extensive interference-evident as the so called "cocktail-party problem"-that may affect the receiver mechanisms to detect potential mates. We studied grasshopper females to explore how modifications of the song pattern influence song recognition. First, we degraded an attractive model song with random fluctuations of increasing amplitudes out of different frequency bands, and determined "critical degradation levels" at which the females ceased to respond. A masker band with frequencies between 0 and 200 Hz, which covers the frequency range of the natural song envelope, was by 3-5 dB more destructive in hampering signal recognition than frequencies above 200 Hz. As second approach, we applied temporal disturbances such as accentuations or gaps at different positions within the song subunits and observed how response behavior was affected. Accentuations at subunit start increased, whereas those in the midst or at the end of a subunit reduced attractiveness. Gaps at these positions had diverse effects. The results are discussed with respect to neuronal filtering.
Collapse
|
5
|
Eberhard MJB, Schleimer JH, Schreiber S, Ronacher B. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses. J Neurophysiol 2015; 114:1424-37. [PMID: 26041833 DOI: 10.1152/jn.00980.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/03/2015] [Indexed: 11/22/2022] Open
Abstract
The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures.
Collapse
Affiliation(s)
- Monika J B Eberhard
- Department of Biology, Behavioural Physiology Group, Humboldt-Universität zu Berlin, Berlin, Germany;
| | - Jan-Hendrik Schleimer
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany; and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Susanne Schreiber
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany; and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Bernhard Ronacher
- Department of Biology, Behavioural Physiology Group, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
6
|
Reichert MS, Ronacher B. Noise affects the shape of female preference functions for acoustic signals. Evolution 2015; 69:381-94. [DOI: 10.1111/evo.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/12/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Michael S. Reichert
- Department of Biology; Humboldt-Universität zu Berlin; Invalidenstrasse 43 10115 Berlin Germany
| | - Bernhard Ronacher
- Department of Biology; Humboldt-Universität zu Berlin; Invalidenstrasse 43 10115 Berlin Germany
| |
Collapse
|
7
|
Meckenhäuser G, Krämer S, Farkhooi F, Ronacher B, Nawrot MP. Neural representation of calling songs and their behavioral relevance in the grasshopper auditory system. Front Syst Neurosci 2014; 8:183. [PMID: 25565983 PMCID: PMC4271601 DOI: 10.3389/fnsys.2014.00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022] Open
Abstract
Acoustic communication plays a key role for mate attraction in grasshoppers. Males use songs to advertise themselves to females. Females evaluate the song pattern, a repetitive structure of sound syllables separated by short pauses, to recognize a conspecific male and as proxy to its fitness. In their natural habitat females often receive songs with degraded temporal structure. Perturbations may, for example, result from the overlap with other songs. We studied the response behavior of females to songs that show different signal degradations. A perturbation of an otherwise attractive song at later positions in the syllable diminished the behavioral response, whereas the same perturbation at the onset of a syllable did not affect song attractiveness. We applied naïve Bayes classifiers to the spike trains of identified neurons in the auditory pathway to explore how sensory evidence about the acoustic stimulus and its attractiveness is represented in the neuronal responses. We find that populations of three or more neurons were sufficient to reliably decode the acoustic stimulus and to predict its behavioral relevance from the single-trial integrated firing rate. A simple model of decision making simulates the female response behavior. It computes for each syllable the likelihood for the presence of an attractive song pattern as evidenced by the population firing rate. Integration across syllables allows the likelihood to reach a decision threshold and to elicit the behavioral response. The close match between model performance and animal behavior shows that a spike rate code is sufficient to enable song pattern recognition.
