1
|
Lynn KD, Quintanilla-Ahumada D, Duarte C, Quijón PA. Artificial light at night alters the feeding activity and two molecular indicators in the plumose sea anemone Metridium senile (L.). MARINE POLLUTION BULLETIN 2024; 202:116352. [PMID: 38604080 DOI: 10.1016/j.marpolbul.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.
Collapse
Affiliation(s)
- K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| |
Collapse
|
2
|
Ugolini A, Hariyama T, Wilcockson DC, Mercatelli L. The use of polarized light in the zonal orientation of the sandhopper Talitrus saltator (Montagu). ZOOLOGICAL LETTERS 2023; 9:10. [PMID: 37202801 DOI: 10.1186/s40851-023-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
It is well known that the celestial polarization is used as a compass cue by many species of insects and crustaceans. Although it has been shown that the sandhopper Talitrus saltator perceives polarized light and possesses an arrangement of the rhabdomeres that could allow e-vector interpretation and utilization, T. saltator does not use the e-vector of the skylight polarization as a compass cue when making excursions along the sea-land axis of sandy shores. We performed tests in confined conditions to clarify if skylight polarization is somehow involved in the zonal recovery of T. saltator. We observed the directional responses of sandhoppers in a transparent bowl under an artificial sky (an opaline Plexiglas dome). The bowl was covered by a blue gelatin filter with a grey filter (control condition) and a linear polarizing filter (experimental conditions) positioned under the blue one in such a way as to occupy half of the upper surface of the Plexiglas bowl so as to create a linear polarization gradient. Our experiments confirm that T. saltator perceives polarized light and highlight that this visual capability determines the perception, or perhaps the increase, of the radiance and/or spectral gradient and their use as compass cues in the zonal orientation. Moreover, our findings confirm that the radiance gradient is used as a chronometric compass orienting reference in the absence of other celestial orienting cues.
Collapse
Affiliation(s)
- Alberto Ugolini
- Dipartimento Di Biologia, Università Di Firenze, Via Romana 17-19, 50125, Florence, Italy.
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University, School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - David C Wilcockson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK
| | - Luca Mercatelli
- Istituto Nazionale di Ottica - CNR, Largo E. Fermi 6, 50125, Florence, Italy
| |
Collapse
|
3
|
Orford JT, Tan H, Tingley R, Alton LA, Wong BBM, Martin JM. Bigger and bolder: Widespread agricultural pollutant 17β-trenbolone increases growth and alters behaviour in tadpoles (Litoria ewingii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106577. [PMID: 37207487 DOI: 10.1016/j.aquatox.2023.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Endocrine-disrupting chemicals-compounds that directly interfere with the endocrine system of exposed animals-are insidious environmental pollutants that can disrupt hormone function, even at very low concentrations. The dramatic impacts that some endocrine-disrupting chemicals can have on the reproductive development of wildlife are well documented. However, the potential of endocrine-disrupting chemicals to disrupt animal behaviour has received far less attention, despite the important links between behavioural processes and population-level fitness. Accordingly, we investigated the impacts of 14 and 21-day exposure to two environmentally realistic levels of 17β-trenbolone (4.6 and 11.2 ng/L), a potent endocrine-disrupting steroid and agricultural pollutant, on growth and behaviour in tadpoles of an anuran amphibian, the southern brown tree frog (Litoria ewingii). We found that 17β-trenbolone altered morphology, baseline activity and responses to a predatory threat, but did not affect anxiety-like behaviours in a scototaxis assay. Specifically, we found that tadpoles exposed to our high-17β-trenbolone treatment were significantly longer and heavier at 14 and 21 days. We also found that tadpoles exposed to 17β-trenbolone showed higher levels of baseline activity, and significantly reduced their activity following a simulated predator strike. These results provide insights into the wider repercussions of agricultural pollutants on key developmental and behavioural traits in aquatic species, and demonstrate the importance of behavioural studies in the ecotoxicological field.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia.
| | - Hung Tan
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; EnviroDNA, Victoria, Melbourne, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; Centre for Geometric Biology, Monash University, Victoria, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish Universityof Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Lynn KD, Quintanilla-Ahumada D, Duarte C, Quijón PA. Hemocyanin as a biological indicator of artificial light at night stress in sandy beach amphipods. MARINE POLLUTION BULLETIN 2022; 184:114147. [PMID: 36152494 DOI: 10.1016/j.marpolbul.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The influence of artificial light at night (ALAN) is becoming evident in marine sandy beaches. These habitats are dominated by species reliant on natural daylight/night regimes, making the identification of biological indicators a priority. We assessed the applicability of hemocyanin, an oxygen-transport protein in the hemolymph of many invertebrates, as an indicator of ALAN-related stress. Unlike total proteins, hemocyanins signal metabolic function and stress, so we expected them to increase in response to ALAN. We adapted spectrophotometry protocols to describe spatial variation in hemocyanins and total proteins in four populations of the talitroid amphipod Americorchestia longicornis. Then, a two-week experiment tested for changes in response to ALAN. Hemocyanin levels increased by 17 % and 40 % with respect to experimental controls after 7 and 14 d, respectively, and were higher than any measurements conducted in the field. These results suggest good prospects for hemocyanin as an indicator of ALAN effects.
