1
|
Vasas V, Lowell MC, Villa J, Jamison QD, Siegle AG, Katta PKR, Bhagavathula P, Kevan PG, Fulton D, Losin N, Kepplinger D, Yetzbacher MK, Salehian S, Forkner RE, Hanley D. Recording animal-view videos of the natural world using a novel camera system and software package. PLoS Biol 2024; 22:e3002444. [PMID: 38261631 PMCID: PMC10805291 DOI: 10.1371/journal.pbio.3002444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/21/2023] [Indexed: 01/25/2024] Open
Abstract
Plants, animals, and fungi display a rich tapestry of colors. Animals, in particular, use colors in dynamic displays performed in spatially complex environments. Although current approaches for studying colors are objective and repeatable, they miss the temporal variation of color signals entirely. Here, we introduce hardware and software that provide ecologists and filmmakers the ability to accurately record animal-perceived colors in motion. Specifically, our Python codes transform photos or videos into perceivable units (quantum catches) for animals of known photoreceptor sensitivity. The plans and codes necessary for end-users to capture animal-view videos are all open source and publicly available to encourage continual community development. The camera system and the associated software package will allow ecologists to investigate how animals use colors in dynamic behavioral displays, the ways natural illumination alters perceived colors, and other questions that remained unaddressed until now due to a lack of suitable tools. Finally, it provides scientists and filmmakers with a new, empirically grounded approach for depicting the perceptual worlds of nonhuman animals.
Collapse
Affiliation(s)
- Vera Vasas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Mark C. Lowell
- Theorem Engine, Alexandria, Virginia, United States of America
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Juliana Villa
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Quentin D. Jamison
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Anna G. Siegle
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Pavan Kumar Reddy Katta
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Pushyami Bhagavathula
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Peter G. Kevan
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Drew Fulton
- Drew Fulton Photography, Gainesville, Florida, United States of America
| | - Neil Losin
- Day’s Edge Productions, San Diego, California, United States of America
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, United States of America
| | | | - Shakiba Salehian
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Rebecca E. Forkner
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
2
|
Balandra A, Doll Y, Hirose S, Kajiwara T, Kashino Z, Inami M, Koshimizu S, Fukaki H, Watahiki MK. P-MIRU, a Polarized Multispectral Imaging System, Reveals Reflection Information on the Biological Surface. PLANT & CELL PHYSIOLOGY 2023; 64:1311-1322. [PMID: 37217180 DOI: 10.1093/pcp/pcad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023]
Abstract
Reflection light forms the core of our visual perception of the world. We can obtain vast information by examining reflection light from biological surfaces, including pigment composition and distribution, tissue structure and surface microstructure. However, because of the limitations in our visual system, the complete information in reflection light, which we term 'reflectome', cannot be fully exploited. For example, we may miss reflection light information outside our visible wavelengths. In addition, unlike insects, we have virtually no sensitivity to light polarization. We can detect non-chromatic information lurking in reflection light only with appropriate devices. Although previous studies have designed and developed systems for specialized uses supporting our visual systems, we still do not have a versatile, rapid, convenient and affordable system for analyzing broad aspects of reflection from biological surfaces. To overcome this situation, we developed P-MIRU, a novel multispectral and polarization imaging system for reflecting light from biological surfaces. The hardware and software of P-MIRU are open source and customizable and thus can be applied for virtually any research on biological surfaces. Furthermore, P-MIRU is a user-friendly system for biologists with no specialized programming or engineering knowledge. P-MIRU successfully visualized multispectral reflection in visible/non-visible wavelengths and simultaneously detected various surface phenotypes of spectral polarization. The P-MIRU system extends our visual ability and unveils information on biological surfaces.
