1
|
Gray DA. Sexual selection and 'species recognition' revisited: serial processing and order-of-operations in mate choice. Proc Biol Sci 2022; 289:20212687. [PMID: 35317675 PMCID: PMC8941403 DOI: 10.1098/rspb.2021.2687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following the modern synthesis, mating signals were thought of principally as species recognition traits, a view later challenged by a burgeoning interest in sexual selection-specifically mate choice. In the 1990s, these different signal functions were proposed to represent a single process driven by the shape of female preference functions across both intra- and interspecific signal space. However, the properties of reliable 'recognition' signals (stereotyped; low intraspecific variation) and informative 'quality' signals (condition dependent; high intraspecific variation) seem at odds, perhaps favouring different signal components for different functions. Surprisingly, the idea that different components of mating signals are evaluated in series, first to recognize generally compatible mates and then to select for quality, has never been explicitly tested. Here I evaluate patterns of (i) intraspecific signal variation, (ii) female preference function shape and (iii) phylogenetic signal for male cricket call components known to be processed in series. The results show that signal components processed first tend to have low variation, closed preference functions and low phylogenetic signal, whereas signal components processed later show the opposite, suggesting that mating signal evaluation follows an 'order-of-operations'. Applicability of this finding to diverse groups of organisms and sensory modalities is discussed.
Collapse
Affiliation(s)
- David A Gray
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| |
Collapse
|
2
|
Clemens J, Schöneich S, Kostarakos K, Hennig RM, Hedwig B. A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets. eLife 2021; 10:e61475. [PMID: 34761750 PMCID: PMC8635984 DOI: 10.7554/elife.61475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals, one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arises from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate - different network parameters can create similar changes in the phenotype - which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes, and we reveal network properties that constrain and support behavioral diversity.
Collapse
Affiliation(s)
- Jan Clemens
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck SocietyGöttingenGermany
- BCCN GöttingenGöttingenGermany
| | - Stefan Schöneich
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Friedrich-Schiller-University Jena, Institute for Zoology and Evolutionary ResearchJenaGermany
| | - Konstantinos Kostarakos
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Institute of Biology, University of GrazUniversitätsplatzAustria
| | - R Matthias Hennig
- Humboldt-Universität zu Berlin, Department of BiologyPhilippstrasseGermany
| | - Berthold Hedwig
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
| |
Collapse
|
3
|
Talavera JB, Collosi E, Clark MI, Robertson JM, Gray DA. Minimal prezygotic isolation between ecologically divergent sibling species. Biol J Linn Soc Lond 2021; 132:32-43. [PMID: 33390615 PMCID: PMC7761596 DOI: 10.1093/biolinnean/blaa178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Indexed: 11/14/2022]
Abstract
Divergence in mating signals typically accompanies speciation. We examine two ecologically divergent sibling species of crickets to assess the degree and timing of the evolution of prezygotic reproductive isolation. Gryllus saxatilis occurs in rocky habitats throughout western North America with long-winged individuals capable of long-distance dispersal; Gryllus navajo is endemic to red-rock sandstone areas of south-eastern Utah and north-eastern Arizona and has short-winged individuals only capable of limited dispersal. Previous genetic work suggested some degree of introgression and/or incomplete lineage sorting is likely. Here we: (1) use restriction site associated DNA sequencing (RAD-seq) genetic data to describe the degree of genetic divergence among species and populations; (2) examine the strength of prezygotic isolation by (i) quantifying differences among male mating songs, and (ii) testing whether females prefer G. saxatilis or G. navajo calling songs. Our results show that genetically distinct "pure" species populations and genetically intermediate populations exist. Male mating songs are statistically distinguishable, but the absolute differences are small. In playback experiments, females from pure populations had no preference based on song; however, females from a genetically intermediate population preferred G. navajo song. Together these results suggest that prezygotic isolation is minimal, and mediated by female behaviour in admixed populations.