Collapse
Affiliation(s)
- Gundula Meckenhäuser
- Neuroinformatics and Theoretical Neuroscience, Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | - Stefanie Krämer
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | - Farzad Farkhooi
- Neuroinformatics and Theoretical Neuroscience, Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin Berlin, Germany ; Bernstein Center for Computational Neuroscience Berlin, Germany
| | - Bernhard Ronacher
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | - Martin P Nawrot
- Bernstein Center for Computational Neuroscience Berlin, Germany
| |
Collapse
|
8
|
Asymmetrical integration of sensory information during mating decisions in grasshoppers. Proc Natl Acad Sci U S A 2014; 111:16562-7. [PMID: 25368152 DOI: 10.1073/pnas.1412741111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decision-making processes, like all traits of an organism, are shaped by evolution; they thus carry a signature of the selection pressures associated with choice behaviors. The way sexual communication signals are integrated during courtship likely reflects the costs and benefits associated with mate choice. Here, we study the evaluation of male song by females during acoustic courtship in grasshoppers. Using playback experiments and computational modeling we find that information of different valence (attractive vs. nonattractive) is weighted asymmetrically: while information associated with nonattractive features has large weight, attractive features add little to the decision to mate. Accordingly, nonattractive features effectively veto female responses. Because attractive features have so little weight, the model suggests that female responses are frequently driven by integration noise. Asymmetrical weighting of negative and positive information may reflect the fitness costs associated with mating with a nonattractive over an attractive singer, which are also highly asymmetrical. In addition, nonattractive cues tend to be more salient and therefore more reliable. Hence, information provided by them should be weighted more heavily. Our findings suggest that characterizing the integration of sensory information during a natural behavior has the potential to provide valuable insights into the selective pressures shaping decision-making during evolution.
Collapse
|
9
|
Computational themes of peripheral processing in the auditory pathway of insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:39-50. [PMID: 25358727 DOI: 10.1007/s00359-014-0956-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022]
Abstract
Hearing in insects serves to gain information in the context of mate finding, predator avoidance or host localization. For these goals, the auditory pathways of insects represent the computational substrate for object recognition and localization. Before these higher level computations can be executed in more central parts of the nervous system, the signals need to be preprocessed in the auditory periphery. Here, we review peripheral preprocessing along four computational themes rather than discussing specific physiological mechanisms: (1) control of sensitivity by adaptation, (2) recoding of amplitude modulations of an acoustic signal into a labeled-line code (3) frequency processing and (4) conditioning for binaural processing. Along these lines, we review evidence for canonical computations carried out in the peripheral auditory pathway and show that despite the vast diversity of insect hearing, signal processing is governed by common computational motifs and principles.
Collapse
|
10
|
Computational principles underlying recognition of acoustic signals in grasshoppers and crickets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:61-71. [PMID: 25258206 DOI: 10.1007/s00359-014-0946-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.
Collapse
|
11
|
Hildebrandt KJ. Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 2013; 24:82-7. [PMID: 24492083 DOI: 10.1016/j.conb.2013.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022]
Abstract
The convergent evolution of hearing in insects and vertebrates raises the question about similarity of the central representation of sound in these distant animal groups. Topographic representations of spectral, spatial and temporal cues have been widely described in mammals, but evidence for such maps is scarce in insects. Recent data on insect sound encoding provides evidence for an early integration of sound parameters to form highly-specific representation that predict behavioral output. In mammals, new studies investigating neural representation of perceptual features in behaving animals allow asking similar questions. A comparative approach may help in understanding principles underlying the formation of perceptual categories and behavioral plasticity.
Collapse
Affiliation(s)
- K Jannis Hildebrandt
- Cluster of Excellence "Hearing4all", University of Oldenburg, Germany; Auditory Neuroscience Group, Department of Neuroscience, University of Oldenburg, Germany.
| |
Collapse
|
12
|
Warzecha AK, Rosner R, Grewe J. Impact and sources of neuronal variability in the fly's motion vision pathway. ACTA ACUST UNITED AC 2012. [PMID: 23178476 DOI: 10.1016/j.jphysparis.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nervous systems encode information about dynamically changing sensory input by changes in neuronal activity. Neuronal activity changes, however, also arise from noise sources within and outside the nervous system or from changes of the animal's behavioral state. The resulting variability of neuronal responses in representing sensory stimuli limits the reliability with which animals can respond to stimuli and may thus even affect the chances for survival in certain situations. Relevant sources of noise arising at different stages along the motion vision pathway have been investigated from the sensory input to the initiation of behavioral reactions. Here, we concentrate on the reliability of processing visual motion information in flies. Flies rely on visual motion information to guide their locomotion. They are among the best established model systems for the processing of visual motion information allowing us to bridge the gap between behavioral performance and underlying neuronal computations. It has been possible to directly assess the consequences of noise at major stages of the fly's visual motion processing system on the reliability of neuronal signals. Responses of motion sensitive neurons and their variability have been related to optomotor movements as indicators for the overall performance of visual motion computation. We address whether and how noise already inherent in the stimulus, e.g. photon noise for the visual system, influences later processing stages and to what extent variability at the output level of the sensory system limits behavioral performance. Recent advances in circuit analysis and the progress in monitoring neuronal activity in behaving animals should now be applied to understand how the animal meets the requirements of fast and reliable manoeuvres in naturalistic situations.