Collapse
Affiliation(s)
| | - Yuki Doll
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shogo Hirose
- Faculty of Agriculture, Meijo University, Shiogamaguchi 1-501, Tempaku-ku, Nagoya, 468-0073 Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Zendai Kashino
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904 Japan
| | - Masahiko Inami
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904 Japan
| | - Shizuka Koshimizu
- School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, 214-8571 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada-ku, Kobe, 657-8501 Japan
| | - Masaaki K Watahiki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
3
|
van der Kooi CJ, Kelber A. Achromatic Cues Are Important for Flower Visibility to Hawkmoths and Other Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Studies on animal colour vision typically focus on the chromatic aspect of colour, which is related to the spectral distribution, and disregard the achromatic aspect, which is related to the intensity (“brightness”) of a stimulus. Although the chromatic component of vision is often most reliable for object recognition because it is fairly context independent, the achromatic component may provide a reliable signal under specific conditions, for example at night when light intensity is low. Here we make a case for the importance of achromatic cues in plant-pollinator signalling, based on experimental data on naïve Deilephila elpenor and Macroglossum stellatarum hawkmoths, optical modelling and synthesising published experiments on bees, flies, butterflies and moths. Our experiments show that in ecologically relevant light levels hawkmoths express a strong preference for brighter stimuli. Published experiments suggest that for flower-visiting bees, butterflies, moths and flies, achromatic cues may be more important for object detection than often considered. Our optical modelling enabled disentangling the contribution of pigments and scattering structures to the flower’s achromatic contrast, and illustrates how flower anatomy and background are important mediating factors. We discuss our findings in the context of the often-assumed dichotomy between detection and discrimination, chromatic versus achromatic vision, and the evolution of floral visual signals.
Collapse
|
4
|
Peach K, Liu JW, Klitgaard KN, Mazer SJ. Sex-specific floral attraction traits in a sequentially hermaphroditic species. Ecol Evol 2020; 10:1856-1875. [PMID: 32128121 PMCID: PMC7042773 DOI: 10.1002/ece3.5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
●Many angiosperms are hermaphroditic and produce bisexual flowers in which male (pollen export) and female (stigma receptivity) functions are separated temporally. This sequential hermaphroditism may be associated with variation in flower size, color, or pattern, all of which may influence pollinator attraction. In this study, we describe variation in these traits across discrete functional sex stages within and between 225 greenhouse-grown individuals of Clarkia unguiculata (Onagraceae). In addition, to identify the effects of floral phenotype on pollinator attraction in this species, we examine the effects of these floral traits on pollen receipt in ~180 individuals in an experimental field array.●Petal area, ultraviolet (UV)-absorbing nectar guide area, and blue and green mean petal reflectance differ significantly across the functional sex stages of C. unguiculata. Male- and female-phase flowers display significantly different pollinator attraction traits. Petal and UV nectar guide area increase as flowers progress from male phase to female phase, while blue reflectance and green reflectance peak during anther maturation.●In field arrays of C. unguiculata, female-phase flowers with large UV nectar guides receive more pollen than those with small nectar guides, and female-phase flowers with high mean blue reflectance values are more likely to receive pollen than those with low blue reflectance. Female-phase flowers with green mean reflectance values that differ most from background foliage also receive more pollen than those that are more similar to foliage. These findings indicate that components of flower color and pattern influence pollen receipt, independent of other plant attributes that may covary with floral traits. We discuss these results in the context of hypotheses that have been proposed to explain sex-specific floral attraction traits, and we suggest future research that could improve our understanding of sexual dimorphism in sequentially hermaphroditic species and the evolution of features that promote outcrossing.
Collapse
Affiliation(s)
- Kristen Peach
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Jasen W. Liu
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Kristen N. Klitgaard
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
5
|
Abstract
Most reported optical recorders of the wingbeat of insects are based on the so-called extinction light, which is the variation of light in the receiver due to the cast shadow of the insect’s wings and main body. In this type of recording devices, the emitter uses light and is placed opposite to the receiver, which is usually a single (or multiple) photodiode. In this work, we present a different kind of wingbeat sensor and its associated recorder that aims to extract a deeper representational signal of the wingbeat event and color characterization of the main body of the insect, namely: a) we record the backscattered light that is richer in harmonics than the extinction light, b) we use three different spectral bands, i.e., a multispectral approach that aims to grasp the melanization and microstructural and color features of the wing and body of the insects, and c) we average at the receiver’s level the backscattered signal from many LEDs that illuminate the wingbeating insect from multiple orientations and thus offer a smoother and more complete signal than one based on a single snapshot. We present all the necessary details to reproduce the device and we analyze many insects of interest like the bee Apis mellifera, the wasp Polistes gallicus, and some insects whose wingbeating characteristics are pending in the current literature, like Drosophila suzukii and Zaprionus, another member of the drosophilidae family.