Collapse
Affiliation(s)
- Janelle B Talavera
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Emma Collosi
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Meaghan I Clark
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Jeanne M Robertson
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - David A Gray
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| |
Collapse
|
4
|
Dobbs OL, Talavera JB, Rossi SM, Menjivar S, Gray DA. Signaler-receiver-eavesdropper: Risks and rewards of variation in the dominant frequency of male cricket calls. Ecol Evol 2020; 10:12364-12371. [PMID: 33209294 PMCID: PMC7663976 DOI: 10.1002/ece3.6866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Signals are important for communication and mating, and while they can benefit an individual, they can also be costly and dangerous. Male field crickets call in order to attract female crickets, but gravid females of a parasitoid fly species, Ormia ochracea, are also attracted to the call and use it to pinpoint male cricket hosts. Conspicuousness of the call can vary with frequency, amplitude, and temporal features. Previous work with this system has only considered temporal variation in cricket calls, both large scale, that is, amount of calling and at what time of evening, and small scale, that is, aspects of chirp rate, pulse rate, and numbers of pulses per chirp. Because auditory perception in both crickets and flies relies on the matching of the peak frequency of the call with the peripheral sensory system, peak frequency may be subject to selection both from female crickets and from female flies. Here, we used field playbacks of four different versions of the same male Gryllus lineaticeps calling song that only differed in peak frequency (3.3, 4.3, 5.3, and 6.3 kHz) to test the relative attractiveness of the calls to female crickets and female flies. Our results clearly show that lower frequency calls enhance male safety from fly parasitism, but that the enhanced safety would come at a cost of reduced attraction of female crickets as potential mates. The results imply that eavesdropper pressure can disrupt the matched coevolution of signalers and receivers such that the common concept of matched male-female signaler-receiver coevolution may actually be better described as male-female-predator signaler-receiver-eavesdropper coevolution.
Collapse
Affiliation(s)
- Olivia L. Dobbs
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | | | - Sarina M. Rossi
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Stephanie Menjivar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
5
|
Desjonquères C, Holt RR, Speck B, Rodríguez RL. The relationship between a combinatorial processing rule and a continuous mate preference function in an insect. Proc Biol Sci 2020; 287:20201278. [PMID: 32933444 DOI: 10.1098/rspb.2020.1278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mate choice involves processing signals that can reach high levels of complexity and feature multiple components, even in small animals with tiny brains. This raises the question of whether and how such organisms deal with this complexity. One solution involves combinatorial processing, whereby different signal elements are processed as single units. Combinatorial processing has been described in several mammals and birds, and recently in a vibrationally signalling insect, Enchenopa treehoppers. Here, we ask about the relationship between combinatorial rules and mate preferences for continuously varying signal features. Enchenopa male advertisement signals are composed of two elements: a 'whine' followed by a set of pulses. The dominant frequency of the whine and element combination both matter to females. We presented synthetic signals varying in element order (natural [whine-pulses], reverse [pulses-whine]) and in frequency to Enchenopa females and recorded their responses. The reverse combination resulted in a decrease in attractiveness of the signals, and also slightly changed the shape of the preference for frequency. We found that females could be classified into three 'types': females with both a strong preference and a strong combinatorial rule, females with both a weak preference and weak rule, and females with a strong preference but a weak rule. Our results suggest that in Enchenopa signal processing, the mate preference for a continuous signal feature 'takes precedence' over, but also interacts with, the combinatorial rule. The relationship between the preference and the rule could evolve to take different forms according to selection on mate choice decisions. We suggest that exploring the relationship between such preferences and rules in species with more complex signals will bring insight into the evolution of the multi-component communication systems.
Collapse
Affiliation(s)
- Camille Desjonquères
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca R Holt
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Bretta Speck
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rafael L Rodríguez
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
6
|
Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M. Shared Song Detector Neurons in Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Curr Biol 2019; 29:3200-3215.e5. [PMID: 31564492 PMCID: PMC6885007 DOI: 10.1016/j.cub.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 10/25/2022]
Abstract
Males and females often produce distinct responses to the same sensory stimuli. How such differences arise-at the level of sensory processing or in the circuits that generate behavior-remains largely unresolved across sensory modalities. We address this issue in the acoustic communication system of Drosophila. During courtship, males generate time-varying songs, and each sex responds with specific behaviors. We characterize male and female behavioral tuning for all aspects of song and show that feature tuning is similar between sexes, suggesting sex-shared song detectors drive divergent behaviors. We then identify higher-order neurons in the Drosophila brain, called pC2, that are tuned for multiple temporal aspects of one mode of the male's song and drive sex-specific behaviors. We thus uncover neurons that are specifically tuned to an acoustic communication signal and that reside at the sensory-motor interface, flexibly linking auditory perception with sex-specific behavioral responses.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Grisebachstrasse 5, Göttingen 37077, Germany
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA
| | - Georgia Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA.
