1
|
Brebner JS, Loconsole M, Hanley D, Vasas V. Through an animal's eye: the implications of diverse sensory systems in scientific experimentation. Proc Biol Sci 2024; 291:20240022. [PMID: 39016597 PMCID: PMC11253838 DOI: 10.1098/rspb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/01/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
'Accounting for the sensory abilities of animals is critical in experimental design.' No researcher would disagree with this statement, yet it is often the case that we inadvertently fall for anthropocentric biases and use ourselves as the reference point. This paper discusses the risks of adopting an anthropocentric view when working with non-human animals, and the unintended consequences this has on our experimental designs and results. To this aim, we provide general examples of anthropocentric bias from different fields of animal research, with a particular focus on animal cognition and behaviour, and lay out the potential consequences of adopting a human-based perspective. Knowledge of the sensory abilities, both in terms of similarities to humans and peculiarities of the investigated species, is crucial to ensure solid conclusions. A more careful consideration of the diverse sensory systems of animals would improve many scientific fields and enhance animal welfare in the laboratory.
Collapse
Affiliation(s)
- Joanna S. Brebner
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Maria Loconsole
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vera Vasas
- School of Life Sciences, University of Sussex, BrightonBN1 9RH, UK
| |
Collapse
|
2
|
Newman BA, D’Angelo GJ. A Review of Cervidae Visual Ecology. Animals (Basel) 2024; 14:420. [PMID: 38338063 PMCID: PMC10854973 DOI: 10.3390/ani14030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This review examines the visual systems of cervids in relation to their ability to meet their ecological needs and how their visual systems are specialized for particular tasks. Cervidae encompasses a diverse group of mammals that serve as important ecological drivers within their ecosystems. Despite evidence of highly specialized visual systems, a large portion of cervid research ignores or fails to consider the realities of cervid vision as it relates to their ecology. Failure to account for an animal's visual ecology during research can lead to unintentional biases and uninformed conclusions regarding the decision making and behaviors for a species or population. Our review addresses core behaviors and their interrelationship with cervid visual characteristics. Historically, the study of cervid visual characteristics has been restricted to specific areas of inquiry such as color vision and contains limited integration into broader ecological and behavioral research. The purpose of our review is to bridge these gaps by offering a comprehensive review of cervid visual ecology that emphasizes the interplay between the visual adaptations of cervids and their interactions with habitats and other species. Ultimately, a better understanding of cervid visual ecology allows researchers to gain deeper insights into their behavior and ecology, providing critical information for conservation and management efforts.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
3
|
Ogawa Y, Jones L, Ryan LA, Robson SKA, Hart NS, Narendra A. Physiological properties of the visual system in the Green Weaver ant, Oecophylla smaragdina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01629-7. [PMID: 37055584 DOI: 10.1007/s00359-023-01629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
The Green Weaver ants, Oecophylla smaragdina are iconic animals known for their extreme cooperative behaviour where they bridge gaps by linking to each other to build living chains. They are visually oriented animals, build chains towards closer targets, use celestial compass cues for navigation and are visual predators. Here, we describe their visual sensory capacity. The major workers of O. smaragdina have more ommatidia (804) in each eye compared to minor workers (508), but the facet diameters are comparable between both castes. We measured the impulse responses of the compound eye and found their response duration (42 ms) was similar to that seen in other slow-moving ants. We determined the flicker fusion frequency of the compound eye at the brightest light intensity to be 132 Hz, which is relatively fast for a walking insect suggesting the visual system is well suited for a diurnal lifestyle. Using pattern-electroretinography we identified the compound eye has a spatial resolving power of 0.5 cycles deg-1 and reached peak contrast sensitivity of 2.9 (35% Michelson contrast threshold) at 0.05 cycles deg-1. We discuss the relationship of spatial resolution and contrast sensitivity, with number of ommatidia and size of the lens.