Collapse
|
6
|
van der Kooi CJ, Dyer AG, Kevan PG, Lunau K. Functional significance of the optical properties of flowers for visual signalling. ANNALS OF BOTANY 2019; 123:263-276. [PMID: 29982325 PMCID: PMC6344213 DOI: 10.1093/aob/mcy119] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/06/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Flower coloration is a key enabler for pollinator attraction. Floral visual signals comprise several components that are generated by specific anatomical structures and pigmentation, and often have different functions in pollinator attraction. Anatomical studies have advanced our understanding of the optical properties of flowers, and evidence from behavioural experiments has elucidated the biological relevance of different components of floral visual signals, but these two lines of research are often considered independently. SCOPE Here, we review current knowledge about different aspects of the floral visual signals, their anatomical and optical properties, and their functional significance in plant-pollinator visual signalling. We discuss common aspects, such as chromatic and achromatic contrast, hue, saturation and brightness, as well as less common types of visual signals, including gloss, fluorescence, polarization and iridescence in the context of salience of floral colour signals and their evolution, and highlight promising avenues for future research.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- For correspondence. E-mail
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Australia
| | - Peter G Kevan
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Klaus Lunau
- Institute of Sensory Ecology, Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|
7
|
Bergamo PJ, Telles FJ, Arnold SEJ, de Brito VLG. Flower colour within communities shifts from overdispersed to clustered along an alpine altitudinal gradient. Oecologia 2018; 188:223-235. [DOI: 10.1007/s00442-018-4204-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
|
8
|
de Premorel G, Giurfa M, Andraud C, Gomez D. Higher iridescent-to-pigment optical effect in flowers facilitates learning, memory and generalization in foraging bumblebees. Proc Biol Sci 2017; 284:20171097. [PMID: 29070719 PMCID: PMC5666091 DOI: 10.1098/rspb.2017.1097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Iridescence-change of colour with changes in the angle of view or of illumination-is widespread in the living world, but its functions remain poorly understood. The presence of iridescence has been suggested in flowers where diffraction gratings generate iridescent colours. Such colours have been suggested to serve plant-pollinator communication. Here we tested whether a higher iridescence relative to corolla pigmentation would facilitate discrimination, learning and retention of iridescent visual targets. We conditioned bumblebees (Bombus terrestris) to discriminate iridescent from non-iridescent artificial flowers and we varied iridescence detectability by varying target iridescent relative to pigment optical effect. We show that bees rewarded on targets with higher iridescent relative to pigment effect required fewer choices to complete learning, showed faster generalization to novel targets exhibiting the same iridescence-to-pigment level and had better long-term memory retention. Along with optical measurements, behavioural results thus demonstrate that bees can learn iridescence-related cues as bona fide signals for flower reward. They also suggest that floral advertising may be shaped by competition between iridescence and corolla pigmentation, a fact that has important evolutionary implications for pollinators. Optical measurements narrow down the type of cues that bees may have used for learning. Beyond pollinator-plant communication, our experiments help understanding how receivers influence the evolution of iridescence signals generated by gratings.
Collapse
Affiliation(s)
| | - Martin Giurfa
- Research Centre on Animal Cognition, Centre for Integrative Biology, University of Toulouse; CNRS, UPS, France
| | | | - Doris Gomez
- UMR 7179, CNRS, National Museum of Natural History, Brunoy, France
- UMR 7588 CNRS, Institute of NanoSciences of Paris, University of Paris 6, Paris, France
- UMR 5175 CNRS, Centre for Evolutionary and Functional Ecology, Montpellier, France
| |
Collapse
|