| |
Collapse
|
7
|
|
8
|
Eberhard MJB, Metze D, Küpper SC. Causes of variability in male vibratory signals and the role of female choice in Mantophasmatodea. Behav Processes 2019; 166:103907. [PMID: 31302240 DOI: 10.1016/j.beproc.2019.103907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 11/15/2022]
Abstract
Communication systems that involve substrate vibrations are increasingly a focus of research since this communication mode - recently termed biotremology - has been found to be remarkably widespread in the animal kingdom. Vibrational signals are often used during courtship and therefore underlie both natural and sexual selection. Mantophasmatodea use species- and sex-specific substrate vibrational signals during courtship. We explored whether male vibrational signals of the South African heelwalker Karoophasma biedouwense vary with temperature, body condition and age, and tested female preference towards various signal pattern combinations. We recorded male signals under varying temperatures and over 3.5 weeks after onset of signaling. Our results show that the temporal structure of male signals is modified by changes in temperature, and changes with male age. Other characteristics, especially duty cycles, are less affected, but correlate with body condition. Females responded along a broad spectrum of signaling patterns, indicating that they do not favor signals of males of a certain age or condition. They were selective towards the fine structure of vibratory signals, suggesting that pulse repetition times carry species-specific information. Mantophasmatodea thus use vibrational signals to identify and localize a mating partner, but presumably not for precopulatory mate selection.
Collapse
Affiliation(s)
- Monika J B Eberhard
- Zoological Institute and Museum, General Zoology and Zoological Systematics, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.
| | - Dennis Metze
- Zoological Institute and Museum, General Zoology and Zoological Systematics, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.
| | - Simon C Küpper
- Zoological Institute and Museum, General Zoology and Zoological Systematics, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.
| |
Collapse
|
9
|
Blankers T, Berdan EL, Hennig RM, Mayer F. Physical linkage and mate preference generate linkage disequilibrium for behavioral isolation in two parapatric crickets. Evolution 2019; 73:777-791. [PMID: 30820950 PMCID: PMC6593781 DOI: 10.1111/evo.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Abstract
Behavioral isolation is a potent barrier to gene flow and a source of striking diversity in the animal kingdom. However, it remains unclear if the linkage disequilibrium (LD) between sex‐specific traits required for behavioral isolation results mostly from physical linkage between signal and preference loci or from directional mate preferences. Here, we test this in the field crickets Gryllus rubens and G. texensis. These closely related species diverged with gene flow and have strongly differentiated songs and preference functions for the mate calling song rhythm. We map quantitative trait loci for signal and preference traits (pQTL) as well as for gene expression associated with these traits (eQTL). We find strong, positive genetic covariance between song traits and between song and preference. Our results show that this is in part explained by incomplete physical linkage: although both linked pQTL and eQTL couple male and female traits, major effect loci for different traits were never on the same chromosome. We suggest that the finely tuned, highly divergent preference functions are likely an additional source of LD between male and female traits in this system. Furthermore, pleiotropy of gene expression presents an underappreciated mechanism to link sexually dimorphic phenotypes.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.,Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma L Berdan
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Matthias Hennig
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frieder Mayer
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
10
|
Kostarakos K, Römer H. Evolutionarily conserved coding properties favour the neuronal representation of heterospecific signals of a sympatric katydid species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:859-872. [PMID: 30225517 PMCID: PMC6182671 DOI: 10.1007/s00359-018-1282-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/01/2022]
Abstract
To function as a mechanism in premating isolation, the divergent and species-specific calling songs of acoustic insects must be reliably processed by the afferent auditory pathway of receivers. Here, we analysed the responses of interneurons in a katydid species that uses long-lasting acoustic trills and compared these with previously reported data for homologous interneurons of a sympatric species that uses short chirps as acoustic signals. Some interneurons of the trilling species respond exclusively to the heterospecific chirp due to selective, low-frequency tuning and "novelty detection". These properties have been considered as evolutionary adaptations in the sensory system of the chirper, which allow it to detect signals effectively during the simultaneous calling of the sympatric sibling species. We propose that these two mechanisms, shared by the interneurons of both species, did not evolve in the chirper to guarantee its ability to detect the chirp under masking conditions. Instead we suggest that chirpers evolved an additional, 2-kHz component in their song and exploited pre-existing neuronal properties for detecting their song under masking noise. The failure of some interneurons to respond to the conspecific song in trillers does not prevent intraspecific communication, as other interneurons respond to the trill.
