1
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|
2
|
Schluessel V, Kreuter N, Gosemann IM, Schmidt E. Cichlids and stingrays can add and subtract 'one' in the number space from one to five. Sci Rep 2022; 12:3894. [PMID: 35361791 PMCID: PMC8971382 DOI: 10.1038/s41598-022-07552-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
The numerical understanding of cichlids and stingrays was examined regarding addition and subtraction abilities within the number space of one to five. Experiments were conducted as two-alternative forced-choice experiments, using a delayed matching to sample technique. On each trial, fish had to perform either an addition or subtraction, based on the presentation of two-dimensional objects in two distinct colors, with the color signaling a particular arithmetic process. Six cichlids and four stingrays successfully completed training and recognized specific colors as symbols for addition and subtraction. Cichlids needed more sessions than stingrays to reach the learning criterion. Transfer tests showed that learning was independent of straightforward symbol memorization. Individuals did not just learn to pick the highest or lowest number presented based on the respective color; instead, learning was specific to adding or subtracting ‘one’. Although group results were significant for both species in all tests, individual results varied. Addition was learned more easily than subtraction by both species. While cichlids learned faster than stingrays, and more cichlids than stingrays learned the task, individual performance of stingrays exceeded that of cichlids. Previous studies have provided ample evidence that fish have numerical abilities on par with those of other vertebrate and invertebrate species tested, a result that is further supported by the findings of the current study.
Collapse
Affiliation(s)
- V Schluessel
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Poppelsdorfer Schloss, 53115, Bonn, Germany.
| | - N Kreuter
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Poppelsdorfer Schloss, 53115, Bonn, Germany
| | - I M Gosemann
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Poppelsdorfer Schloss, 53115, Bonn, Germany
| | - E Schmidt
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Poppelsdorfer Schloss, 53115, Bonn, Germany
| |
Collapse
|
3
|
Zupanc GKH, Arikawa K, Helfrich-Förster C, Homberg U, Narins PM, Rössler W, Simmons AM, Warrant EJ. It's all about seeing and hearing: the Editors' and Readers' Choice Awards 2022. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:351-353. [PMID: 35107606 DOI: 10.1007/s00359-022-01541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
This year marks the inauguration of the annual Editors' Choice Award and the Readers' Choice Award, each presented for outstanding original papers and review articles published in the Journal of Comparative Physiology A. The winners of the 2022 Editors' Choice Award were determined by vote of the Editorial Board for the most highly recommended papers published in Volume 207 in 2021. They are 'Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro)' by Daniel et al. (J Comp Physiol A 207, 43-58, 2021) in the Original Paper category; and 'Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments' by Römer (J Comp Physiol A 207, 303-319, 2021) in the Review Article category. The 2022 Readers' Choice Award was based on access number of articles published in Volume 206 in 2020, to ensure at least 12-month online presence. It is given to Nicholas et al. for their original paper titled 'Visual motion sensitivity in descending neurons in the hoverfly' (J Comp Physiol A 206, 149-163, 2020); and to Schnaitmann et al. for their review article entitled 'Color vision in insects: insights from Drosophila' (J Comp Physiol A 206, 183-198, 2020).
Collapse
Affiliation(s)
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0115, Kanagawa, Japan
| | | | - Uwe Homberg
- Department of Biology, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Peter M Narins
- Departments of Integrative Biology & Physiology, and Ecology & Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | - Andrea Megela Simmons
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Eric J Warrant
- Department of Biology, University of Lund, 22362, Lund, Sweden
| |
Collapse
|
4
|
Ryan LA, Slip DJ, Chapuis L, Collin SP, Gennari E, Hemmi JM, How MJ, Huveneers C, Peddemors VM, Tosetto L, Hart NS. A shark's eye view: testing the 'mistaken identity theory' behind shark bites on humans. J R Soc Interface 2021; 18:20210533. [PMID: 34699727 PMCID: PMC8548079 DOI: 10.1098/rsif.2021.0533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.
Collapse
Affiliation(s)
- Laura A Ryan
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - David J Slip
- Taronga Conservation Society Australia, Bradley's Head Road, Mosman, New South Wales 2088, Australia
| | - Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa.,South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa.,Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown 6140, South Africa
| | - Jan M Hemmi
- School of Biological Sciences and The UWA Oceans Institute, M092, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Louise Tosetto
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
5
|
Kreuter N, Christofzik N, Niederbremer C, Bollé J, Schluessel V. Counting on Numbers-Numerical Abilities in Grey Bamboo Sharks and Ocellate River Stingrays. Animals (Basel) 2021; 11:2634. [PMID: 34573600 PMCID: PMC8466846 DOI: 10.3390/ani11092634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Over the last decade, studies examining the cognitive abilities of fish have increased, using a broad range of approaches. One of the foci has been to test the ability of fish to discriminate quantities of items and to determine whether fish can solve tasks solely on the basis of numerical information. This study is the first to investigate this ability in two elasmobranch species. All animals were trained in two-alternative forced-choice visual experiments and then examined in transfer tests, to determine if previously gained knowledge could be applied to new tasks. Results show that the grey bamboo shark (Chiloscyllium griseum) and the ocellate river stingray (Potamotrygon motoro) can discriminate quantities based on numerical information alone, while continuous variables were controlled for. Furthermore, the data indicates that similar magnitudes and limits for quantity discrimination exist as in other animals. However, the high degree of intraspecific variation that was observed as well as the low rate of animals proving to be successful suggest that the ability to discriminate quantities may not be as important to these species as to some other vertebrate and invertebrate species tested so far.
Collapse
Affiliation(s)
| | | | | | | | - Vera Schluessel
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Meckenheimerallee 169, 53115 Bonn, Germany; (N.K.); (N.C.); (C.N.); (J.B.)
| |
Collapse
|
6
|
Schluessel V, Rick IP, Seifert FD, Baumann C, Lee Davies WI. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). J Exp Biol 2021; 224:237826. [PMID: 33771913 DOI: 10.1242/jeb.226142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Collapse
Affiliation(s)
- Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Ingolf P Rick
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Friederike Donata Seifert
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Christina Baumann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Wayne Iwan Lee Davies
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| |
Collapse
|