Collapse
Affiliation(s)
- Yuri Ogawa
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, 5001, Australia
| | - Lochlan Jones
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4814, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon K A Robson
- College of Science and Sustainability, CQ University Australia, Townsville, QLD, 4812, Australia
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ajay Narendra
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Lafitte A, Sordello R, Legrand M, Nicolas V, Obein G, Reyjol Y. A flashing light may not be that flashy: A systematic review on critical fusion frequencies. PLoS One 2022; 17:e0279718. [PMID: 36584184 PMCID: PMC9803175 DOI: 10.1371/journal.pone.0279718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Light pollution could represent one of the main drivers behind the current biodiversity erosion. While the effects of many light components on biodiversity have already been studied, the influence of flicker remains poorly understood. The determination of the threshold frequency at which a flickering light is perceived as continuous by a species, usually called the Critical Fusion Frequency (CFF), could thus help further identify the impacts of artificial lighting on animals. OBJECTIVE This review aimed at answering the following questions: what is the distribution of CFF between species? Are there differences in how flicker is perceived between taxonomic classes? Which species are more at risk of being impacted by artificial lighting flicker? METHODS Citations were extracted from three literature databases and were then screened successively on their titles, abstracts and full-texts. Included studies were critically appraised to assess their validity. All relevant data were extracted and analysed to determine the distribution of CFF in the animal kingdom and the influence of experimental designs and species traits on CFF. RESULTS At first, 4881 citations were found. Screening and critical appraisal provided 200 CFF values for 156 species. Reported values of CFF varied from a maximum of between 300 Hz and 500 Hz for the beetle Melanophila acuminata D. to a mean of 0.57 (± 0.08) Hz for the snail Lissachatina fulica B. Insects and birds had higher CFF than all other studied taxa. Irrespective of taxon, nocturnal species had lower CFF than diurnal and crepuscular ones. CONCLUSIONS We identified nine crepuscular and nocturnal species that could be impacted by the potential adverse effects of anthropogenic light flicker. We emphasize that there remains a huge gap in our knowledge of flicker perception by animals, which could potentially be hampering our understanding of its impacts on biodiversity, especially in key taxa like bats, nocturnal birds and insects.
Collapse
Affiliation(s)
- Alix Lafitte
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
- Association Française de l’Eclairage (AFE), Paris, France
- * E-mail:
| | - Romain Sordello
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
| | - Marc Legrand
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
- Association Française de l’Eclairage (AFE), Paris, France
- Université Jean Monnet, Saint-Etienne, France
| | - Virginie Nicolas
- Association des Concepteurs lumière et Eclairagistes (ACE), Paris, France
- Concepto, Arcueil, France
| | - Gaël Obein
- Association Française de l’Eclairage (AFE), Paris, France
- Laboratoire National de métrologie et d’Essais—Conservatoire National des Arts et Métiers (LNE-CNAM), Saint-Denis, France
| | - Yorick Reyjol
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
| |
Collapse
|
5
|
Nocturnal Myrmecia ants have faster temporal resolution at low light levels but lower adaptability compared to diurnal relatives. iScience 2022; 25:104134. [PMID: 35402879 PMCID: PMC8991095 DOI: 10.1016/j.isci.2022.104134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Nocturnal insects likely have evolved distinct physiological adaptations to enhance sensitivity for tasks, such as catching moving prey, where the signal-noise ratio of visual information is typically low. Using electroretinogram recordings, we measured the impulse response and the flicker fusion frequency (FFF) in six congeneric species of Myrmecia ants with different diurnal rhythms. The FFF, which measures the ability of an eye to respond to a flickering light, is significantly lower in nocturnal ants (∼125 Hz) compared to diurnal ants (∼189 Hz). However, the nocturnal ants have faster eyes at very low light intensities than the diurnal species. During the day, nocturnal ants had slower impulse responses than their diurnal counterparts. However, at night, both latency and duration significantly shortened in nocturnal species. The characteristics of the impulse responses varied substantially across all six species and did not correlate well with the measured flicker fusion frequency. Flicker fusion frequency is lower in nocturnal ants compared to diurnal ants Latency and duration of the impulse response shorten at night in nocturnal ants In ants, the FFF is not predicted by the measured impulse response characteristics
Collapse
|
6
|
Pepperberg IM. A Review of the Model/Rival (M/R) Technique for Training Interspecies Communication and Its Use in Behavioral Research. Animals (Basel) 2021; 11:2479. [PMID: 34573445 PMCID: PMC8469950 DOI: 10.3390/ani11092479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, I will review the Model/Rival (M/R) technique that has been used to establish interspecies communication with Grey parrots (Psittacus erithacus). I will describe the original format developed by Todt, the relationship to other forms of observational learning outlined by other researchers, and the adaptations that I devised. I will describe how my undergraduate trainers and I isolated the various components that constitute the technique and explain how each is necessary, but how only the combination of all components is sufficient for successful implementation-and how improper implementation can lead to failure. I will briefly summarize the results of proper implementation-including the importance of interspecies communication itself as a technique for studying animal cognition.
Collapse
Affiliation(s)
- Irene M. Pepperberg
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA;
- The Alex Foundation, 30 Curry Circle, Swampscott, MA 01907, USA
| |
Collapse
|
7
|
Abstract
Time is largely a hidden variable in vision. It is the condition for seeing interesting things such as spatial forms and patterns, colours and movements in the external world, and yet is not meant to be noticed in itself. Temporal aspects of visual processing have received comparatively little attention in research. Temporal properties have been made explicit mainly in measurements of resolution and integration in simple tasks such as detection of spatially homogeneous flicker or light pulses of varying duration. Only through a mechanistic understanding of their basis in retinal photoreceptors and circuits can such measures guide modelling of natural vision in different species and illuminate functional and evolutionary trade-offs. Temporal vision research would benefit from bridging traditions that speak different languages. Towards that goal, I here review studies from the fields of human psychophysics, retinal physiology and neuroethology, with a focus on fundamental constraints set by early vision. Summary: Simple measures of temporal vision such as the critical flicker frequency can be useful for modelling natural vision only if their relationship to photoreceptor responses and retinal processing is understood.