Collapse
Affiliation(s)
| | - Heiner Römer
- Institute of Biology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| |
Collapse
|
11
|
Gray DA, Hormozi S, Libby FR, Cohen RW. Induced expression of a vestigial sexual signal. Biol Lett 2018; 14:20180095. [PMID: 29769298 PMCID: PMC6012708 DOI: 10.1098/rsbl.2018.0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 11/12/2022] Open
Abstract
Vestigial morphological traits are common and well known in a variety of taxa. Identification of vestigial genes has illustrated the potential for evolutionary reversals and the re-expression of atavistic traits. Here we induce expression of a behavioural sexual signal, male calling song, in a cricket species, Gryllus ovisopis, which lacks a functional calling song. We successfully used acetylcholine injections in the frontal space of the head of male crickets to activate cerebral command neurons for cricket calling, and we recorded calling songs with a temporal chirp pattern similar to that of G. ovisopis' close evolutionary relatives, G. firmus and G. pennsylvanicus, implying that the neural pattern generators that underlie cricket calling behaviour persist in a vestigial state in G. ovisopis To our knowledge, this is the first demonstration of the induced expression of a vestigial behaviour in any organism. The retention of latent neural capacity to express sexual behaviours could have important implications for rapid evolution, trait re-emergence and reproductive isolation.
Collapse
Affiliation(s)
- David A Gray
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Scherezade Hormozi
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Fritz R Libby
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Randy W Cohen
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| |
Collapse
|
12
|
The ‘hot male’ hypothesis: do female crickets prefer males with increased body temperature in mate choice scenarios? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Gray DA, Gabel E, Blankers T, Hennig RM. Multivariate female preference tests reveal latent perceptual biases. Proc Biol Sci 2017; 283:rspb.2016.1972. [PMID: 27807265 DOI: 10.1098/rspb.2016.1972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022] Open
Abstract
The question of why males of many species produce elaborate mating displays has now been largely resolved: females prefer to mate with males that produce such displays. However, the question of why females prefer such displays has been controversial, with an emerging consensus that such displays often provide information to females about the direct fitness benefits that males provide to females and/or the indirect fitness benefits provided to offspring. Alternative explanations, such as production of arbitrarily attractive sons or innate pre-existing female sensory or perceptual bias, have also received support in certain taxa. Here, we describe multivariate female preference functions for male acoustic traits in two chirping species of field crickets with slow pulse rates; our data reveal cryptic female preferences for long trills that have not previously been observed in other chirping species. The trill preferences are evolutionarily pre-existing in the sense that males have not (yet?) exploited them, and they coexist with chirp preferences as alternative stable states within female song preference space. We discuss escape from neuronal adaptation as a possible mechanism underlying such latent preferences.
