1
|
Zhukova A, Zakharov G, Pavlova O, Saifitdinova A. Description of the complete rDNA repeat unit structure of Coturnixjaponica Temminck et Schlegel, 1849 (Aves). COMPARATIVE CYTOGENETICS 2024; 18:183-198. [PMID: 39363903 PMCID: PMC11447458 DOI: 10.3897/compcytogen.18.127373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Ribosomal RNA (18S, 5.8S, 28S) gene clusters in genomes form regions that consist of multiple tandem repeats. They are located on a single or several pairs of chromosomes and play an important role in the formation of the nucleolus responsible for the assembly of ribosome subunits. The rRNA gene cluster sequences are widely used for taxonomic studies, however at present, complete information on the avian rDNA repeat unit structure including intergenic spacer sequence is available only for the chicken (Gallusgallusdomesticus Linnaeus, 1758). The GC enrichment and high-order repeats peculiarities within the intergenic spacer described for the chicken rDNA cluster may be responsible for these failures. The karyotype of the Japanese quail (Coturnixjaponica Temminck et Schlegel, 1849) deserves close attention because, unlike most birds, it has three pairs of nucleolar organizer bearing chromosomes, two of which are microchromosomes enriched in repeating elements and heterochromatin that carry translocated terminal nucleolar organizers. Here we assembled and annotated the complete Japanese quail ribosomal gene cluster sequence of 21166 base pairs (GenBank under the registration tag BankIt2509210 CoturnixOK523374). This is the second deciphered avian rDNA cluster after the chicken. Despite the revealed high similarity with the chicken corresponding sequence, it has a number of specific features, which include a slightly lower degree of GC content and the presence of bendable elements in the content of both the transcribed spacer I and the non-transcribed intergenic spacer.
Collapse
Affiliation(s)
- Alina Zhukova
- Herzen State Pedagogical University of Russia, Saint Petersburg, RussiaHerzen State Pedagogical University of RussiaSaint PetersburgRussia
| | - Gennadii Zakharov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, RussiaPavlov Institute of Physiology, Russian Academy of SciencesSaint PetersburgRussia
- EPAM Systems Inc., Saint Petersburg, RussiaEPAM Systems Inc.Saint PetersburgRussia
| | - Olga Pavlova
- International Centre for Reproductive Medicine, Saint Petersburg, RussiaInternational Centre for Reproductive MedicineSaint PetersburgRussia
- Beagle Ltd., Saint Petersburg, RussiaBeagle Ltd.Saint PetersburgRussia
| | - Alsu Saifitdinova
- Herzen State Pedagogical University of Russia, Saint Petersburg, RussiaHerzen State Pedagogical University of RussiaSaint PetersburgRussia
- International Centre for Reproductive Medicine, Saint Petersburg, RussiaInternational Centre for Reproductive MedicineSaint PetersburgRussia
- Saint Petersburg State University, Saint Petersburg, RussiaSaint Petersburg State UniversitySaint PetersburgRussia
| |
Collapse
|
2
|
Trumpp KM, Mayer J, Roman CE, Kent M. Hearing Assessment of Free-Ranging Owls and Implications for Wildlife Rehabilitation: 31 Cases (2014-2023). J Avian Med Surg 2024; 38:75-82. [PMID: 38980816 DOI: 10.1647/avianms-d-23-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Owls, members of the avian order Strigiformes, are nocturnal birds of prey that are found worldwide except for Antarctica. Traumatized, free-ranging owls are commonly presented to veterinary hospitals and wildlife rehabilitation facilities with the goal of providing medical care and rehabilitation to enable release back into their natural habitat. Minimal guidelines exist for the release of wildlife, and whereas a need for functional vision is described in raptors, assessing and evaluating hearing is usually not mentioned. This can be problematic for nocturnal predators because hearing is the primary sense utilized by owls when hunting and navigating in their dark environment. The brainstem auditory evoked response (BAER) test is a minimally invasive, objective assessment of hearing commonly used in companion animals. To the authors' knowledge, routine or standardized BAER evaluation has not been reported in traumatized, free-ranging owls. In the following retrospective study, 31 free-ranging owls presented to the University of Georgia Veterinary Teaching Hospital for known or suspected trauma or being found in a debilitated state underwent BAER testing to assess for the presence of complete sensorineural hearing loss. Similar to assessment of hearing in companion animals, the BAER test was elicited using a broad click stimulus delivered at 85 dB nHL. In all owls, qualitative assessment and peak latency measurements of the BAER test reflected hearing ability. This study highlights the importance of hearing in nocturnal raptors, how BAER testing can aid in decision making regarding rehabilitation, and provides a foundation for further investigation of hearing loss in traumatized owls. We suggest that veterinarians working with free-ranging owls in a rehabilitation setting should consider BAER testing as part of routine diagnostic testing.
Collapse
Affiliation(s)
- Kelsey M Trumpp
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, GA 30602, USA,
| | - Joerg Mayer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, GA 30602, USA
| | | | - Marc Kent
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, GA 30602, USA
| |
Collapse
|
3
|
Heffner HE, Koay G, Heffner RS. Hearing in helmeted guineafowl (Numida meleagris): audiogram from 2 Hz to 10 kHz and localization acuity for brief noise bursts. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:65-73. [PMID: 37280367 DOI: 10.1007/s00359-023-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.