Collapse
Affiliation(s)
| | - Ronny Rosner
- Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Jan Grewe
- Dept. Biology II, Ludwig-Maximilians Univ., 82152 Martinsried, Germany
| |
Collapse
|
13
|
Ronacher B, Stange N. Processing of acoustic signals in grasshoppers - a neuroethological approach towards female choice. ACTA ACUST UNITED AC 2012; 107:41-50. [PMID: 22728472 DOI: 10.1016/j.jphysparis.2012.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
Abstract
Acoustic communication is a major factor for mate attraction in many grasshopper species and thus plays a vital role in a grasshopper's life. First of all, the recognition of the species-specific sound patterns is crucial for preventing hybridization with other species, which would result in a drastic fitness loss. In addition, there is evidence that females are choosy with respect to conspecific males and prefer or reject the songs of some individuals, thereby exerting a sexual selection on males. Remarkably, the preferences of females are preserved even under masking noise. To discriminate between the basically similar signals of conspecifics is obviously a challenge for small nervous systems. We therefore ask how the acoustic signals are processed and represented in the grasshopper's nervous system, to allow for a fine discrimination and assessment of individual songs. The discrimination of similar signals may be impeded not only by signal masking due to external noise sources, but also by intrinsic noise due to the inherent variability of spike trains. Using a spike train metric we could estimate how well, in principle, the songs of different individuals can be discriminated on the basis of neuronal responses, and found a remarkable potential for discrimination performance at the first stage, but not on higher stages of the auditory pathway. Next, we ask which benefits a grasshopper female may earn from being choosy. New results, which revealed correlations between specific song features and the size and immunocompetence of the males, suggest that females may derive from acoustic signals clues about condition and health of the sending male. However, we observed substantial differences between the preference functions of individual females and it may be particularly rewarding to relate the variations in female preferences to individual differences in the responses of identified neurons.
Collapse
Affiliation(s)
| | - Nicole Stange
- Humboldt-Universität zu Berlin, Department of Biology, Germany
| |
Collapse
|
14
|
Neuhofer D, Ronacher B. Influence of different envelope maskers on signal recognition and neuronal representation in the auditory system of a grasshopper. PLoS One 2012; 7:e34384. [PMID: 22479619 PMCID: PMC3316687 DOI: 10.1371/journal.pone.0034384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/01/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Animals that communicate by sound face the problem that the signals arriving at the receiver often are degraded and masked by noise. Frequency filters in the receiver's auditory system may improve the signal-to-noise ratio (SNR) by excluding parts of the spectrum which are not occupied by the species-specific signals. This solution, however, is hardly amenable to species that produce broad band signals or have ears with broad frequency tuning. In mammals auditory filters exist that work in the temporal domain of amplitude modulations (AM). Do insects also use this type of filtering? PRINCIPAL FINDINGS Combining behavioural and neurophysiological experiments we investigated whether AM filters may improve the recognition of masked communication signals in grasshoppers. The AM pattern of the sound, its envelope, is crucial for signal recognition in these animals. We degraded the species-specific song by adding random fluctuations to its envelope. Six noise bands were used that differed in their overlap with the spectral content of the song envelope. If AM filters contribute to reduced masking, signal recognition should depend on the degree of overlap between the song envelope spectrum and the noise spectra. Contrary to this prediction, the resistance against signal degradation was the same for five of six masker bands. Most remarkably, the band with the strongest frequency overlap to the natural song envelope (0-100 Hz) impaired acceptance of degraded signals the least. To assess the noise filter capacities of single auditory neurons, the changes of spike trains as a function of the masking level were assessed. Increasing levels of signal degradation in different frequency bands led to similar changes in the spike trains in most neurones. CONCLUSIONS There is no indication that auditory neurones of grasshoppers are specialized to improve the SNR with respect to the pattern of amplitude modulations.
Collapse
Affiliation(s)
- Daniela Neuhofer
- Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | |
Collapse
|
15
|
Rosner R, Warzecha AK. Relating neuronal to behavioral performance: variability of optomotor responses in the blowfly. PLoS One 2011; 6:e26886. [PMID: 22066014 PMCID: PMC3204977 DOI: 10.1371/journal.pone.0026886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system.
Collapse
Affiliation(s)
- Ronny Rosner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|