Facilitation of neural responses to targets moving against optic flow.
Proc Natl Acad Sci U S A 2021;
118:2024966118. [PMID:
34531320 PMCID:
PMC8463850 DOI:
10.1073/pnas.2024966118]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Target detection in visual clutter is a difficult computational task that insects, with their poor spatial resolution compound eyes and small brains, do successfully and with extremely short behavioral delays. We here show that the responses of target selective descending neurons are attenuated by background motion in the same direction as target motion but facilitated by background motion in the opposite direction. This finding is important for understanding how target pursuit can occur in tandem with gaze stabilization. Indeed, the neural facilitation would come into effect if the hoverfly is subjected to background motion in one direction but the target it is pursuing moves in the opposite direction and could therefore be used to override gaze stabilizing corrective turns.
For the human observer, it can be difficult to follow the motion of small objects, especially when they move against background clutter. In contrast, insects efficiently do this, as evidenced by their ability to capture prey, pursue conspecifics, or defend territories, even in highly textured surrounds. We here recorded from target selective descending neurons (TSDNs), which likely subserve these impressive behaviors. To simulate the type of optic flow that would be generated by the pursuer’s own movements through the world, we used the motion of a perspective corrected sparse dot field. We show that hoverfly TSDN responses to target motion are suppressed when such optic flow moves syn-directional to the target. Indeed, neural responses are strongly suppressed when targets move over either translational sideslip or rotational yaw. More strikingly, we show that TSDNs are facilitated by optic flow moving counterdirectional to the target, if the target moves horizontally. Furthermore, we show that a small, frontal spatial window of optic flow is enough to fully facilitate or suppress TSDN responses to target motion. We argue that such TSDN response facilitation could be beneficial in modulating corrective turns during target pursuit.
Collapse