Collapse
Affiliation(s)
- Kristian Donner
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Stidsholt L, Johnson M, Goerlitz HR, Madsen PT. Wild bats briefly decouple sound production from wingbeats to increase sensory flow during prey captures. iScience 2021; 24:102896. [PMID: 34401675 PMCID: PMC8355945 DOI: 10.1016/j.isci.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 10/28/2022] Open
Abstract
Active sensing animals such as echolocating bats produce the energy with which they probe their environment. The intense echolocation calls of bats are energetically expensive, but their cost can be reduced by synchronizing the exhalations needed to vocalize to wingbeats. Here, we use sound-and-movement recording tags to investigate how wild bats balance efficient sound production with information needs during foraging and navigation. We show that wild bats prioritize energy efficiency over sensory flow when periodic snapshots of the acoustic scene are sufficient during travel and search. Rapid calls during tracking and interception of close prey are decoupled from the wingbeat but are weaker and comprise <2% of all calls during a night of hunting. The limited use of fast sonar sampling provides bats with high information update rates during critical hunting moments but adds little to their overall costs of sound production despite the inefficiency of decoupling calls from wingbeats.
Collapse
Affiliation(s)
- Laura Stidsholt
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Entrainment within neuronal response in optic tectum of pigeon to video displays. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:845-855. [PMID: 32809044 DOI: 10.1007/s00359-020-01442-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The cathode ray tube (CRT) is a common and important tool that has been in use for decades, with which behavioral and visual neuroscientists deliver specific visual images generated by computers. Considering the operating principle of the CRT, the image it presents can flick at a constant rate, which will introduce distractions to the visual experiments on subjects with higher temporal resolutions. While this entrainment has been proved common in recordings of the primary visual cortex of mammals, it is uncertain whether it also exists in the intermediate to deep layers of pigeon's optic tectum, which is relevant to the spatial attention. Here, we present continuous visual stimuli with different refresh rates and luminances couples shown on a CRT to pigeons. The recordings in the intermediate to deep layers of optic tectum were significantly phase locking to the refresh of the CRT, and lower refresh rates of the CRT with higher brightness more likely introduced artifacts in electrophysiological recordings of pigeons, which may seriously damage their visual information perception.
Collapse
|
10
|
Potier S, Lieuvin M, Pfaff M, Kelber A. How fast can raptors see? ACTA ACUST UNITED AC 2020; 223:jeb.209031. [PMID: 31822552 DOI: 10.1242/jeb.209031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022]
Abstract
Birds, and especially raptors, are highly visual animals. Some of them have the highest spatial resolving power known in the animal kingdom, allowing prey detection at distance. While many raptors visually track fast-moving and manoeuvrable prey, requiring high temporal resolution, this aspect of their visual system has never been studied before. In this study, we estimated how fast raptors can see, by measuring the flicker fusion frequency of three species with different lifestyles. We found that flicker fusion frequency differed among species, being at least 129 Hz in the peregrine falcon, Falco peregrinus, 102 Hz in the saker falcon, Falco cherrug, and 81 Hz in the Harris's hawk, Parabuteo unicinctus We suggest a potential link between fast vision and hunting strategy, with high temporal resolution in the fast-flying falcons that chase fast-moving, manoeuvrable prey and a lower resolution in the Harris's hawk, which flies more slowly and targets slower prey.
Collapse
Affiliation(s)
- Simon Potier
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Margaux Lieuvin
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Michael Pfaff
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| |
Collapse
|
11
|
Goller B, Fellows TK, Dakin R, Tyrrell L, Fernández-Juricic E, Altshuler DL. Spatial and Temporal Resolution of the Visual System of the Anna's Hummingbird ( Calypte anna) Relative to Other Birds. Physiol Biochem Zool 2019; 92:481-495. [PMID: 31393209 DOI: 10.1086/705124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hummingbirds are an emerging model for studies of the visual guidance of flight. However, basic properties of their visual systems, such as spatial and temporal visual resolution, have not been characterized. We measured both the spatial and temporal visual resolution of Anna's hummingbirds using behavioral experiments and anatomical estimates. Spatial visual resolution was determined behaviorally using the optocollic reflex and anatomically using peak retinal ganglion cell densities from retinal whole mounts and eye size. Anna's hummingbirds have a spatial visual resolution of 5-6 cycles per degree when measured behaviorally, which matches anatomical estimates (fovea: 6.26 ± 0.12 cycles per degree; area temporalis: 5.59 ± 0.15 cycles per degree; and whole eye average: 4.64 ± 0.08 ). To determine temporal visual resolution, we used an operant conditioning paradigm wherein hummingbirds were trained to use a flickering light to find a food reward. The limits of temporal visual resolution were estimated as 70-80 Hz. To compare Anna's hummingbirds with other bird species, we used a phylogenetically controlled analysis of previously published data on avian visual resolutions and body size. Our measurements for Anna's hummingbird vision fall close to and below predictions based on body size for spatial visual resolution and temporal visual resolution, respectively. These results indicate that the enhanced flight performance and foraging behaviors of hummingbirds do not require enhanced spatial or temporal visual resolution. This finding is important for interpreting flight control studies and contributes to a growing understanding of avian vision.