Collapse
Affiliation(s)
- K Devon Lynn
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada
| | - Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Duarte
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada.
| |
Collapse
|
5
|
Paris M, Wolff C, Patel NH, Averof M. The crustacean model Parhyale hawaiensis. Curr Top Dev Biol 2022; 147:199-230. [PMID: 35337450 DOI: 10.1016/bs.ctdb.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.
Collapse
Affiliation(s)
- Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France
| | - Carsten Wolff
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, United States; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France.
| |
Collapse
|
6
|
Manríquez K, Quijón PA, Manríquez PH, Miranda C, Pulgar J, Quintanilla-Ahumada D, Duarte C. Artificial Light at Night (ALAN) negatively affects the settlement success of two prominent intertidal barnacles in the southeast Pacific. MARINE POLLUTION BULLETIN 2021; 168:112416. [PMID: 33957496 DOI: 10.1016/j.marpolbul.2021.112416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Many coastal processes are regulated by day/night cycles and are expected to be altered by Artificial Light at Night (ALAN). The goal of this study was to assess the influence of ALAN on the settlement rates of intertidal barnacles. A newly designed settlement plate equipped with a small central LED light source was used to quantify settlement rates in presence/absence of ALAN conditions. "ALAN plates" as well as regular settlement plates were deployed in the mid rocky intertidal zone. Both ALAN and control plates collected early and late settlers of the barnacles Notochthamalus scabrosus and Jehlius cirratus. Early settlers (pre-metamorphosis cyprids) were not affected by ALAN. By contrast, the density of late settlers (post-metamorphosis spats) was significantly lower in ALAN than in control plates for both species, suggesting detrimental ALAN impacts on the settlement process. The new ALAN plates represent an attractive and alternative methodology to study ALAN effects.
Collapse
Affiliation(s)
- Karen Manríquez
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Cristian Miranda
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
7
|
Lynn KD, Tummon Flynn P, Manríquez K, Manríquez PH, Pulgar J, Duarte C, Quijón PA. Artificial light at night alters the settlement of acorn barnacles on a man-made habitat in Atlantic Canada. MARINE POLLUTION BULLETIN 2021; 163:111928. [PMID: 33418341 DOI: 10.1016/j.marpolbul.2020.111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Human growth has caused an unprecedented increase in artificial light at night (ALAN). In coastal habitats, many species rely on day/night cycles to regulate various aspects of their life history and these cycles can be altered by this stressor. This study assessed the influence of ALAN on the early (cyprid) and late (spat) settlement stages of the acorn barnacle Semibalanus balanoides, a species widely distributed in natural and man-made coastal habitats of the North Atlantic. A newly designed settlement plate, originally for studies in rocky intertidal habitats in the southeast Pacific, was adapted to measure settlement rates on man-made habitats -wharf seawalls- located in Atlantic Canada. Plates equipped with a small LED diode powered by an internal battery (ALAN plates) were used to quantify settlement rates in comparison to plates lacking a light source (controls). These plates were deployed for 6 d in the mid-intertidal levels, where adult barnacles were readily visible. ALAN and control plates collected large number of settlers and showed to be suitable for this type of man-made habitats. The number of early settlers (cyprids) did not differ between plates but the number of late settlers (spat) was significantly lower in ALAN plates than in controls. These results suggest that light pollution has little influence on the early stages of the acorn barnacle settlement but is clearly detrimental to its late stages. As barnacles dominate in many natural and man-made hard substrates, it is likely that ALAN also has indirect effects on community structure.
Collapse
Affiliation(s)
- K Devon Lynn
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Paula Tummon Flynn
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Karen Manríquez
- Departamento de Ecología y Biodiversidad, Universidad Andres Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andres Bello, Santiago, Chile
| | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Universidad Andres Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay, CIMARQ, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| |
Collapse
|
8
|
El Gtari M, Bourigua N, Bouslama MF, Charfi-Cheikhrouha F, Scapini F. Experimental Change of the Orientation of Two Populations ofTalitrus saltator(Crustacea Amphipoda Talitridae) from Cap Bon (North-Eastern Tunisia). Ethology 2014. [DOI: 10.1111/eth.12289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamed El Gtari
- Unité de recherche Bio-Ecologie et Systématique Evolutive; Département de Biologie; Faculté des Sciences de Tunis; Université Tunis El Manar; Tunis Tunisia
- Institut Supérieur de Pêche et d'Aquaculture de Bizerte; Université Carthage; Menzel Jemil Tunisia
| | - Nawzet Bourigua
- Unité de recherche Bio-Ecologie et Systématique Evolutive; Département de Biologie; Faculté des Sciences de Tunis; Université Tunis El Manar; Tunis Tunisia
- Unité de Biologie marine; Faculté des Sciences de Tunis; Tunis Tunisia
| | - Mohamed Fadhel Bouslama
- Unité de recherche Bio-Ecologie et Systématique Evolutive; Département de Biologie; Faculté des Sciences de Tunis; Université Tunis El Manar; Tunis Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis; Tunis Tunisia
| | - Faouzia Charfi-Cheikhrouha
- Unité de recherche Bio-Ecologie et Systématique Evolutive; Département de Biologie; Faculté des Sciences de Tunis; Université Tunis El Manar; Tunis Tunisia
| | | |
Collapse
|