Collapse
Affiliation(s)
- Henry E Heffner
- Department of Psychology, University of Toledo, Toledo, OH, USA
| | - Gimseong Koay
- Department of Psychology, University of Toledo, Toledo, OH, USA
| | - Rickye S Heffner
- Department of Psychology, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
4
|
Zeyl JN, Snelling EP, Joo R, Clusella-Trullas S. Scaling of ear morphology across 127 bird species and its implications for hearing performance. Hear Res 2023; 428:108679. [PMID: 36587457 DOI: 10.1016/j.heares.2022.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The dimensions of auditory structures among animals of varying body size can have implications for hearing performance. Larger animals often have a hearing range focused on lower frequencies than smaller animals, which may be explained by several anatomical mechanisms in the ear and their scaling relationships. While the effect of size on ear morphology and hearing performance has been explored in some mammals, anurans and lizards, much less is known about the scaling relationships for the single-ossicle, internally-coupled ears of birds. Using micro- and nano-CT scans of the tympanic middle and inner ears of 127 ecologically and phylogenetically diverse bird species, spanning more than 400-fold in head mass (2.3 to 950 g), we undertook phylogenetically-informed scaling analyses to test whether 12 morphological traits, of functional importance to hearing, maintain their relative proportions with increasing head mass. We then extended our analysis by regressing these morphological traits with measures of hearing sensitivity and range to better understand morphological underpinnings of hearing performance. We find that most auditory structures scale together in equal proportions, whereas columella length increases disproportionately. We also find that the size of several auditory structures is associated with increased hearing sensitivity and frequency hearing limits, while head mass did not explain these measures. Although both birds and mammals demonstrate proportional scaling between auditory structures, the consequences for hearing in each group may diverge due to unique morphological predictors of auditory performance.
Collapse
Affiliation(s)
- Jeffrey N Zeyl
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| | - Edward P Snelling
- Department of Anatomy and Physiology, and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Rocío Joo
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA; Global Fishing Watch, Washington, DC 20036, USA
| | | |
Collapse
|
5
|
Batool F, Bilal RM, Hassan FU, Nasir TA, Rafeeque M, Elnesr SS, Farag MR, Mahgoub HAM, Naiel MAE, Alagawany M. An updated review on behavior of domestic quail with reference to the negative effect of heat stress. Anim Biotechnol 2021; 34:424-437. [PMID: 34355648 DOI: 10.1080/10495398.2021.1951281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Japanese quail originated from the wildlife environment and was first domesticated in Japan in 1595. Japanese quail has widely distributed in various parts of the world. This bird is characterized by its rapid growth rate, high rate of egg production, much lower space requirements, small size, good reproductive potential, short life cycle, resistance to diseases, early sexual maturity (from 39 to 50 days), better laying ability and shorter time of hatching compared with the different species of poultry. All these characteristics rendered it an excellent laboratory animal and a good economical animal protein source (for both egg and meat). Thermal stress was found to be the major limiting variable in poultry production, directly influencing bird welfare conditions. Previous research showed that heat stress in the production environment, induced by high ambient temperatures, may have a direct detrimental effect on welfare, meat quality, carcass characteristics, productivity, egg mass and egg quality. Furthermore, heat stress directly decreases quails' reproductive performance. As tiny, ground-dwelling birds, quail may appear unable to handle extreme temperatures, yet they have methods of fighting the heat. This review will help in developing and strengthening the core of the quail-based poultry sector. In addition, it provides aggregate information on the characteristics of the quail bird as a production unit in poultry farms as well as being an animal model for laboratory experiments. Also, this review provided deep insight into the domestication process and the impact of heat stress on production characteristics, which altered the domestic or Japanese quail substantially.
Collapse
Affiliation(s)
- Fiza Batool
- Faculty of Agriculture, Department of Forestry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rana M Bilal
- Faculty of Veterinary and Animal Sciences, Department of Animal Nutrition, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faiz Ul Hassan
- Faculty of Animal Husbandry, Institute of Animal & Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Taquir A Nasir
- Department of Animal Science, University of Sargodha, Sargodha, Pakistan
| | - Majid Rafeeque
- Department of Animal Science, University of Balochistan, Quetta, Pakistan
| | - Shaaban S Elnesr
- Faculty of Agriculture, Poultry Production Department, Fayoum University, Fayoum, Egypt
| | - Mayada R Farag
- Veterinary Medicine Faculty, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Hany A M Mahgoub
- Faculty of Science, Department of Botany and Microbiology, Al-Azhar University, Nasr City, Egypt
| | - Mohammed A E Naiel
- Faculty of Agriculture, Animal Production Department, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Faculty of Agriculture, Poultry Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Hearing in Indian peafowl (Pavo cristatus): sensitivity to infrasound. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:899-906. [PMID: 33025058 DOI: 10.1007/s00359-020-01446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Despite the excitement that followed the report of infrasound sensitivity in pigeons 40 years ago, there has been limited followup, with only eleven species of birds having auditory thresholds at frequencies below 250 Hz. With such sparse data on low-frequency hearing, there is little understanding of why some birds hear very low frequencies while others do not. To begin to expand the phylogenetic and ecological sample of low-frequency hearing in birds, we determined the behavioral audiogram of the Indian peafowl, Pavo cristatus. Peafowl are thought to use low frequencies generated by the males' tail feathers and wing flutters during courtship displays, and their crest feathers are reported to resonate at infrasound frequencies. The peafowl were able to respond to frequencies as low as 4 Hz, and their hearing range at 60 dB SPL extended from 29 Hz to 7.065 kHz (7.9 octaves). Removing the crest feathers reduced sensitivity at their resonant frequencies by as much as 7.5 dB, indicating a modest contribution to detectability in that range. However, perforation of the tympanic membranes severely reduced sensitivity to low frequencies, indicating that sensitivity to low frequencies is mediated primarily by the ears and cannot be attributed to some other sensory modality.
Collapse
|