Collapse
Affiliation(s)
- D A Gray
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - E Gabel
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - T Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - R M Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Blankers T, Block R, Hennig RM. Codivergence but Limited Covariance of Wing Shape and Calling Song Structure in Field Crickets (Gryllus). Evol Biol 2017. [DOI: 10.1007/s11692-017-9439-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Bailey NW, Moran PA, Hennig RM. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Kilmer JT, Fowler‐Finn KD, Gray DA, Höbel G, Rebar D, Reichert MS, Rodríguez RL. Describing mate preference functions and other function‐valued traits. J Evol Biol 2017; 30:1658-1673. [DOI: 10.1111/jeb.13122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Affiliation(s)
- J. T. Kilmer
- Behavioral & Molecular Ecology Group Department of Biological Sciences University of Wisconsin–Milwaukee Milwaukee WI USA
| | | | - D. A. Gray
- Department of Biology California State University Northridge Northridge CA USA
| | - G. Höbel
- Behavioral & Molecular Ecology Group Department of Biological Sciences University of Wisconsin–Milwaukee Milwaukee WI USA
| | - D. Rebar
- Department of Zoology University of Cambridge Cambridge UK
| | - M. S. Reichert
- School of Biological, Earth and Environmental Science University College Cork Cork Ireland
| | - R. L. Rodríguez
- Behavioral & Molecular Ecology Group Department of Biological Sciences University of Wisconsin–Milwaukee Milwaukee WI USA
| |
Collapse
|
17
|
Bhattacharya M, Isvaran K, Balakrishnan R. A statistical approach to understanding reproductive isolation in two sympatric species of tree crickets. J Exp Biol 2017; 220:1222-1232. [PMID: 28096428 DOI: 10.1242/jeb.146852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
In acoustically communicating animals, reproductive isolation between sympatric species is usually maintained through species-specific calls. This requires that the receiver be tuned to the conspecific signal. Mapping the response space of the receiver onto the signal space of the conspecific investigates this tuning. A combinatorial approach to investigating the response space is more informative as the influence on the receiver of the interactions between the features is also elucidated. However, most studies have examined individual preference functions rather than the multivariate response space. We studied the maintenance of reproductive isolation between two sympatric tree cricket species (Oecanthus henryi and Oecanthus indicus) through the temporal features of the calls. Individual response functions were determined experimentally for O. henryi, the results from which were combined in a statistical framework to generate a multivariate quantitative receiver response space. The predicted response was higher for the signals of the conspecific than for signals of the sympatric heterospecific, indicating maintenance of reproductive isolation through songs. The model allows prediction of response to untested combinations of temporal features as well as delineation of the evolutionary constraints on the signal space. The model can also be used to predict the response of O. henryi to other heterospecific signals, making it a useful tool for the study of the evolution and maintenance of reproductive isolation via long-range acoustic signals.
Collapse
Affiliation(s)
- Monisha Bhattacharya
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kavita Isvaran
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rohini Balakrishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
18
|
Multivariate Phenotypic Evolution: Divergent Acoustic Signals and Sexual Selection in Gryllus Field Crickets. Evol Biol 2016. [DOI: 10.1007/s11692-016-9388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Gabel E, Gray DA, Matthias Hennig R. How females of chirping and trilling field crickets integrate the 'what' and 'where' of male acoustic signals during decision making. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:823-837. [PMID: 27638304 DOI: 10.1007/s00359-016-1124-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
In crickets acoustic communication serves mate selection. Female crickets have to perceive and integrate male cues relevant for mate choice while confronted with several different signals in an acoustically diverse background. Overall female decisions are based on the attractiveness of the temporal pattern (informative about the 'what') and on signal intensity (informative about the 'where') of male calling songs. Here, we investigated how the relevant cues for mate choice are integrated during the decision process by females of five different species of chirping and trilling field crickets. Using a behavioral design, female preferences in no-choice and choice situations for male calling songs differing in pulse rate, modulation depth, intensities, chirp/trill arrangements and temporal shifts were examined. Sensory processing underlying decisions in female field crickets is rather similar as combined evidence suggested that incoming song patterns were analyzed separately by bilaterally paired networks for pattern attractiveness and pattern intensity. A downstream gain control mechanism leads to a weighting of the intensity cue by pattern attractiveness. While remarkable differences between species were observed with respect to specific processing steps, closely related species exhibited more similar preferences than did more distantly related species.
Collapse
Affiliation(s)
- Eileen Gabel
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany.
| | - David A Gray
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany
| |
Collapse
|