Collapse
|
12
|
Quinn D, Kress D, Chang E, Stein A, Wegrzynski M, Lentink D. How lovebirds maneuver through lateral gusts with minimal visual information. Proc Natl Acad Sci U S A 2019; 116:15033-15041. [PMID: 31289235 PMCID: PMC6660782 DOI: 10.1073/pnas.1903422116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Flying birds maneuver effectively through lateral gusts, even when gust speeds are as high as flight speeds. What information birds use to sense gusts and how they compensate is largely unknown. We found that lovebirds can maneuver through 45° lateral gusts similarly well in forest-, lake-, and cave-like visual environments. Despite being diurnal and raised in captivity, the birds fly to their goal perch with only a dim point light source as a beacon, showing that they do not need optic flow or a visual horizon to maneuver. To accomplish this feat, lovebirds primarily yaw their bodies into the gust while fixating their head on the goal using neck angles of up to 30°. Our corroborated model for proportional yaw reorientation and speed control shows how lovebirds can compensate for lateral gusts informed by muscle proprioceptive cues from neck twist. The neck muscles not only stabilize the lovebirds' visual and inertial head orientations by compensating low-frequency body maneuvers, but also attenuate faster 3D wingbeat-induced perturbations. This head stabilization enables the vestibular system to sense the direction of gravity. Apparently, the visual horizon can be replaced by a gravitational horizon to inform the observed horizontal gust compensation maneuvers in the dark. Our scaling analysis shows how this minimal sensorimotor solution scales favorably for bigger birds, offering local wind angle feedback within a wingbeat. The way lovebirds glean wind orientation may thus inform minimal control algorithms that enable aerial robots to maneuver in similar windy and dark environments.
Collapse
Affiliation(s)
- Daniel Quinn
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305;
- Mechanical & Aerospace Engineering Department, University of Virginia, Charlottesville, VA 22904
- Electrical & Computer Engineering Department, University of Virginia, Charlottesville, VA 22904
| | - Daniel Kress
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| | - Eric Chang
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| | - Andrea Stein
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| | - Michal Wegrzynski
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| | - David Lentink
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305;
| |
Collapse
|
13
|
Nielsen BL. Making sense of it all: The importance of taking into account the sensory abilities of animals in their housing and management. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Lind O, Henze MJ, Kelber A, Osorio D. Coevolution of coloration and colour vision? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0338. [PMID: 28533455 DOI: 10.1098/rstb.2016.0338] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2017] [Indexed: 11/12/2022] Open
Abstract
The evolutionary relationship between signals and animal senses has broad significance, with potential consequences for speciation, and for the efficacy and honesty of biological communication. Here we outline current understanding of the diversity of colour vision in two contrasting groups: the phylogenetically conservative birds, and the more variable butterflies. Evidence for coevolution of colour signals and vision exists in both groups, but is limited to observations of phenotypic differences between visual systems, which might be correlated with coloration. Here, to illustrate how one might interpret the evolutionary significance of such differences, we used colour vision modelling based on an avian eye to evaluate the effects of variation in three key characters: photoreceptor spectral sensitivity, oil droplet pigmentation and the proportions of different photoreceptor types. The models predict that physiologically realistic changes in any one character will have little effect, but complementary shifts in all three can substantially affect discriminability of three types of natural spectra. These observations about the adaptive landscape of colour vision may help to explain the general conservatism of photoreceptor spectral sensitivities in birds. This approach can be extended to other types of eye and spectra to inform future work on coevolution of coloration and colour vision.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Olle Lind
- Department of Philosophy, Cognitive Science, Helgonavägen 3, 22362 Lund, Sweden
| | - Miriam J Henze
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Almut Kelber
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Daniel Osorio
- School of Life Sciences, John Maynard Smith Building, University of Sussex, Falmer, BN1 9QG, UK
| |
Collapse
|